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Abstract

We present a simple proof to the existence of a probability ensemble with tiny support which
cannot be distinguished from the uniform ensemble by any recursive computation. Since the
support is tiny (i.e, sub-polynomial), this ensemble can be distinguished from the uniform en-
semble by a (non-uniform) family of small circuits. It also provides an example of an ensemble
which cannot be (recursively) distinguished from the uniform by one sample, but can be so dis-
tinguished by two samples. In case we only wish to fool probabilistic polynomial-time algorithms
the ensemble can be constructed in slightly super-exponential time.

1 Introduction

Computational indistinguishability, introduced by Goldwasser and Micali [4] and defined in full gen-
erality by Yao [7], is a central concept of complexity theory. Two probability ensembles, {X,, },en
and {Y, },en, where both X, and Y, range over {0, 1}", are said to be indistinguishable by a com-
plexity class if for every machine M in the class the difference Prob(M (X, )=1)—Prob(M(Y,)=1)
is a negligible function in n (i.e., decreases faster than 1/p(n) for any positive polynomial p).

It has been known for a while (cf., [7, 5, 3]) that there exists probability ensembles which are
statistically far from the uniform ensemble and yet computationally indistinguishable from it: In
[7, 5] indistinguishability is with respect to (probabilistic) polynomial-time algorithms, whereas
in [3] indistinguishability is with respect to polynomial-size circuits. A simple proof is via the
Probabilistic Method: If you fix any function d : {0,1}" — {0,1}, and select at random O(%) strings
of length n, then with probability greater than 1 — 2" the average value of d over this sample will
be within +e¢ of the average over the entire domain {0, 1}". Using a standard enumeration of Turing
machines this means that for any super-polynomial function s : N+— N there exists a probability
ensemble, with support size bounded by s(-), which is indistinguishable from the uniform ensemble
by any (halting) Turing machine. Clearly, time bounds on the distinguishing machines yield obvious
bounds on the time required to construct the ensemble. Furthermore, the same argument can be
applied to non-uniform families of circuits (e.g., all polynomial-size circuits).

In [6], two probability ensembles, having sparse but disjoint supports, are shown to be indis-
tinguishable by probabilistic polynomial-time algorithms. Specifically, the support size is n* and
the distinguishing probability is exponentially vanishing in n. It seems that the argument in [6]
cannot yield either a support of size o(nlogn) nor zero distinguishing probability. Here we present
a simpler proof of the following stronger result:



Proposition 1 (main result): Let M be an enumeration of halting (probabilistic) Turing ma-
chines, and t : N— N be any non-decreasing and unbounded function. Then, there exists a proba-
bility ensemble, {R,}, so that, for every n € N:

1. The support of R,, has size at most t(n) + 1.

2. For each one of the first t(n) machines in M, denoted M,
Prob(M(R,)=1) = Prob(M(U,)=1)
where U, denotes the uniform distribution over {0,1}".

Furthermore, in case M is the sel of probabilistic polynomial-time machines, the distribution R,
can be constructed in time e(n), where e : NN is any function which grows faster than 2P°Y(™),

As immediate corollaries we get

Corollary 1 There exists a probability ensemble, { R, }, which is indistinguishable from the uniform
ensemble by probabilistic polynomial-time machines but is distinguishable from it by a family of
polynomial-size circuits.

h

(Hint: the ensemble is as in Proposition 1. The n'™ circuit incorporates the support of R, and

outputs 1 if and only if the input is in the support.)

Corollary 2 There exists a probability ensemble, { R, }, which is indistinguishable from the uniform
ensemble by probabilistic polynomial-time machines but is distinguishable from it by a polynomial-
time algorithm which gets two (independently drawn) samples from the distribution.

(Hint: again, the ensemble is as in Proposition 1. An algorithm, which gets two samples, outputs
1 if and only if both samples are identical.) We comment that both [1, 6] present a result related
to the last corollary. Specifically, they present two ensembles, each with at most two n-bit strings
in their support, for which all single-sample algorithms have vanishing distinguishing probability
whereas a simple two-sample algorithm has constant distinguishing probability. Note that in the
corollary above the size of the support of R, is small (e.g., loglog n) but not a constant. Yet, the
distinguishing probability based on a single sample is zero.

We stress that all results in the paper are absolute (i.e., do not require any unproven assumptions).
On the other hand, the fact that the ensembles are not constructible in polynomial-time is unavoid-
able, since analogous results for polynomial-time constructible (sampleable) ensembles imply the
existence of one-way functions (cf., [2]).

2 Proof of Main Result

Suppose that you want to construct a distribution with small support which fools (i.e., looks random
to) a single machine, denoted M. Then all you need is two strings, z,y € {0,1}", so that

) ) (1)
) ) (2)

Prob(M (z)
Prob(M(y)

Prob(M(U,) =
Prob(M(U,) =
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Fixing these z and y, there exists an a € [0, 1] so that defining the distribution R, so that R, = z
with probability @ and R, = y otherwise, you get

Prob(M(R,) = 1) = Prob(M(U,) = 1)

Thus, machine M cannot distinguish R, from U,.

All that is needed for proving the main result is to generalize the argument so that we can fool ¢
machines simultaneously. To this end consider the 2" (¢-dimensional) vectors corresponding to the
probabilities that each of the ¢ machines outputs 1 on each of the strings in {0, 1}". Specifically,
the vector associated with z € {0,1}" has Prob(M;(z) = 1) in its i*" component, where M; is
the 7™ machine (that we are trying to fool). Assume, without loss of generality, that these 27
vectors span a {-dimensional vector space.! Observe that the average of these vectors, denoted o,
is a vector of probabilities with Prob(M;(U,)=1) as its ™ component. The average vector ¥ is
in the convex hull of all 2" former vectors, and thus there must exist ¢ + 1 vectors which (also)
have % in their convex hull. Let v,,...,v;4, denote a set of such ¢ + 1 vectors. Then, by definition,
there exists aj, ..., ;41 non-negative and summing up to 1, so that the vector E;ill a;v; equals the
vector v. Using the z;’s corresponding to these vectors with the coefficients a;’s, we get the desired
distribution. Specifically, we define R, so that Prob(R,=xz;) = a;, for j = 1,...,t+ 1. Clearly, for
t=1,...,1,

141
Prob(M;(R,)=1) = > a;-Prob(M(z;)=1) = Prob(M;(U,)=1)

ji=1
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! Otherwise consider the coordinates which span a full dimensional space.



