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Abstract

We investigate the complexity of depth-3 threshold circuits with majority gates
at the output, possibly negated AND gates at level two, and MOD,,, gates at level
one. We show that the fan-in of the AND gates can be reduced to O(logn) in the
case where m is unbounded, and to a constant in the case where m is constant.
We then use these upper bounds to derive exponential lower bounds for this class
of circuits. In the unbounded m case, this yields a new proof of a lower bound of
Grolmusz; in the constant m case, our result sharpens his lower bound. In addition,
we prove an exponential lower bound if OR gates are also permitted on level two
and m is a constant prime power.

1 Introduction

About ten years ago, Furst, Saxe and Sipser [FSS] and Ajtai [Aj] showed that polynomial-
size ACY circuits could not compute the parity function. It was hoped that this seminal
result would be the first in a series of lower bounds for increasingly larger classes of
circuits and that this would lead to the development of new and powerful techniques
for proving lower bounds. At the time, this was seen as the most promising approach

towards a proof that P # NP.
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Several other lower bound results did follow in the next few years. Yao [Yal] and
Hastad [Has| showed that the ACY lower bound for parity was in fact exponential.
Razborov showed that ACCY[2] circuits require exponential size to compute the majority
function [Ra]. Smolensky later sharpened and generalized the result to MOD, ¢ ACC[p*]
if k is fixed and p and ¢ are distinct primes [Sml].

As for circuits with MOD,,, gates for m not a prime power and circuits with majority
gates, exponential lower bounds are known for TC) [Haj] and for MOD,, o SYM [KW],
where SYM is the class of functions computed by polynomial-size circuits consisting
of a single level of symmetric gates. Exponential lower bounds are also known for

TCY o AND%IOgn [HG] and a quasipolynomial lower bound is known for TCY o AC{ [RW].

However, to this day, no superpolynomial lower bound is known for general depth-3 TC?
circuits.

In fact, until recently, no superpolynomial lower bound was known for depth-3 T(C°
circuits unless some restriction was put on the fan-in of some of the gates or unless the
class was simply TC) o ACY. And no exponential lower bound was known without fan-in
restrictions, unless the class was simply TC{ o ACY [Gre]. The situation changed however
when Grolmusz proved an exponential lower bound on the size of TC? o AND o MOD,,
circuits computing the inner product mod 2 function [Gro]. Note that only AND gates
are allowed on level two of these circuits but there is no restriction on the fan-in of the
gates and the lower bound holds even if m is any function of n.

In this paper, we give a new proof of this lower bound, one that better explains
the computational limitations of this class of circuits. By developing a new proof tech-
nique based on random linear combinations, we show that TCY o AND o MOD,, is in
fact contained in TCY o ANDo(10gn) © MOD,,. We then show that this class is contained
in quasipolynomial-size TCY; the lower bound now follows directly from the exponential
TC$ lower bound.

Then, in the case where m is constant, we sharpen the lower bound by showing that
TCY o AND o MOD,, circuits require exponential size to compute MOD, if ¢ is divisible
by a prime that does not divide m. This is done by using random linear combinations in a
different way to show that TC{ o AND o MOD,, is contained in TC{ 0 ANDg ) 0 MOD,,.
The lower bound then follows from a lower bound of Krause and Pudldk [KP].

Finally, we consider allowing OR gates on the second level of the circuits. We first
point out that the union over all m € n°W of the classes TCY 0o OR 0o MOD,, contains
TC? o ACJ o TCY, a class for which no lower bounds are known. Then we show that a
lower bound can be proved in the case where the inputs to the OR gates are only MOD
gates for some constant prime power p*. More precisely, we show an exponential lower

bound for TCY o ACY o CCY[p*], for k fixed and p prime.

2 Definitions and background

We first define the circuit classes that will occur in this article. Note that the size of
a circuit is the number of edges it contains. In addition, unless otherwise indicated, all



circuit classes allow gates of unbounded fan-in and input gates can be labeled by input
variables, their negations and the constants 0 and 1. AC? is the class of constant-depth
polynomial-size circuits consisting of AND, OR and NOT gates. ACC?[m] is similar but
MOD,, gates are also allowed. MOD,, gates are defined by MOD,,(z1,...,z,) = 1 if
and only if X% 2, =0 (mod m). CC°[m] is the subclass of ACC°[m] that allows only
AND-OR gates of constant fan-in. As usual, ACC® = |J,, ACC’[m] and similarly for
CCP. T(CY is the class of constant-depth polynomial-size circuits consisting of AND, OR,
NOT and majority gates. For all of these classes, a subscript denotes the subclass of
circuits with depth exactly d.

SYM denotes the class of polynomial-size circuits consisting of a single level of sym-
metric gates. MAJ denotes the class of polynomial-size circuits consisting of a single
level of majority gates, but with no negations allowed at the input. In other words, every
output of a MAJ circuit is the majority of some subset of the inputs. The classes AND,
OR and MOD,, are defined similarly. Note that in the case of MOD,, circuits, allowing
negated inputs yields exactly the same class. In the case of MAJ, however, we get TCY.
A subscript used with AND and OR denotes the restriction to gates of fan-in k.

Classes of circuits whose levels consist of various types of gates can be conveniently
described as the composition of various classes of functions [Ma, MT]. If T" and A are
classes of Boolean functions (not necessarily circuit classes), then I' o A denotes the class
of functions f of the form f(z) = g(h(z)), where ¢ € ', A € A and h has monotone
increasing output length. For example, TCY o AND o MOD,, is the class of functions
computed by depth-3 polynomial-size circuits with majority gates at the output, possibly
negated AND gates at level two, and MOD,, gates at level one. In the case where I' and A
are both circuit classes, then we will refer to the corresponding circuits as I" o A circuits.
Note that the condition on the output length of h guarantees that the complexity of
g, which is measured relative to the output length of A, is related to the input length
of f. This is important in some contexts but of no consequence for the circuit classes
considered in this article.

We will make frequent use of the following basic fact which is an easy corollary of a
result in [Haj]:

Proposition 1 TCY o SYM = TCY.

Proof Any symmetric gate with m inputs can be expressed as the sum of 2m+2 majority
gates [Haj]. The sums can then be combined with the majority gate at the output by
feeding their terms directly into the gate. O

The following functions have played a central role in the study of small-depth TC?
circuits:



Definition 2

a) The inner product mod 2 function, denoted IP;, is defined by

IPy(z,y) = (Z xiyi) mod 2,

=1
where v = x1,..., 2, and y = y1,..., y,.

b) More generally, for any prime p, the function IP, is defined by
IP,(z,y)=1 iff Z;vy;yyq Z0 (mod p),
=1

wherez = z1,...,2,,y = y1,...,y, and the z; and y; are elements of Z, represented
in binary. Thus IP, is a function of 2[log p|n Boolean variables.

¢) Finally, for any function k of n, the function GIP, is defined by

GIPQJC(‘Il,...,,Ik) = (Z xlj"'xkj) rnod 27
7=1

where z; = z;1,..., 2, and z;; € {0, 1}.

Table 1 summarizes our new lower bound results together with some other relevant
lower bounds. Table 2, on the other hand, summarizes our new upper bounds and other
related results.

An exponential lower bound for TCY was first established by Hajnal et al. who showed
that TCY circuits computing 1P, have size 2" [Haj]. Krause and Waack then generalized
this result to IP,, for any prime p.

Fact 3 ([KW]) For any prime p, TCY circuits computing 1P, have size o8un)

Since the value of each term z;y; in the definition of IP, depends on only 2[log p| input
variables, a constant number, it is easy to see that IP, belongs to MOD,, o ANDji0g7(p—1)
and thus to MOD,, o ANDji4gp1(5—1) for any multiple m of p. Therefore, Fact 3 implies
that MOD,,, 0o ANDg(;y € TCY for any constant m. In particular, MOD, o AND, € TCY
which implies that TC) o AND, € TCY.

Now consider TC{ o MOD,, circuits for m constant. Since TC{oMOD,, C TCY,
we have that for every prime p, TC$ o MOD,, circuits computing IP, have size 29",
However, Goldmann has established the following sharper result: if ¢ is divisible by a
prime p that does not divide m, then TC} o MOD,, circuits computing MOD, have size
2% [Go]. Since then, this lower bound has been generalized by Krause and Pudlak:

Fact 4 ([KP)]) If ¢ is divisible by a prime p thal does not divide m, then
TCY o ANDg(1y 0 MOD,, circuits computing MOD, have size 28Un)

4



PrEviOUsLY KNOWN IN THIS PAPER

Clircuil class Function L.b. | Ref Function L.b.
TCY IP, 290 | [KW]
TCS 0 ANDyygq,, GIPy110gner | 2707 | [HG]
TCY o ACY Gﬁgfiﬁ;’f ntlogn) | [RW]
TCY o ACP MOD, 27" | [Gre]
TCY o CCO[pF] MOD, 2%(n)
TCY 0o ACY 0 CCO[p*] MOD, 2%(n)
TC? 0o ANDoyo MOD,, || MOD,, ¢ fm | 290" | [KP]
TCY o AND o MOD,, 1P, 29 | [Gro] | MOD,, ¢ fm | 2%
R I Ll e

Table 1: Summary of lower bound results. Unless otherwise indicated, p and ¢ are distinct
prime constants, and k£ and m are constant.

Note that Fact 4 is only a special case of one of the results in [KP].
The TC) lower bound (Fact 3) has been extended by Hastad and Goldmann to depth-3

TCO circuits in which the level-one gates have fan-in bounded by 1 log n.

Fact 5 ([HG]) If 2 <k < llogn, then TC) o ANDy_y circuits computing GIPy . have
size 247

Since GIP,; is easily seen to be computable in MODy o AND;, Fact 5 implies that
MOD, 0o AND; € TC9 0o AND,_; and therefore that TC) o AND, € TCS o AND;_;.

We will later make use of the following version of the Chernoff bound:

Fact 6 (Chernoff bound) If X,..., Xy are mutually independent 0-1 random vari-
ables such that Prob[X; = 1] = p, then

N 2
ZXZ- —pN < 2e™ pN/3,

=1

Prob l > apN

In other words, the probability that YN, X; is far from its expected value, pN, decreases
exponentially with N.



Clircuil class Contains Using size Ref.
g ,

TC? o ANDo(1) 0o MOD,, TC? o AND o MOD,,, n®M | This paper
TCY 0 ANDo1ogny © MOD,,,, TC%0 AND o MOD,,, o) .
m unbounded m unbounded " This paper
TCY o AND o MOD .
0 1 m; O(logn)
TCS m unbounded n This paper
TCY o MOD, 0 ANDg(y) TCY o CCO[p¥] nO) Folklore
TCY o ACY o CC°[p*] nO) This paper
TCY 0 MOD, 0 AND 5 myott TCY 0 ACCO[p] nesm 1 By [A]]
TCS 0 AND g o) TC? 0 ACCO p(legm) O [Ya2]

Table 2: Summary of upper bound results. Unless otherwise indicated, p is a prime
constant, and k& and m are constant.

3 TC)o AND o MOD,, circuits: the unbounded m case

In this section, we show that for any m € n®(M), TC? o AND o MOD,, circuits require size

220v7) to compute IP,, for any prime p. This will be done by proving two upper bound

results. First, we will show that the fan-in of the AND gates in TCY o AND o MOD,,

circuits can be reduced to O(log n). Second, we will show that TCY circuits of size n©ogn)

can simulate any TCY o ANDo(10gn) © MOD,, circuit.
We begin by showing that AND o MOD,, subcircuits can be well approximated by
probabilistic MOD,,, gates.

Lemma 7 For every AND o MOD,, circuit C, there is a probabilistic MOD,, gale GG
such that

C(z)=0 = Prob[G(z)=
C(z)=1 = Prob[G(z)

J<1/2

1
=1

Proof Suppose that G,..., G, are the MOD,, gates of ' and that G tests whether
Yig aijry + aip =0 (mod m). Let R; = >ty aijrj+apn. Now let R =b6Ry+---+b,R,
where by, ..., b, are chosen randomly and independently in {0,1}.

Let z be arbitrary. If C'(z) = 1, then for every ¢, R; =0 (mod m) so that
R =0 (mod m) for every possible value of by,...,b;.

If C(z) = 0, then there is j such that R; = ¢ (mod m) for some ¢ # 0. For
every possible value of by,...,bi_1,bi41,...,b, , we have either R = 37,,. b;R; or R =

6



> iz; biRi 4+ c. Since ¢ # 0, these two values cannot be both congruent to 0. Therefore,
R =0 (mod m) with probability no greater than 1/2.

Now take the MOD,, gate GG corresponding to R. This probabilistic gate satisfies the
conditions in the statement of the lemma. O

Theorem 8 For every m € n®W),
TCY o AND o MOD,,, = TCY 0 ANDg 1651y © MOD,,.

Proof Suppose that C' is of the form MAJ(Dy,..., D) where each D; is equal to C; or
NOT(C}), for some C; in AND o MOD,,,. Without loss of generality, we assume that s
is even. Let Gi,..., G, be the probabilistic MOD,, gates given by the lemma. Let G
be the AND of [log1/a| independent copies of (;. The appropriate value of o will be
determined later; for the moment, let « be an arbitrary number less than 1. For every 1,
we have

IN

«@
1

Ci(x) =0 = Prob[Gi(z) =1]
Ci(z)=1 = Prob[Gi(z) =1]

If D; = C;, then let H; = G}. If D; = NOT(C;), then let H; = NOT(G"). Then, for

every i,
Di(z) =0 = Prob[H;(z)=
Di(z) =1 = Prob[H;(z)=

Let H;1, ..., H;xn be N independent copies of H;. The appropriate value of N will also be
determined later. If D;(z) = 0, then E(Ej Hi;) < aN. If Di(z) =1, then E(Zj H;) >
N — aN.

Now take an arbitrary z. Two cases are possible:
1) For every ¢, |3, Hi; — E(3°; Hyj)| < aN.
2) There is an 7 such that |3, Hy; — E(3; Hi;)| > aN.
Consider the first case. If C'(z) = MAJ(D;(z),...,Ds(z)) =0, then

§:mj<:§@mw+<%_QAf (1
-7‘7-
On the other hand, if C(z) =1, then

S Hi > (N -2aN) (2)

A straightforward calculation shows that the number in (1) is less than the number in (2)
if 1/a > 2s. In that case,
Clz)=1 & > H;>1

1]



where ¢ is the number in (2). Notice that an appropriate value for a can be chosen with
1/a € O(s). This also implies that [log1/a| € O(log s).

Consider now the second case. By using the Chernoff bound (Fact 6), we will show
that this case is not very likely. First, for every ¢, if E(3>; H;;) = pN, then

< 2e=(@/PVPN[3 < 9=a*N/3
since p < 1. Therefore,

Prob lﬂi ( ZJ: Hj; —E (ZJ: H,A-J-) > aN)

It is easy to verify that N € O(ns?) C n%®) can be chosen so that this probability is less
than 277,
Therefore, the probability that there is a value of x for which Case 2 occurs is less than

Prob [ > aN

< 95~ N/3,

> 27" = 1. This implies that there is a sequence of H;; such that Case 1 occurs for every
z. For this particular sequence of Hy;, C(x) = 1if and only if 3=, - H;; > 1. Notice that
the H;; can each be computed in ANDg(1og5) © MOD,, or in NOT 0 ANDg 1545 0 MOD,,.
This implies that C' can be computed in TC} 0 ANDo 165, © MOD,,. O

Corollary 9

a) For every m € M any TCY o AND o MOD,, circuil can be simulated by a size-
nOUeen) TCY circuil.

b) For every prime p and for everym € nP®M TCY o AND o MOD,, circuits computing
IP, have size 2%V7),

¢) For every constant ¢, MOD, 0o ANDg(1y Z TC{ o AND o MOD,,.

Proof For part (a), first use the theorem to get an equivalent TCY o ANDo(1ogn) © MOD,,
circuit. By using a simple technique, each of the ANDg4g,) 0 MOD,, subcircuits can
be simulated by a single symmetric gate of fan-in n®{os") (see, for example, [HHK],
[Be] or [Ma].) This yields a TC? 0 SYM circuit of size n°0°%¢™). The result follows by
Proposition 1.

For part (b), first notice from part (a) and the proofs of the lemma and theorem,
that any TCY o AND o MOD,, circuit of size s can be simulated by a TC} circuit of size
500025)  The lower bound then follows from the Krause and Waack lower bound (Fact 3).

Part (c) follows from the fact that IP, is in MOD, o ANDgy for any multiple ¢ of p.

O

Note that Part (b) of the corollary extends the exponential lower bound of Grol-
musz [Gro] from IP; to IP, for any prime p. In addition, Theorem 8 implies that re-
stricting the level-two gates in a TCY) o MOD,, circuit to be only AND gates is in fact
equivalent to restricting the fan-in of those gates to be O(logn).

8



4 TCYo AND o MOD,, circuits: the constant m case

In this section, we show that for any constant m, TCY o AND o MOD,, circuits require
size 2" to compute MOD, if ¢ is divisible by a prime p that does not divide m. As
in the previous section, this lower bound will be obtained by first establishing an upper
bound: we will show that the fan-in of the AND gates in TC{ o AND o MOD,, circuits
can be reduced to a constant.

We again begin by showing that AND o MOD,,, subcircuits can be well approximated
by probabilistic MOD,,, gates.

Lemma 10 For every AND o MOD,, circuit C, there is a probabilistic MOD,, gate G
and a finite set of probabilities 11, depending only on m, such that 1 ¢ 11 and

C(z)=0 = Prob[G(z)=1]ell
Clz)=1 = Prob[G(z)=1]=1

Proof Suppose that Gy,...,Gs are the MOD,, gates of (' and that G; tests whether
2?21 aijxj+ap =0 (modm). Let R; = 2?21 a;i;x;+a. Nowlet R =b1Ri+---+ bR,
where by,...,bs are chosen randomly and independently in Z,,.

Let = be arbitrary. If C(z) = 1, then for every ¢, R, =0 (mod m) so that
R =0 (mod m) for every possible value of by,. .. b;.

Now suppose that C'(z) = 0, i.e., that not all the R; are divisible by m. We will
consider several cases. For concreteness, suppose for the moment that m = pq, the
product of two distinct primes. (1) If one of the R; is not divisible by either p or ¢, then
Prob[R = 0] = 1/m since R; has an inverse in Z,,. (2) If all the R; are divisible by p
but not by ¢, then R is a random multiple of p since all the R;/p have inverses in Z,,.
This implies that Prob[R = 0] = 1/¢. (3) If all the R; are divisible by ¢ but not by p,
then, similarly, Prob[R = 0] = 1/p. Finally, (4) if some R; are divisible by p but not
by g, and some R; are divisible by ¢ but not by p, then R = ap + bg where a and b are
random elements of Z,,. This implies that Prob[R = 0] = (1/p)(1/q) = 1/m. Therefore,
by combining all the cases, if C'(z) = 0, then Prob[R = 0] € {1/p,1/q,1/m}.

In general, up to (logm)?lem
constant. In each case, depending on which divisors of m occur as ged(m, R;) for some
R;, R will be congruent to 0 modulo m with some fixed probability less than 1.

Now take the MOD,, gate GG corresponding to R. This probabilistic gate satisfies the
conditions in the statement of the lemma. O

cases have to be considered. Notice that this is a

Theorem 11 For every constant m,
TC? o AND 0 MOD,, = TC? 0 ANDg(1) o MOD,,,.

Proof Suppose that C is of the form MAJ(Ds,. .., D) where each D; is equal to C; or
NOT(C;), for some C; in AND o MOD,,,. Without loss of generality, we assume that s

9



is even. Let Gy,..., G, and 11 = {py,...,px} be given by the lemma. Let Gj,..., Gy
be N independent copies of ;. The appropriate value of N will be determined later; for
the moment, let N be an arbitrary number. We have that

Ci(x) =0 = E(X;Giy) € {mN,...,pN}
CZ(I) =1 = E(ZJ G”) =N

Let N; be the value of p; N rounded to the nearest integer. Let P(X) be the degree
k polynomial (X — Ny)---(X — Ni). Then, for every 7, P(N;) = 0 while P(N) =
(N — Ny)--+(N — Ni). Let M denote that last number. It is easy to verify that for
sufficiently small  and for sufficiently large N, if |B—p; N| < aN, then |P(B)| < 2aN*,
and if |[B—N| < aN, then |P(B)—M| < akN*. Therefore, if | > G —E(X; Gij)| < aN,
then

|P(Y; Gij)| < 2akN*
|P(3; Gij) — M| < 20k N*

If l)2 = Cﬁ', then let RZ = P( jGij)- If l)Z = NOT(OZ), then let RZ =M — P(Z] G”)
Then, for every 1, if |3, Gi; — E(32; Gij)| < aN,

Di(x)

Di(x)

0 = |Ri|§2aka
1 = |R — M| < 2akN*

Now take an arbitrary x. Two cases are possible:
1) For every i, |32, Gij — E(X; Gij)| < aN.
2) There is an 7 such that | 3>, Gy — E(32; Gij)| > aN.

The appropriate value of @ < 1 will be determined later.

Consider the first case. If C'(z) = MAJ(D;(z),..., Ds(z)) = 0, then
YR < s(20kN*)+ (g - 1) M (3)
On the other hand, if C(z) =1, then

SR > s(—20kN*)+ %M (4)
A straightforward calculation shows that the number in (3) is less than the number in (4)

if 1/av > 4ksN* /M. In that case,

Clz)=1 & ZRiZt

1]
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where t is the number in (4). For sufficiently large N, we have that N*/M <
28/((1 = p1) -+ (1 — px)), a constant. Therefore, an appropriate value for o can be chosen
with 1/a € O(s).

Consider now the second case. By using the Chernoff bound (Fact 6), as was done in
the proof of Theorem 8, we can show that this case is not very likely. In fact,

Prob |:E|z' ( > aN)

It is again easy to verify that N € O(ns?) C n®0) can be chosen so that this probability
is less than 277,

Therefore, there is a sequence of MOD,,, gates (G;; such that Case 1 occurs for every
x. For this particular sequence, C'(z) = 1 if and only if >; R; > ¢. Now Y, R; is
a degree k polynomial in the G;;. Write this polynomial in standard form, i.e., as a

< 2se” N3,

S6, - (z GM)

linear combination of monomials. It is easy to verify that the coefficients are bounded
in O(N*) C n9M). Therefore, the test 3°; R; > 1 can be carried out by a TCY o AND;
whose inputs are the G;;: the monomials are computed by AND gates of fan-in & and
the possibly negative coefficients are handled by using standard techniques. This implies
that C' can be computed in TCY o ANDg(1y o MOD,,. O

We can now apply the lower bound result of Krause and Pudlak (Fact 4):

Corollary 12 For every pair of numbers g and m, if q is divisible by a prime p that does
not divide m, then TCY o AND o MOD,,, circuits computing MOD,, have size 28(n)

Note that this result sharpens the lower bound of the previous section (Corollary 9,
Part (b)) and that of Grolmusz [Gro], in the case of constant m, by showing that exponen-
tial size is required to compute not only IP, but also MOD,, if p is a prime that does not
divide m. Corollary 12 also extends the lower bound of Krause and Pudldk [KP] (Fact 4)
from TCY o ANDgo(1) 0o MOD,, to TCY o AND o MOD,, circuits. In fact, Theorem 11 im-
plies that in the case of constant m, restricting the level-two gates in a TCS o MOD,,
circuit to be only AND gates is equivalent to restricting the fan-in of those gates to be
constant.

5 Allowing OR gates on level two

The fact that only AND gates are allowed on level two in TC? o AND o MOD,, circuits
plays an essential role in the results of the previous section. The same is true for the
results of Grolmusz [Gro|: his technique does not seem to work if OR gates are allowed
on level two. In fact, we can show that the union over all m € n®() of the classes
TC? o OR 0o MOD,, contains TCY o ACY o TCY, a class for which no lower bounds are

known.

11



Proposition 13 TC{o AC§oTC) C [J TCYoORoMOD,,.

mEno(l)

Proof Let C be a TC{ o ACY o TCY circuit. By using standard techniques, C' can be
transformed into a TC{ o OR o TCY circuit. The result now follows from the fact that
any symmetric gate can be expressed as an OR of MOD,, gates if m is larger than the
size of the original circuit. (See the proof of Corollary 9, part (a).) 0

However, in the case where m = p*, a constant prime power, it is possible to allow

OR gates and prove a lower bound for TC{ o AC{ o MOD,. In fact,
Theorem 14 For every prime p and every constant k,
TCY o ACY o CCO[p*] = TCY o MOD,, 0 ANDgy).

Proof It is well-known that OR gates can be well approximated by probabilistic
constant-degree polynomials over Z,. (See [Al], for example.) Let y1,...,ys be the
inputs to an OR gate and let R = byy; + - - - + bsy; where the b; are chosen randomly
and independently in Z,. If C(y) =0 then R =0 (mod p) for every possible value of
the b;. If C(y) =1 then R =0 (mod p) with probability 1/p. Therefore, by Fermat’s
Little Theorem, RP™' satisfies

C(y)=0 = Prob[R"'(y) =
Cy)=1 = Prob[R"'(y) =

It is also well-known that any CC°[pf] circuit can be expressed as a constant-
degree polynomial over Z,. (See [BT], for example.) Therefore, for every circuit C

in AC{ o CC°[p*], there is a probabilistic MOD,, o ANDg() circuit D such that

C(z)=0 = Prob[D(x)
C(z)=1 = Prob[D(z)

=1]=qo
=1l=q
withq1—q0=1—;—).

Now suppose that C' is a TC) o ACY o CCO[p*] circuit of the form MAJ(Cy,...,C,).
Replace each C; by an approximating probabilistic MOD,, o ANDg circuit. The re-
sulting probabilistic circuit can then be transformed into a deterministic one by a special
case of the argument used in the proof of Theorem 8. O

Corollary 15 If p is prime, k is constant and r is not bounded by a constant, then
TCY o ACY o CCO[p¥] circuits computing GIP,, have size 29",

Proof From the proof of the theorem, we get that any TCY o AC? o CCO[p*] circuit of
size s can be simulated by a TCY o MOD,, o ANDo1) circuit of size polynomial in s. This
circuit can in turn be simulated by a TC9 o ANDg ) circuit of size s%0) by Proposition 1.
The lower bound then follows from the lower bound of Hastad and Goldmann (Fact 5).

O
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This result extends a special case of our lower bound of the previous section (Corol-
lary 12) from TC{ o AND o MOD,x circuits to TCY o ACY o CC[p*] circuits, for p prime
and k constant. Note however that the lower bound in this section is for GIP;,, r not
bounded by a constant, instead of MOD,, ¢ a prime different from p.

6 Conclusions and open problems

As researchers investigate the computational complexity of small-depth Boolean circuits,
a lot of effort is naturally devoted to proving negative results, i.e., lower bounds. For
example, the conjectures NP € TC§ and ACC® € TC® € NC' have attracted a great
deal of attention.

But a lot of effort is also devoted to proving positive results, i.e., upper bounds.
Showing how resources can be used effectively to solve computational problems has always
been a defining goal of theoretical computer science. Positive results, whether in the form
of problems belonging to a particular complexity class, or in the form of containments
between complexity classes, help us to fully understand the complexity of computation.
Positive results also help reduce the proliferation of complexity classes, such as the variety
of restricted versions of TCY circuits. Finally, positive results also help to prove lower
bounds.

In this article, we proved two positive results concerning the complexity of
TCY o AND o MOD,, circuits. First, in the case where m is unbounded, we showed
that the fan-in of the AND gates on level two can be reduced to O(logn). This led
to the proof that TC{ o AND o MOD,, circuits are no more powerful than TC} circuits

Ollogn)  Tn particular, TCS o AND o MOD,, circuits require exponential size to

of size n
compute IP,,.

Then, in the case where m is constant, we showed that the fan-in of the AND gates can
be reduced to a constant. By the same argument that was used in the proof of Corollary 9,
Part (a), this implies that TC) o AND o MOD,, circuits are no more powerful than TCY)
circuits (of polynomial size). But our upper bound actually leads to a better lower bound
than in the unbounded m case: if ¢ is divisible by a prime that does not divide m, then
TCY o AND o MOD,, circuits require exponential size to compute MOD,.

A natural continuation of this work would be to investigate the complexity of
TCY 0o ACY o MOD,, circuits where both AND and OR gates are allowed on level two. As
we pointed out earlier, a general lower bound for this class, i.e., for m € n°"), would imply
a new lower bound for the class TCY o ACY o TCY. In this article, we obtained a partial
result, once again by first proving an upper bound. We showed that TC? o ACY o CCO[pF]
circuits are no more powerful than TC{ o MOD, o ANDgg) circuits, if p* is a constant
prime power. This implies that these circuits require exponential size to compute GIP,,
if 7 is not bounded by a constant. It would be interesting to extend the lower bounds
for TCY o MOD,, circuits [Go] to TCY o MOD,,, o ANDgp(y) circuits, even in the special
case of a prime power. Together with our upper bound, such a lower bound might imply

sharper lower bounds for TCY o ACY o CCY[p*].
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More generally, as a first step towards lower bounds for TCY o AND 105 nyorny circuits,
a lower bound for TC{ o MOD, o AND 105 nyoy, for p prime, would generate a lot of
excitement. By the positive results of Allender [Al] (see also [AH]) this would imply a
lower bound for TC{ o ACC[p].

Finally, note that the exact definition used for the MOD,, gates plays a crucial role
in the results presented in this article. Generalized MOD,, gates, denoted GMOD,,,
are defined by MOD? (z,...,2,) = 1 if and only if (X%, z;) mod m € S, for any
subset S of Z,,. Our results still hold even if MODI? gates are used in the circuits,
for any ¢ € Z,,. If instead MODTZ,I’”_{C} gates are used, then we get lower bounds for
circuits with OR gates instead of AND gates on level two. But if arbitrary GMOD,,
gates are used, then our techniques no longer work. More precisely, we do not know
how to prove Lemmas 7 and 10 in this case. In fact, no lower bounds are known for
TCY o AND o GMOD,, circuits. Note that the definition of MOD,, gates also plays an
essential role in the proofs of Grolmusz [Gro| and in the lower bounds for the class

MOD,, o MOD,, (see [KW], [BST] and [Ca]). In particular, no lower bounds are known
for GMOD,,, o GMOD,, circuits. (See also [BBR] for related work.)
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