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Abstract

NP = PCP(logn, 1) and related results crucially depend upon the close connection
between the probability with which a function passes a low degree test and the distance
of this function to the nearest degree d polynomial. In this paper we study a test
proposed by Rubinfeld and Sudan [RS93]. The strongest previously known connection
for this test states that a function passes the test with probability § for some § > 7/8
iff the function has agreement =~ § with a polynomial of degree d. We present a new,
and surprisingly strong, analysis which shows that the preceding statement is true for
6 < 0.5. The analysis uses a version of Hilbert irreducibility, a tool of algebraic geometry.

As a consequence we obtain an alternate construction for the following proof sys-
tem: A constant prover l-round proof system for NP languages in which the verifier
uses O(logn) random bits, receives answers of size O(logn) bits, and has an error prob-
ability of at most 2~ log'™*n SQuch a proof system, which implies the NP-hardness of
approximating Set Cover to within Q(logn) factors, has already been obtained by Raz
and Safra [RazS96]. Our result was completed after we heard of their claim.

A second consequence of our analysis is a self tester/corrector for any buggy program
that (supposedly) computes a polynomial over a finite field. If the program is correct
only on § fraction of inputs where § = 1/ |F|® < 0.5, then the tester/corrector deter-
mines § and generates O(%) values for every input, such that one of them is the correct
output. In fact, our techniques yield something stronger: Given the buggy program,
we can construct O(%) randomized programs such that one of them is correct on every
input, with high probability.

*Supported by an NSF CAREER award and an Alfred P. Sloan Fellowship.arora@cs.princeton.edu.
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1 Introduction

The use of algebraic techniques has recently led to new (probabilistic) characterizations of
traditional complexity classes. These characterizations involve an interaction between an
untrustworthy prover (or many provers) and a polynomial-time verifier. In MIP= NEXP-
TIME [BFL91], and NP = PCP(logn, 1) [AS92, ALMSS92] the verifier has to probabilis-
tically verify the satisfiability of a boolean formula by reading very few bits in a “proof
string” presented by a prover. In IP=PSPACE [LFKN92, Sh92] the verifier has to prob-
abilistically verify tautologyhood of a quantified boolean formulae by interacting with a
prover. All these results fundamentally rely on the same idea: the verifier first arithmetizes
(or algebraizes) the boolean formula, which involves viewing a boolean assignment not as a
sequence of bits but as values of a polynomial [LFKN92|. From then on, verifying satisfi-
ability or tautologyhood involves verifying — using some efficient algebraic procedures —
specific properties of a polynomial that has been provided by the prover.

In this paper we present an improved analysis of the low degree test, an algebraic proce-
dure used in the result NP=PCP(logn, 1). We expect that this result to have many applica-
tions; some are already known. For example, the new analysis is known to lead to new char-
acterizations of NP in terms of PCP, which in turn lead to improved results about the hard-
ness of approximation. Recall that NP=PCP(logn, 1) implies the hardness of computing
approximate solutions to many optimization problems such as cLiQuE [FGLSS91, AS92],
CHROMATIC NUMBER and SET COVER [LY93], AND MAX-3sAT [ALMSS92]. For most of
these problems it implies NP-hardness, but for some —most notably the problem of approx-
imating SET COVER within a factor O(logn) and an entire set of problems in [ABSS93] — it
is only known to imply quasi-NP-hardness (a quasi-NP-hard problem has a polynomial-time
algorithm only if NP C Time(n?o¥!°s(m))),

Plugging our improved analysis of the low degree test into known constructions leads
to very efficient constant-prover l-round proof systems for NP. Such systems imply the
NP-hardness of approximating Set Cover to within a factor of O(lnn) (see the reduction
of [LY93], adapted for more than 2 provers in [BGLR93]). Raz and Safra [RazS96] had
before us constructed such systems; so our construction can be viewed as an alternative
proof of their result.

In our proof system, a probabilistic polynomial time verifier checks that a given string is
in the language by using O(log n) random bits, and one round of interaction with a constant
number of provers during which it receives O(logn) bit long answers from the provers. If the
input is in the language, the provers can answer in a way that makes the verifier accept with
probability 1. If the input is not in the language, then regardless of the prover’s answers the
verifier accepts with probability at most 2‘1°g(1_e)”, for any € > 0. The number of provers
in our construction grows as O(1/¢). If we are willing to increase the error probability to
2-16"°" then the number of provers is 5. (The number of provers can be reduced to 3 using
a technique of Tardos [T96]). Whether or not the number of provers can be reduced to to
2 remains an open problem.

Now we briefly describe low degree tests; see Section 2 for more details. Given an m-
variate function f : F" — F over a finite field F, the test wishes to determine whether
or not there exists a degree d polynomial that agrees with f in § fraction of points in F™.
(The function is presented by value, and the test has random access into this table of values.
Both d and p are inputs to the test.) The low degree test is allowed to be probabilistic and
it has to read as few values of f as possible.

We are interested in a test described in [RS93] that works roughly as follows: Pick a



random “line” in F™and verify that the restriction of f to this line agrees significantly with
some univariate degree d polynomial. If this is the case, accept. This test is similar in flavor
to all other known low degree tests, such as the original test in [BFL91] and later ones in
[BFLS91, FGLSS91, GLRSWO1]. (Many of those tests check the degree of the polynomial
in each variable, whereas the test we described checks the total degree.)

Let 6 denote the probability with which f passes the low-degree test. Existing analyses of
all low degree tests cannot say anything meaningful about f if § < 1/2; in fact the analyses
of [FGLSS91, GLRSW91, RS93, AS92| require § > 1 — O(1/d). A crucial ingredient of
NP=PCP(logn,1) was an analysis (actually just a combination of the analyses of [AS92,
RS93]) of the above test that worked for any § > 1 — €, where € > 0 is fixed. This analysis
showed that if a function f passes the test with probability § > 1 — €, then there exists a
degree d polynomial that has agreement ~ § with f. (The value of € for which this is true
was later improved to 1/8 [FS95].)

In this paper we present an analysis (see Theorem 4) that continues to say something
meaningful about f even when § is fairly close to 0. We show that if § > (md)°/ |F|° for some
fixed ¢,e > 0, then there exists a degree d polynomial that agrees with f in ~ § fraction
of the inputs. We remark that a similar statement had earlier been proved for really large
fields |F| > 20(m+d+1/9) [A93, T93], but that field size is too large for most applications.

We also prove a related result, Theorem 3, which is more useful for constructing efficient
PCP-style verifiers. It says that every function f that passes the low degree test with
probability § has an associated small set of polynomials Py, Ps,... such that the test fails
with high probability if it encounters a point where f does not agree with one of the P;’s.
This result is useful because all known verifiers work by checking the properties of some
function f provided by the prover. If f is a polynomial, the verifier is extremely unlikely
to produce an erroneous answer . Errors creep in when f is not a polynomial but only has
significant agreement with some set of polynomials gy, ¢g,,.... In this case, if the verifier
has the bad luck to examine f at a point where f doesn’t agree with any of g4, g5, . . ., then
it could accept erroneously. Our corollary provides the means to combat such errors, since
any such g¢q, ¢g,,... turn out to be exactly the set of polynomials Py, Ps,,..., mentioned in
Theorem 3. The verifier subjects f to a low degree test: at any point where f doesn’t agree
agree with any of P;, P,, ..., the test fails with high probability, thus averting an erroneous
accept.

This intuition is formalized in Section A of the appendix. (We put it in the appendix
since it was known to many researchers and is a “folk theorem;” the only part missing until
now was our Theorem 3.)

Application to program testing/correcting. Suppose we are given a potentially bug-
gy program that purportedly computes a (unknown) m-variate polynomial over a finite
field F. Program testing/correcting [BLRI0] concerns the following problems: (i) testing:
determine §, the fraction of points at which this program is correct and (ii) correction:
for each input, correct the output of the program in case it is incorrect. It was open how
to do testing if § < 1/2; our low-degree test (specifically, the version that doesn’t use an
auxiliary table) closes this open problem when |[F|° > poly(md). As for correction, note
that its meaning is not clear when § < 1/2, since as many as O(1/6) polynomials could
have agreement § with the program. Two notions of correction are possible, as noted in
[ALRS92]. The weaker one is that for each input, the corrector outputs O(1/§) values,
one of which is correct. Such a corrector is known [Su96]. The stronger notion is that



the corrector create O(3) programs (polynomials) such that w.h.p. one of them is correct.
Finding such a corrector was an open problem. OQur analysis leads to such a corrector. We
omit details from this abstract, but they are obvious from reading our proofs (specifically,
by noting their “algorithmic” nature). We note that the recent techniques of [RazS96] do
no seem to provide a tester/corrector.

Past work. The first construction of a nontrivial constant prover 1-round proof system
for NP appeared in [LS91]; others appeared in [FL92, BGLR93, T94, FK94, R95]. These
systems could not reduce the error probability to below a constant while using O(logn)
random bits (the best construction needs O(klogn) random bits to make the error proba-
bility 27%; see [R95]). It was also known [FK95] that some obvious ideas (such as “recycling
randomness”) cannot let us get around this. Earlier this year Raz and Safra [RazS96] found
a construction of a proof system achieving subconstant error. Our result, though obtained
independently, was completed a couple of months after we had heard of the existence of
their result (the missing part at the time was our proof of the bivariate case of Theorem 1).
Upon seeing their manuscript in September 1996, it was clear — although their earlier
announcement didn’t suggest this — that they also rely on a low degree test, albeit a new
one and with a very different correctness proof than ours. Also, they extend their ideas to
design constant prover systems in which the error probability is 9-0(# of answer bits); we
haven’t done that.

Paper organization. We state and explain our main theorem (Theorem 1) and its corol-
laries (Theorems 3 and 4) in Section 2. We prove the theorem in Section 3. This proof
resembles proofs of earlier results [RS93, ALMSS92, A94, FS95], in that it has two parts.
First in Section 3.1 we prove the theorem when m is constant (specifically, m = 2, 3); this
uses algebraic arguments inspired by Sudan’s [Su96] work on reconstructing polynomials
from very noisy data and Kaltofen’s work on “Effective Hilbert Irreducibility” [K85, K95].
Then in Section 3.3 we “bootstrap” to allow larger m. This part uses probabilistic ar-
guments and relies upon the cases m = 2,3 (including Theorems 3 and 4 for the cases
m = 2,3). It is inspired by the “symmetry-based” approach of Arora [A94]. Finally, the
appendix contains the construction of constant prover 1-round proof systems and proofs of
many lemmas.

2 The Low-degree Test

Let F be a finite field and m,d be integers. An m-variate polynomial over F is a sum

of terms of the form az’'z?® - - -zim where a € F. The set of such polynomials forms an
integral domain, denoted F[zy,...,z,,]. We will often view such a polynomial as a function

from F™ to F. The degree of the polynomial is its total degree (thus j; + - -+ j» is the
degree of the above monomial). We will usually reserve the symbol ¢ for |F|, the cardinality
of F.

The distance between two functions f,¢g : F* — F, denoted A(f,g), is the fraction of
points in F™ they differ on. The agreement between the functions is 1 — A(f, g).

The low-degree test is given a function f : F™ — F. Using randomness, it checks that
f looks “locally” like a degree-d polynomial. Magically, it can infer from this that f has
significant agreement with a degree-d polynomial. To be more formal we need to define a
line in F™.



A linein F™ is a set of ¢ points with a parametric representation of the form
{(u1 + tv1,us + tva, ..., Upm + tv,,) 1 t € F} for some (u1,...,Umnm), (V1,...,0m) € F*. We re-
fer to the point (u; + avi,us + avs, ..., Un + avy,) as the point t = a of the line.

Note that replacing (v1,...,%m) by ¢ (v1,...,v,) for any ¢ € F \ {0} does not change
the line. Our convention is to fix one of the representations as canonical.

Definition 1 Let [ be the line {(u; + tv1,us + tva, ..., Um + tv,) it € Fand f: F™ > F
be a function. Let g(t) be a univariate polynomial. Then g describes f at the pointt = a
of lif

g(a) = f(us + avy,uz + avy, .. ., Uy + Qv ).

a

Note that if f : F* — F is a degree d polynomial, then on every line the restriction of f
to that line is described by a univariate degree-d polynomial in the line parameter ¢. The
converse can also be shown to be true: if on every line in F™, the values of f are described
by a univariate degree-d polynomial and F is sufficiently large (¢ > (d + 1)(;%;), where p
is the characteristic of the field [FS95]), then f must be a degree-d polynomial.

The low degree test is presented with f : F* — F, and an integer d. It is also presented a
table that is meant to be a “proof” that f is a degree d polynomial. This table contains, for
each line in F™, a univariate degree d polynomial that supposedly describes the restriction
of f to that line. We will use the term d-oracle for any table that contains, for each line
in F™, a univariate degree d polynomial. (The number of variables m can be inferred from
the context.)

The Low Degree Test:

Pick a random line [ in F™ and read the univariate polynomial, say p(t),
which the given d-oracle contains for this line. Randomly pick a point z
on line [ and check whether p; correctly describes f at z. If so, ACCEPT,
else REJECT.

We denote by 6,(f, B) the probability that the low degree test accepts a function f and
a d-oracle m. We will prove the following result about the low degree test.

Theorem 1 (Main) There are positive integers co,c1,¢3, and cz such that the following
are true. Let f : F" — F be any function and d > 0 be any integer.

1. For any 6 > 0, if f has agreement § with some degree d polynomial, then there is a
d-oracle B such that 64(f,B) > 6.

2. If § > 0 satisfies ¢ > co(dm/§)** and there is a d-oracle B such that 6;(f, B) > 6,
then f has agreement at least §° [c, with some degree d polynomial.

We remark that the first half of this theorem is trivial, since we can just take the degree
d polynomial that has agreement § with f, and construct the d-oracle by using the poly-
nomial’s restriction to the line in question. We will prove only the more nontrivial second
half. As mentioned earlier, previous results show that the statement in the second half has
been shown true for some § < 1, but much greater than half. This paper shows that the
statement is true for § < 0.5, and in fact for § as small as dm(co/q)*/**, which is tiny if ¢
is (codm)?e.



2.1 Two Stronger Forms of Theorem 1

Theorem 1 has two stronger forms, one of which will be useful in constructing proof systems.
We will need the (well-known) fact that there are not “too many” polynomials that have
significant agreement with a given function.

Proposition 2 Let f : F* — F be any function. Suppose integer d > 0 and fraction p

satisfy p > 2\/% Then there are at most 2/p degree d polynomials that have agreement at

least p with f.

Proof: Let k be the number of polynomials and Py, P,, ..., P, be the polynomials. Then
P; describes f in at least p fraction of the points, P, describes f in at least p — d/q fraction
of the points where P; # f, P; describes f in at least p — 2d/q fraction of the points where

P, # f and P, # f, etc.
Thus the polynomials together describe f in at least

d 2d
P+(P—§)‘|‘(P—?)‘|‘"‘

fraction of the points. This fraction is at least

k\d
ko— ()=

When &k > 2/p, this fraction is more than 1, which is impossible. O

The first strong form says that “almost all” of the success probability of the low degree
test happens at points where f agrees with (one of) a small set of polynomials.

Theorem 3 Suppose m is an integer such that the statement of Theorem 1 is true for
all m-variate functions. Let f : F* — F be any function and d > 0 be any integer. Let
o, C1,Cy and cs refer to the same integers that appeared in Theorem 1 and let € > 0 be any
fraction satisfying ¢ > co(d/€)**. Let Py, P,, ..., Py be all the degree d polynomials that have
agreement at least €°* [cy with f. Then with probability at least 1 — € one of the following two
events happens during the low degree test on f (irrespective of the contents of the d-oracle):

1. The test outputs REJECT.

2. The test picks a point x € F™ such that f(z) = Pi(z) for somei=1,...,k.

Proof: Suppose the probability mentioned in the theorem statement is less than 1 —e. We
derive a contradiction.

Let S C F™ be the set of points at which f does not agree with any of Py,..., P,. Then
f|s, the restriction of f to S, is a function that passes the low degree test with probability
at least €. Let us extend f|s to a function g : F* — F by randomly picking values for g at
points in F™ \ S. Since g passes the low-degree test with probability at least ¢, Theorem 1
implies that there is a degree d polynomial P that has agreement €°/c, with g. This
agreement must largely be on points in S, since the restriction of g to F™ \ S is a random
function. (Note: A simple calculation using Chernoff bounds shows that a random function
has agreement approximately 1/q with every degree-d polynomial.) Hence we conclude that
polynomial P has agreement approximately €° /¢, with f|s. Since none of Py, ..., P, agrees



with f on 5, this polynomial must be be different from each P;. But this contradicts the
hypothesis that {Py,..., P,} is an ezhaustive listing of the degree d polynomials that have
agreement at least € /cy with f. O

The second strong form says, heuristically speaking, that if ¢ > poly(%, %, md), then every
function that passes the low degree test with probability p has agreement at least p — € with

some degree d polynomial. (Note:Theorem 1 only guaranteed an agreement p°/c,).

Theorem 4 Suppose m is an integer such that the statement of Theorem 1 is true for all
m-variate functions. Let f : F™ — F be any function and d > 0 be any integer. Suppose
there is a d-oracle such that Pr[low degree test accepts] > p. Let € > 0 be any fraction
satisfying

64 - 4¢ 4dm ...
6ca+3pc3—1 +CO( 0 ) ’

q>

where cg, €1, Cy, C3 Tefer to the same integers that appeared in Theorem 1.
Then there is a degree d polynomial that has agreement p — € with f.

Proof: Suppose we pick a line [ randomly from F™. An averaging argument using Lemma 17
shows that with probability at least €/2, we pick a line on which the success probability of

the low degree test is at least p — €¢/2. In other words,

I;r[some univ. deg. d polynomial g; describes f on p — €/2 fraction of points of {] >

M| n

(1)

Let € = €p and let Py,..., P, be all the degree d polynomials that have agreement at
least i(%)c3 with f. Let pi,...,pr be their agreements with f. We wish to show that
p; > p — € for some 7. Let us therefore assume that each p; < p — ¢ and show that the
probability mentioned in Assertion (1) is less than €/2, thus deriving a contradiction to
Assertion (1).

Where could the univariate degree d polynomial mentioned in Assertion (1) come from?
There are two cases. Case (7): g; is the restriction of one of the P,;’s to the line [. Case (%i):
g1 is some other polynomial. Note that if case (ii) happens, then [ is a line on which the low
degree test is succeeding with probability p — /2, and furthermore this success happens on
on points where f doesn’t equal any of P;, P,,..., P,. By Theorem 3, at most €;/4 of the
success probability of the low degree test comes from the points where f doesn’t equal any
of P, P,,...,P,. By an averaging argument (Lemma 17) it follows that

Plr[case (ii) happens] < €;/4p < €/4.

Now we show that Pr;[Case (i) happens] < €/4, thus leading to the desired contradiction.
For v = 1,2,...,k, let ; be the fraction of points on ! at which polynomial P; agrees
with f. By Lemma 18 it follows that
€ 4pz .
P;r[’yi—pi>§]<— fori=1,...,k. (2)

= g
Since we assumed that each y; < p — €, we now conclude that

4p

I:r[EI 8.ty >p—¢€/2] < g X k.



But Proposition 2 implies that k < 2¢,/(€;/4)%. Hence
8pc,y
e2q(e1/4)"

Note that the probability on the LHS is an upperbound on the Pr;[Case (i) happens],
and that the RHS is less than €¢/4 for the range in which our parameters lie. Thus
Pr;[Case (i) happens] < ¢/4. O

];:I‘[H ts.t.oy >p—¢€/2] <

3 Proof of Correctness of Low-degree Test

In this section we prove Theorem 1. For ease of exposition we first restate Theorem 1. From
now on we will reserve the symbol f for a function from F™ to F which is the subject of
the low degree test.

Definition 2 The line polynomial for f on line [ for degree d, denoted Pj(l), is the uni-
variate degree d polynomial (in the line parameter ¢) that describes f on more points of !
than any other degree d polynomial. (We arbitrarily break ties among different polynomials
that describe f equally well on the line.) The d-success-rate of f on line [, denoted ;Lf;(l),
is defined as

4 (1) = fraction of points on [ where PJ (1) describes f.

The d-success-rate of f at point * € F™ is the fraction of lines through # whose line
polynomial describes f at z.

The d-success rate of f is the average of its d-success rates on all lines. (Note: By
symmetry this is also equal to its average d-success rate at all points.)

Note that the probability that a function f : F> — F passes the low degree test is
maximised when the accompanying d-oracle contains, for each line [, the polynomial P({ ().
Hence it suffices to prove the following.

Theorem 5 (Restatement of Theorem 1 part 2) There are integers co,c; such that
the following is true. If f : F™ — F is any function whose d-success rate is at least § and
q> i(dTm)cl, then there exists a degree d polynomial that has agreement at least §°* /¢, with

3.1 The Bivariate Case

In this section we prove Theorem 5 for m = 2. Let f : F> — F be a function with success-
rate at least §. Our proof goes in two steps.

(Step 1). Show that there is a polynomial @ € F|z,z, y] of “not too large degree”
such that for a “reasonably large” set of points S C F?, the following are true:

Q(f(a,b),a,b)=10 V(a,b) € S (3)

the d-success rate of f at every point in S is “nontrivial.” (4)

(Step 2). Show that any @ that satisfies the conditions in Step 1 has a factor
z—g(z,y), such that g € F[z,y]is a degree d polynomial and for “many” (a,b) € S

(z-9(z,9))=0  at(z2,9)=(f(a,),0,b). (3)



By the end of Step 2, we have concluded that f has significant agreement with the degree
d bivariate polynomial g. Step 2 depends on a fairly difficult technical fact, Theorem 23,
which will be proved separately in Section 4.1. Step 1 is motivated by Sudan’s [Su96]
technique for reconstructing univariate polynomials from very noisy data.

Sudan makes the following observation.

Proposition 6 Let (a1,7%1),...,(an,¥n) be any set of n pairs from F*, and d,,d, be any
positive integers satisfying d,d, > m. Then there ezists a bivariate polynomial T' € F|z, z]
with deg,(T') < d, and deg,(T') < d,, satisfying

I(y;,a;) =0 fori=1,...,n (6)

Remark: We can view I' as an implicit description of the sequence (a1,%1),- .., (@n,¥n), in
the following sense: for each a;, one of the roots of I'(z, a;) is v;.

Proof: If we let ;; be the coefficient of z'z? in T, then the contraints in (6) define the
following homogeneous linear system with (1 + d,)(1 4+ d,) unknowns and n constraints.

(Note that a4,...,a,,¥1,...,Y, are “constants.”)
d, do o
Y e = 0
i=0 j=0
d. do '
> vamay = 0
2=0 j=0

... = 0

d, da
>.D vivhe, = 0
i=0 j=0

Since (1 + d;)(1 + dy), the number of variables, exceeds n, the number of constraints, a
nontrivial solution exists. O

Then Sudan uses the following lemma from Ar et al. [ALRS92].
Lemma 7 Let (ay,41),...,(an,y,) € F° be any sequence such that for some p > 0,
there is a degree d polynomial h € Flz| s.t. h(a;) = y; for pn values of 1. (7)

Let T € Flz,z] be any polynomial satisfying (6). If deg,(T') + d - deg,(T') < pn, then
(z—h(z))|T.

Proof: The polynomial I'(h(z), z) has degree at most deg,(I')+ d-deg.(T') and has at least
pn roots. So if deg,(T') 4+ d - deg,(T') < pn, this polynomial must be identically 0. O

Remark: Sudan’s observations lead to efficient algorithms because both Lemma 7 and
Proposition 6 have “constructive” versions: efficient algorithms exist for polynomial fac-
torization (needed for Lemma 7) and solving linear equations (needed for Proposition 6)
over finite fields. The current paper is not about algorithm design, but nevertheless the key
algebraic facts used in polynomial factorization and solving linear equations also drive our
result. See for example the “effective Hilbert irreducibility” in Section 4.1 and Cramer’s
Rule in Lemma 8.

Specifically, we need the following generalization of Sudan’s ideas to F[y], the ring of
univariate polynomials in the formal variable y.



Lemma 8 Let §,,5, C F be any subsets of F and | = |Sy|. Let f : S; x S — F be any
function and for each a,b € F, let C, € Fly], Ry € Flz] be degree d polynomials. Suppose
there is a fraction p > 2d/+/1 such that for all b € S5,

fla,b) = Cy(b) = Ry(a) for at least pl values of a € S;. (8)

Then there is a polynomial Q € Flz,z,y] satisfying deg,(Q) < VI, deg,(Q) < VI,
deg,(Q) < di*/? such that

Va € 51, Q(Cu(y),a,y)=0 and (9)
Vb e Sy, (z— Re(2))|Q(2,2,b) (10)

Proof: Let F[y][z,z]| be the ring of polynomials in the formal variables z and z whose
coefficients are from F[y].

We use the same idea as in Proposition 6, but work over the ring F[y] instead of over F.
Consider the following sequence of |S;| pairs from F X F[y]: ((a,C,(y)) : @ € S1). Note that
there exists a polynomial Q € F[y][z, z] with deg,(Q), deg.(Q) < V1 such that

Q(C4(y),a)=0 Ya € 9, (11)

The reason is that if we let Q;; € F[y] be the coefficient of 2z in @, then the constraints
in (11) define a homogeneous system of linear equations over F[y] with (1 + deg,(Q))(1 +
deg,(Q)) > I unknowns and ! constraints.

Vi V1

>3 Qi(Caly)Ya® = 0 Vae S

2=0 j=0

Since the number of unknowns exceeds the number of constraints, a nontrivial solution
exists.

Now we claim that we can find a nontrivial solution @ that in addition is in F[y][z, z] and
satisfies deg,(Q) < dI®/2. The reason is that @ is obtained by Cramer’s Rule on a system of
[ constraints, which calls for inverting an (I —1) X (I — 1) matrix. Inverting an ({—1) x (I —1)
matrix involves evaluating polynomials of degree [ — 1 in the matrix entries. In this case
the matrix entries are degree dv/l polynomials in Fly], so matrix inversion produces only
polynomials of degree dI*? in y. Hence deg,(Q) < dI*/2.

Finally, the fact that @ satisfies condition (10) follows immediately from Lemma 7 and
the condition p > 2d/+/1 > (d+ 1)/\/[ O

The following lemma finishes Step 1 of our proof.

Lemma 9 Let f: F° — F have d-success rate at least 6, let t = max{4logq/6°, (&)}, If
q > 100t2, then there is a polynomial Q € Fz,z,y] of total degree at most 2t*/2d and a set

of points § C F* containing at least §°/256 fraction of the points such that
1. Q(f(a,b),a,b)=0 V(a,b) € S.
2. The d-success rate of f at each point in S is at least §/2

Proof: This proof uses averaging. The main idea is to rotate the coordinate system so
that with respect to the new z and y axes, the conditions of Lemma 8 are satisfied for
p = 6%/256. The existence of polynomial @ is then implied by the conclusion of that



lemma. Note that a rotation of coordinates does not affect the total degree of a polynomial,
and we are interested only in the total degree of Q.

Below, when we say “a line in the direction A,” we mean a line of the form
{(u+1t-h):t€F}. Note that for each point z € F> and direction h, there is exactly
one line in direction h that passes through z.

We say that a point z € F? is good for a pair of directions (1, h2) if the line polynomials
PJ(1,) and P}(l,) correctly describe f at z, where l1,l, are the lines that pass through z
and lie in directions h; and h, respectively.

Let G C F? denote the set of points at which the success rate of f is at least §/2. Since
the overall success rate is at least §, averaging shows that at least §/2 fraction of the points
are in G.

Claim 1: There ezist two directions hy,hy and a set of points H C G with size
|H| > 63| F|? /8 such that every point in H is good for (hy, hs).
Proof of Claim 1: We use the probabilistic method. Randomly pick a random point
z € F? and a pair of directions (hy,k;). (Note: with probability 1 — 1/g, hy # hy. We will
assume for simplicity that this probability is actually 1.)

Pr [z € G/\m is good for (hy,hy)] = Pr[z € G]x Pr [zis good for (hy,h,) | z € G]

z,hy,ha z,h1,ha2
6 6
> —x (=)L
> $x(3)
§3
> —.
- 8

In other words, when a pair of directions (hq, hy) is picked randomly, then the expected
size of the set {:L‘ € F?:z € G \z is good for (hl,h2)} is at least §%|F|* /8. Hence there

exists a pair of directions for which this set has size at least §*|F|* /8. This finishes the
proof of Claim 1. O

Let Ay, hy, H be as in Claim 1. Rotate the coordinates so that ~; becomes the z-axis and
hy becomes the y-axis. From now on, coordinates are stated in this new system. We use
columns and rows to refer to lines parallel to the y and = axes respectively.

For a,b € F let R, and C, denote the line polynomials in the row {(z,b):z € F} and
the column {(a,y): y € F} respectively. By the defining property of H, if (a,b) € H, then
C.(b) = Ry(a) = f(a,b).

Let v = 6%/16. Averaging shows that at least v of the rows have at least 4 fraction of
their points in H. Let S; C F be the set of all such rows. Let ¢ = 4loggq/y. We claim that
there exists a set 53 consisting of ¢ vertical lines such that Vb € 5,

C.(b) = Ry(a) = f(a,b) for at least y¢/2 values of a € S;. (12)

The existence of S; is proved by the probabilistic method. Pick a set of §; randomly by
picking ¢ lines with repetition, and show that w.h.p. the resulting set satisfies, for all b € 55,
|H N (S x {b})| > ~t/2. (Even though we picked lines with repetition, the probability that
any two are the same is at most ¢*/q, which is < 1/100. Hence w.h.p. the set S; has no
repeated lines.)

Let b € S,. The expected fraction of points in S; x {b} that lie in H is at least y. Hence
by the Chernoff bound,

vt

Pr{[H N (S x {bh)] <7t/2] < exp(—<))
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= ezp(—2logg) < —

Thus the probability is at least 1 — |S;| /2¢ — 1/100 > .49 that the randomly chosen set S;
satisfies condition (12).

Thus we have proven the existence of 51,5 C F such that they satisfy the hypothesis
of Lemma 8 with p = 7/2 and [ = t. (Notice that by the condition on ¢, we have that
p > 2d/V1.) Let Q € F[z,,y] be the polynomial whose existence is guaranteed by Lemma 8.
Then deg,(Q),deg.(Q) < v/t and deg,(Q) < dt*/?, and total degree of Q is 2/t + dt3/2 <
2dt3/2.)

To finish we need to define the set S mentioned in the lemma. Let

§={(a,b)€F’:be S, and (a,b) € HY.

Since each row b, € S; has at least 4 fraction of its points in H and |S;| > v |F|, we have

>y |F*= —|F
51> 2 FP = 2 JFP.
Now let (a,b) € S. Since b € S, the property of @ implies (z — Ry(z)) | Q(z,,b) and so
Q(Ry(z),z,b) = 0. Since (a,b) € H, the property of H implies f(a,b) = C,(b) = Ry(a).
Hence Q(f(a,b),a,b) = 0. Thus the lemma has been proved. O

Now we move to Step 2 of our argument.

Lemma 10 Let f : F° — F be a function, and Q € Flz,z,y] be a polynomial of total
degree D and S C F* be a set of points of size at least v - |F|” such that: (i) ¥(a,b) €
S, Q(f(a,b),a,b) =0. (i) The d-sucess-rate of f at every point in S is at least 7.

If |F| > 4D°®/~?%, then there is a degree D bivariate polynomial g € Flz,y] that has
agreement at least v*/8D with f and such that z — g(z,y) is a factor of Q.

Proof: The main idea is to use Lemma 7 to show that the restriction of @ on “many”
lines has a linear factor that describes f on “many” points of that line. Then we will use
Theorem 23 on “effective Hilbert irreducibility” to conclude that @ itself must have a linear
factor that describes f in “many” points.

We say a point (a,b) € F? is nice for a line [ in F? if (i) Q(f(a,b),a,b) = 0 and (i) PJ (1),
the line polynomial of [, describes f at (a,b).

Claim 1: When a line | is picked randomly, the expected fraction of points on it that are
nice for it is at least v2.

Proof: Imagine picking a point (a,b) randomly and then randomly picking a line [ that
passes through it. The probability that the point is nice for [ is at least v -y = 4%. The
claim now follows by linearity of expectations. O

Let Q4,...,Q) € Flz,z,y] be all the distinct factors (over the algebraic closure of field
F) of @ that involve z. (Note that £ < D.)

Claim 2: One of the Q;’s is of the form z — r(z,y) where r € Flz,y].
Proof: For a line [ let us denote the restriction of @ to ! by @Q|; € F|z, t], where t is the line
parameter. We define Q;|; analogously for i =1, .., k.

Assume for contradiction’s sake that no Q; has the form z — »(z,y) for some r € F[z, y].
Since each @; is absolutely irreducible, Theorem 23 implies that the fraction of lines !

11



such that the restriction @;|; has a factor of the type z — p(t) where p € F[t], is at most
O(D?/ |F|). Hence the fraction of lines on which either of Q,|;,...Q|; has a factor of the
type z —p(t) is at most O(kD?/ |F|). By our assumption on the values of |F|, 7, and D, this
fraction is at most 42/4. We show next that this fraction is actually at least ¥2/2, which is
a contradiction.

From the statement of Claim 1 and simple averaging we know that on at least v?/2
fraction of the lines, at least 42/2 fraction of the points are nice for them. Let [ be such a
line. We show that Q|;(z,t) has a factor of the form z — p(¢) for some p € F[t]. Let h € F[¢]
be the line polynomial for I (i.e., h = P (1)). Then Q|,(h(t),t) has ¥ |F| /2 roots and degree
only Dd, where Q|(z,t) is the restriction of @ to [. But Dd < v?*|F| /2, so Q[:(h(t),t) must
be identically 0. Hence z — A(t) | Q|i(2,t). O

The following claim finishes the proof of the lemma. Note that the polynomial g in the

statement of the claim takes its coefficients from F instead of from the closure field F.
Claim 3: One of the Q;’s is of the form z—g(z,y) where g € Flz,y] is a degree d polynomial
that has agreement at least v*/2D with f.
Proof:(of Claim 3) Assume that [ > 1 factors of @ are of the form described in Claim 2, and
assume w.l.o.g. that they are @4,...,Q;. For: =1,...,[, suppose Q;(z,z,y) = z — p;(z,y)
where p; € F[z,y]. From the proof of Claim 2 we know that for at least v2/2 — O(D%k/ |F|)
fraction of the lines, the following is true (i) the line polynomial Pj(I) of the line is the
restriction of one of the p;’s to the line, (ii) P (I) describes f on at least y2/2 fraction of
points on [. For simplicity, we use y%/4 as a lowerbound on v?/2 — O(D%k/ |F|).

Thus there must exist some ¢ € [1,{] such that @; explains 1/I fraction of such lines. We
claim that this @; is the factor we are looking for (i.e., ¢ = p;). Note that by choice of %,
polynomial p; has agreement } - g . %, with f. This agreement is at least %.

Note that thus far we only know that g € F[z,y] and has degree at most D. Now we
claim that g actually (i) is a degree d polynomial and (ii) has all its coefficients in F. The

reason we claim (ii) is that that the restriction of g on at least 1 - % fraction of lines is in
F[t] and g > D/|F|. (See Lemma 22.) The reason that g has degree at most d instead
of D is that its restriction to at least g fraction of the lines is a degree d polynomial and
g > D/ |F|. (See Lemma 20.) O

O

Thus we have proved the bivariate case of Theorem 1.

Theorem 11 Let F = GF(q) and f : F° — F be a function that has d-success rate at
least 6. If q/(log q)° > 2°%d?° /657, then there is a bivariate degree d polynomial g that has
agreement at least 623 /(25%d* log q) with f.

Proof: Follows from Lemmas 9 and 10. O

3.2 The Trivariate Case

We restate Theorem 5 for the case m = 3 and prove it. The proof is a minor modification
of the proof for m = 2.

Lemma 12 There exist constants co, c1, Cy, 3 such that for all §, d and F such that |F| >
co(d/8)* of f: F* — F has d-success-rate at least &, then f has agreement at least iécs
with some degree d polynomzial.

12



Proof:

As in the proof of the bivariate case we first perform a random transformation of the
coordinates. We identify three directions Ay, h; and ks in F° and call all lines of the form
{a + thy|t € F} as vertical lines, all lines of the form {a + t(hy + bhs)|t € F'} for any b € F
as horizontal lines.

Claim 1 Let §; = §/16. There exist direction hy, h; and hs s.t. §; fraction of the points
wm F™ are in G and are good for hy, hs, hs, have the following three properties:

o The vertical line through the point passes the low-degree test.
e 6, fraction of the horizontal lines through the point pass the low-degree test.

e §; fraction of all lines through the point pass the low-degree test.

Proof: By averaging we know that the d-success-rate of f is at least §/2 at at least §/2
fraction of the points. Let G denote this set of points.

We say a point a € F° is good for directions hy, h,, ks if it satisfies conditions (i) and (ii)
in the statement of the claim.

We use the probabilistic method to prove the lemma. We randomly pick three directions
hi,hs, hs and a point a € F show that

Pr [e€ G/\a. is good for hy, hy, k3] > 6;.

a,hi,hahs

Note that Pr,[a € G] > §/2, so it suffices to show that

hPhr ., [a is good for hq,hy, hs | @ € G] > 26,/6 = 6%/8.
Consider any a € G. If we pick a random line through a, then it passes the low degree
test at a with probability at least §/2. So if we pick two random directions ks, k3 and then
a random b € F, then

Phr b[the line {a + t(hy + bh3) : t € F} passes the low degree test at a] > §/2.
Hence we conclude by averaging that for at least §/4 choices of h,, hs, the fraction of b € F

for which this event happens is at least §/4.
Thus for all a € G,

, IZrh [a is good for hy,hy, ha] > §/2-6/4 = §°/8.
(Notice that with probability 3/ |F| the directions hq, ks and hs are linearly dependent, in

which case our calculation is off by a little. We ignore this factor since it is so close to 0.)
O

From now on we assume that h;, h, and hs as guaranteed above have been found and
that the coordinates have been transformed so that h; = (1,0,0), hy = (0,1,0) and hs =
(0,0,1). The set of points of the form {(w, z,y)|z,y € F} will be called the horizontal plane
through w. For every w let (fhor(w)[y, 2] denote the bivariate degree d polynomial which
has maximum agreement with f on the horizontal plane through w.

13



Claim 2 Let §; = §/8. Then &, fraction of the points (w,z,y) satisfy the following prop-
erties:

e The vertical line through the point passes the low-degree test.
o The value of f at the point agrees with the fuo.. at that point. the low-degree test.

e 6, fraction of all lines through the point pass the low-degree test.

Proof: We use the correctness of the low-degree test for the bivariate case after perturbing
the function f asin Theorem 3. We set randomly every point except the §; fraction of points
which are guaranteed good by the previous claim. Observe that a random point passes the
low-degree test for a random horizontal line through it with probability at least §7. Say
that a horizontal plane is good if the probability that a random point on the plane and a
random horizontal line through the plane pass the low-degree test with probability 6% /2.
Observe now that §2/2 fraction of the horizontal planes are good. For a good horizontal
plane, the correctness of the bivariate test implies that there exists a low-degree polynomial
which has an agreement of §7/4 with f on the plane. Furthermore, this agreement happens
on points which have good success rate on random lines through them as well as on the
vertical line through them (since all other points were set randomly.

The final statement of the claim is now obtained as follows. Consider the probability
that a random point we pick is on a good horizontal plane and on that plane agrees with
the polynomial fyor for that plane. This probability is at least (§7/2)(62/4) = §,. O

Claim 3 Let §5 = 62/8. Then for any | > (%‘1)2, there exists a polynomial Q(w,z,vy,2)

with deg,, (Q) = deg,(Q) = V1 and deg,(Q) = deg,(Q) = dI*/? such that 5 fraction of the
points (w, z,y) satisfy the following properties:

o Q(w7 T,Y, f(w,ﬂl,y)) =0.

e 03 fraction of all lines through the point pass the low-degree test.

Proof:[sketch] As in the bivariate analysis, we pick a random set S C F, |S| = [. We
construct a polynomial Qs(w,z,y,z) of degree V1in w and z and degree di*/? in z and
y such that for all w € S, z,y € F, Qs(w,z,y, (foor(w))[z,y]) = 0. Call a point good if
it satisfies the properties listed in the last claim. Call a vertical line good if é,/2 fraction
of the points on it are good. Observe that §,/2 fraction of the vertical lines are good.
By applying Chernoff bounds, we find that with probability at least 1 — e=%2"/1¢ (over the
choice of §), a good vertical line has 2d+/I good points from S in it, provided I > (16d/8,)>.
Now for a vertical line which has at least 2dv/l good points on it, we observe that the
polynomial (z — (feers(z,y))[w]) divides the polynomial Q, ,(w, 2) o Qs(w,z,y,2). Thus
with probability 1 —e~%/16 > 1/2 over the choice of S, we find that for a fixed good vertical
line, a good point on the line satisfies the conditions of the claim. Thus there must exist a
choice of § such that this holds for more than half the good vertical lines. This yields the
polynomial @ as guaranteed by the claim. O

Claim 4 Let 6, = 63. Then there ezists a degree d polynomial q(w,z,y) f and q have
agreement §, — O(d?13/|F]).
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Proof: For a random point and a random line, the probability that @ is zero and the test
succeeds is at least §2. We can now argue as in Claims 2 and 3 in the proof of Lemma 10
to get the desired polynomial ¢. O

Thus we have shown that if f has success rate §, then it has agreement §, — O(d*I3/|F|) =
éé“ with some degree d polynomial provided |F| > 2d3®*/é, which is a condition of the
form |F| > ¢o(d/6)*. O

Since we have proved the trivariate case of the low degree test, the trivariate cases of
Theorem 3 and 4 now follow.

Corollary 13 There ezist constants co,c; such that if §, d and F satisfy |F| > co(d/6),
then iof f : F* — F has d success rate §, then it has agreement §/2 with some degree d
polynomial.

Corollary 14 There ezist constants co, ¢y such that if v, d and F satisfy |F| > co(d/v),
then given a function f : F® — F there exists a set of at most % polynomials @4, ..., Q4
such that the success probability of f on points where f does not equal any of the Q;’s is at
most .

3.3 The Bootstrapping

This section assumes the truth of Theorem 1 (as well as Theorems 3 and 4) for m = 2,3,
and proves it for general m. We rely on symmetry-based arguments similar to those in
[A94]. These use the notion of a k-dimensional subspaces of F™.

Definition 3 Let m,k € Z% and k < m. A k-dimensional subspace of F™ is a set of points
with a parametrization of the form

{To+t Ui+t T+ -+t Ty by, ks, 1 € F},
for some %y, %Us,...,u; € F. O

Thus a line is a 1-dimensional subspace, for example. We will refer to a 2-dimensional
subspace as a plane and a 3-dimensional subspace as a cube. A function defined on a k-
dimensional subspace of F™ is called a degree d polynomial if the function can be expressed
as a degree d polynomial in the parameters ¢4, ..., f.

Note that each set of £ + 1 distinct points in F™ determines a unique k-dimensional
subspace. Likewise, a line and a point outside it determine a unique plane, two lines that
are not in the same plane determine a unique cube, and so on. We use the term plane(l, z)
to denote the unique plane containing a line [ and a point z etc.

Our argument will rely on symmetry, such as the following facts: (i) all points in F™ are
part of exactly the same number of k-dimensional subspaces (ii) All lines in F”* are part of
exactly the same number of k-dimensional subspaces, etc. We give an illustrative example
of a symmetry-based calculation.

Example 1 Suppose f : F™ — F is any function whose d-success-rate is exactly 8. For any
plane s let ¢, be the average d-success-rate of f among lines in /. Then symmetry implies
that E,[t,], the average of ¢, among all planes, is exactly 5. The reason is that ), ¢, counts
every line in F™ an equal number of times.
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Now we try to define a function f that we hope is “almost” a polynomial and has
significant agreement with f.

Definition 4 (f;) For any line [ we define a function f, : F™ — F as follows. Let PJ(I)
denote the univariate degree d polynomial that best describes f’s restriction to ! (see De-
finition 2). Now consider every plane s that contains [. (Note: since every point z ¢ [
determines a unique plane with [, the set of planes containing ! form a partition of F™.)
Check whether there is a bivariate polynomial, say g, that agrees with Pf(l) on line [ and
that has agreement at least §/4 with f on plane s. If so, for every point y € s, we define
f,( ) to be the value taken by g at y. If no such bivariate polynomial exists, we define fl( )
arbitrarily in this plane.

Lemma 15 There are constants r,s > 1 such that the following is true for each m > 3.
Let f : F* — F have d-success-rate at least §, and q¢ = |F| > ({5)°. If a line | is picked
randomly, then

R §2
E,[d-success-rate of f; in F"*] > 1-— 256 (13)
. )
E;[agreement between f and f; in F"*] > 7 (14)

Before proving Lemma 15, we first point out how Theorem 1 follows immediately.

Proof:(of Theorem 1; m > 3) We use the probabilistic method: we pick a line [ randomly
and show that with nonzero probability, we get a line such that the polynomial closest to
f; has agreement at least §/24 with f.

Using an averaging argument along with statement (13) we see that for any &k > 1,

§? 1
[d success-rate of f; > 1 — k%] >1- Z
Using averaging on (14) we see that

§ 6
> 8] >3
We let k£ = 10/, and conclude that with probability §/8 — §/25.6 the following two events
happen (i) d-success-rate of fi > 1-6/24 and (ii) the agreement between f and f is at
least 6/8.

In particular, there exists at least one line for which the two events in the preceding
paragraph happen. Let Iy be such a line. The existing analysis of the low degree test
[ALMSS92] implies that for each § < 1, every function with d-success-rate at least 1 — §/24
has agreement at least 1 — §/12 with some degree d polynomial. Let g be this polynomial
for f. Since g and f have agreement at least 1 — §/12 and since f,u and f have agreement
at least §/8, we conclude that f and g have agreement at least §/8 — §/12 = §/24. O

Plr[agreement between f and f,

Now we prove Lemma 15.

Proof: (Lemma 15) By linearity of expectations it suffices to show that if we pick a pair
of lines (I,1') randomly in F™, then

52

E1,11y[d-success-rate of f, onl] > 1- 56 (15)
A §
and Eq,y|agreement of f; and f on I'] > g (16)
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Let @ = 1/32. The main reason why we can “bootstrap” is the following. The two
expectations in statements (15) and (16) are essentially unchanged (except for a “fudge”
factor of 1 —1/,/q, which is negligible) if we change the method of picking (I,) as follows:
instead of picking a random pair of lines in F™*, we pick a pair randomly from all noncoplanar
pairs of lines in a fized cube ¢ in which the average d-success-rate of f is at least §(1 —
a). The reason behind our claim is that when we pick a random pair of lines in F™,
then with probability 1 — ¢*/¢™ they are non-coplanar, in which case they determine a
unique cube. Furthermore, this cube is randomly distributed among all cubes, so with a

further probability at least 1 — az;azg the d-success-rate of f in this cube is at least §(1 — a)

(Lemma 19). Thus, if we are willing to ignore a factor (1 — qml_z - azzzlszq) (which we are,

since this is > 1 — 1/,/q for a large enough ¢), it suffices to compute the expectations in
(15) and (16) when (I,!’) is a random pair of non-coplanar lines in a cube ¢ in which the
d-success-rate of f is at least §(1 — o). We restrict attention to such (I,1').

By the trivariate case of Theorem 4, there is a degree d trivariate polynomial that has
agreement at least §(1 — 2a) with f on cube c¢. Let P; be one such polynomial and let
P;,...P,, beall the other degree d polynomials that have agreement at least §(1 — 6a) with
f on cube c.

Let ¢y, ¢3 be the constants of the same name that occured in the statement of Theorem 3
for the case m = 3. Let € = 1/q*/**. Let Py ,1,..., P, be all the degree d polynomials

whose agreement with f on cube c¢ is between €° /¢, and §(1 — 6a). By Proposition 2, the
set of polynomials we have identified thus far is not too big: ko < 8/ and k < 4cy /€.
Furthermore, we know by the trivariate case of Theorem 3 that if we restrict the low degree
test on f to those points of cube ¢ where f doesn’t agree with any of Py, ..., Py, then the
success probability is at most €. This will be important.

We hope to show ultimately that for “most” lines [, the function f; has high agrement
with one of P;, P,,..., P;,. For any trivariate polynomial @ and line [, let Q|; denote its
restriction to line [. We likewise define the restriction @|, for a plane s. We say that line [
is nice if the restrictions Py|;, Pa|;, ..., Py|; are all distinct and Pj(l), the univariate degree
d polynomial that has the highest agreement with f on [, is one of Py|;, Psls,. .., Pr,|i-

Let v = 4¢/6 = 4/6q" /%=,

Claim 1: At least 1 — v fraction of the lines | in cube ¢ are nice.

Proof of Claim 1: The fraction of lines [ for which P;|; = P;|; for some ¢ # 7 is at
most (];) X %, since for any fixed 4, j, the fraction of lines [ for which P;|; = P;|; is at most
d/q. Since k < 4¢y /€%, we have

k d _ 8cidg*:/*=  8dc3
x 2 < < 24
2 q q Ve

Now we estimate the fraction of lines for which Pd{ (1) is not one of Py|;, Paliy. .., Proli-
Such a line must satisfy one or more of the following properties.

1. Py|; has agreement less than §(1 — 4a) with f on line [. By Lemma 18, the fraction

of such lines is at most 1
a?q

2. Pi|; has agreement § > 6(1 — 4a) with f on line [ but one of Py, y1li,..., Pil: has
agreement more than §. By Lemma 18, the fraction of such lines is at most ﬁ X

(k — ko), which is at most Mf# since k < 4cy /€% < 4cyqt/t.
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3. Pi|; has agreement § > 6(1 —4a) with f on line [ but some univariate polynomial that
is not Py|;, Pa|s, ..., Py|; has agreement more than 8 with f on [. Since the success
probability of f on points where it does not agree with Pi|;,..., Py|; is at most €, the
fraction of lines on which this success probability is more than §(1 — 4a) is at most
€/6(1 — 4a) < 2¢/6 < 2/8q 4.

Hence the fraction of lines that are not nice is at most

8dc§ + 1 + 2 + 2
Va 4028q ' §3a2¢dt T glltes’

The last term dominates when g is large enough, so this fraction is at most 4/8¢/*:. O

We say that a plane s in ¢ is well-behaved if (i) each of Py|,, Psls,. .., Py, |s has agreement
at least §(1 — 8a) with f on s (ii) no bivariate polynomial that is not one of Pi|;, ..., Py,
has agreement more than §(1 — 8a) with f on plane s.

Claim 2: At least 1 — v fraction of planes in ¢ are well-behaved.

Proof of Claim 2: Each of Pi,..., P, has agreement at least §(1 — 6a) with f on
cube ¢. Picking a random plane involves picking three points at random from the cube.
Hence we can use pairwise independence (i.e., Chebyshev’s inequality) to conclude

Prlagreement between Pi|, and f on sis < §(1 —8a)] < ——.
s a?bq?

Next, we bound the fraction of planes s such that some bivariate polynomial different
from Pi|;,..., Py|; has agreement at least (1 — 8a) > §/2 with f on plane s. Note that
in such a plane the restriction of f to points where it doesn’t agree with Py,..., P, passes
the low degree test with probability at least §/2. But the case m = 3 of Theorem 3 and
symmetry implies that the average of this rate over the entire cube is at most €. Hence the
fraction of such planes is at most 2¢/6 < 2/8q'/*e.

Thus the fraction of planes that are not well-behaved is at most 4/a26q? + 2/6q /%2,
which for large enough g is at most 4/§¢*/%¢:. O

Claim 3: For at least 1 — /7 fraction of lines in cube ¢, at least 1 — /v fraction of
the planes containing that line are well-behaved.

Proof of Claim 3: Among all planes that contain any line [, let o; denote the fraction
that are well-behaved. Then by symmetry we know that E;[o;] is exactly the fraction of
well-behaved planes in cube ¢, which is at least 1 — v by Claim 2. Averaging implies that
o; > 1— /q for at least 1 — /¥ fraction of . O

Now call a line [ super if it is nice and if at least 1 — /7 fraction of the planes containing
[ are well-behaved. By Claims 1 and 3, at least 1 — v — /7 fraction of lines in cube c are
super.
Claim 4: If line [ is super, then for every line I’ that is non-coplanar with I,

d-success-rate of f; on ' > 1 — \/y (17)
and for a random line I' noncoplanar with I,
E; |agreement between f; and f on cube c] > 6(1— /7)1 - 8a). (18)

Proof of Claim 4: Recall that the set of planes containing [ is a partition of cube
c. Since [ is nice, PJ(l) is P;|; for some i € [1,ko]. In any plane s containing I, the
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bivariate polynomial used to define fl in that plane must agree with P;|; on [ and must
have agreement at least §/2 with f on s. If s is well-behaved for [, then only P;|, qualifies.
Hence the agreement between f; and f on this plane is at least §(1 — 8a). Summing over
all planes containing [, we see that the agreement between fl and f on the cube c is at least
(1-./7)-6(1 —8a). Now the claim in (18) follows.

Now we prove the claim in (17). Consider any line I’ non-coplanar with [. Every plane s
containing ! meets I’ in exactly one point, say z. If s is well-behaved, then f;(m) = P(z), as
already argued. Hence P;[y, the restriction of P; to /', has agreement at least 1 — /7 with
fonl. O

By examining Claim 4 we realize that the Lemma is more or less proved, since at least
1 -+ — /7 fraction of lines in ¢ are super. We make ¢ > (2°?/6*)**, which makes 1 — /7 >
1 — 6%/512. Now the first expectation is §(1 — \/7)(1 — v — \/7)(1 — 8a) which is at least
/4. The second expectation is (1 — /7)(1 — v — /7)) > 1 — §?/256.

O

4 Some technical lemmas
We prove some of the lemmas used elsewhere in the paper.

Lemma 16 (Schwartz) An m-variate degree D polynomial that is nonzero can be zero at
at most D/ |Q| fraction of points in F™.

Proof: Simple induction on degree. U

Lemma 17 Let 74,7,,...,€ [0,1] be some real numbers whose average is o. Then (i) at
least TT_Z fraction of them are greater than p (ii) at most 1/k fraction of them are more
than k - a.

Proof: (i) If the desired fraction is s, then s satisfies s + (1 — s)p > a.(ii) If the desired
fraction is ¢ then ¢ satisfles t - ka < . O

In the following lemmas, F = GF(q) is any finite field. For the next lemma, we remind
the reader that a line in F™ has g points.

Lemma 18 (Well-distribution lemma for lines) Let S C F™ be a set whose size is
@ q™. For every K > 0, at least 1 — % fraction of lines in F™ have between pq(1l — \/%)

and pg(1 + \/%) points from §.
Proof: Imagine picking a line [ = {# + v : ¢t € F} randomly, that is, by picking %, v ran-

domly from F™. For a € F let the random variable X, be 1 if @+ a7 € S and 0 otherwise.
Then E[X,] = 1 and the X,’s are pairwise independent. By the Chebyshev inequality,

1
Prl| Y Xo - pel > Ky/pg] < o
aGF

a

We choose to state the next lemma in terms of the d-success-rate, but it is also true if
instead of d-success-rate we associate any set of positive fractions with the lines of F™ and
look at their average value in a random cube.
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Lemma 19 (Well-distribution lemma for cubes) For any a > 0 and m > 3, if any
function f : F™ — F has d-success-rate §, then in a random cube C,

2
Culserc [Average d-Success-rate of f on lines in C < (1 — a)b] < peyayal

Proof: Let the random variable Y, denote the average d-success-rate of f on lines in cube
C. By symmetry (see the note on symmetry in Example 1), E¢[Ys] = 6. Let X be the
random variable Y, — §, so E¢[X¢] = 0. By the Chebyshev inequality,

VI[Xc]

a?8?’

Pr[|Xo| > af] <

where V[X ] denotes the variance of X;. We show next (using an argument from [BGS95])
that V[Xs] < 2/|F|, thus proving the lemma.

Let ¢ = |F| and let K denote the number of lines in F* (thus K = (q:)/(g)) Let us
number these lines in some arbitrary way, so that we can refer to the “sth line of F3.”
We similarly talk about the “:th line of cube C.” Now for 1 < ¢ < K, let X, be the r.v.

X; = success rate of f on ¢th line of C' — §. Note that X¢o = E;<x[X;]. Hence
ViXe] = Ecol|Eij<r[XiX;]] (19)

To upperbound the expression in (19), we note that 1 — 1/q fraction of all pairs (¢, 7)
correspond to a pair of non-coplanar lines in F®. We claim that E[X;X;] < 1/q when 1,j
are non-coplanar. The reason is that we can pick a random cube C in F™ by picking a
random pair of noncoplanar lines [, [, in F™ and making [/; the ith line of C' and [, the jth
line of C; this completely determines C. Once we have fixed [;, the fraction of lines that
are non-coplanar with it is 1 — ¢®/¢™, so the average d-success-rate of f among lines that
are non-coplanar with /; is within [§ — 1/¢,6 + 1/q]. Hence E[|X;||X;] < 1/q.

Thus ) )
ViXeg] < =141 -=-)- =<
[Xc] p ( q)

K| =
KN

a

Now we state two lemmas that are related to Schwartz’s lemma.

Lemma 20 Letp € Flzq,z,,...,Z,] be a polynomial of degree exactly D. Then on at least
1 — D/ |F| fraction of lines in F™, the restriction of p has degree no less than D

Proof: Let {(a; + b1t,...,am + byt) : t € F} denote a generic line (i.e., think of a4, ..., am,

and by,...,b,, as variables).

Then p can be expressed as a degree D polynomial in Flay,...,am,b1,... 0,1
View it as a univariate degree D polynomial in ¢ whose coefficients are in the ring
Flai,...,@m,b1,...,b,]. Since the leading coefficient is a polynomial of degree exactly

D, Schwartz’s lemma implies that this coefficient cannot vanish for more than D/ |F| values
of (@1y. ..y am,b1y...,by) € F?™. O

Lemma 21 Let F be a finite field and F be its closure. Let p € Flzi,Za,...,2,,] be a
polynomial of degree exactly D. If on more than D/ |F| fraction of the points in F™, the
value of p at the point is in F, then p must be a polynomial in Flz,...,T,].
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Proof: The proof imitates the proof of Schwartz’s lemma. It uses the observation that a
univariate degree D polynomial that has at least one coefficient in F \ F must take values
in F\ F on at least |F| — D points in F. The reason is that D + 1 values are sufficient to
recover the polynomial by interpolation.

(By contrast, the proof of Schwartz’s lemma uses the fact that a nonzero degree D
univariate polynomial can be 0 only at D points in F.) O

Lemma 22 Let F be a finite field and F be its closure. Let p € Flzy,Zs,...,2,,] be a
polynomial of degree ezactly D. If on more than D/ |F| fraction of the lines in F, the
restriction of p to the line is in Ft| (where t is the line parameter), then p must be a
polynomial in Flzi,...,Z,,].

Proof: Follows from Lemma 21 in a way analogous to the proof of Lemma 20 followed from
Schwartz’s Lemma. U

4.1 A version of Hilbert Irreducibility

In order to prove the cases m = 2,3 we needed something like the following: if a polynomial
is irreducible, then its restriction on most lines does not have a “linear” factor. Now we state
and prove this fact. It is a simpler version of Kaltofen’s “Effective Hilbert Irreducibility”
[K85]. in that it focusses only factors that are monic and linear in one of the variables. The
proof essentially follows from Kaltofen [K95], and is included here for completeness.

A polynomial (in this section, “polynomial” means a formal polynomial) @ €
Flz,91,.-.,Ym]) is said to be monic with respect to z if the leading coefficient of z is a
constant (i.e., an element of F). It is absolutely irreducible if it does not factor over F, the
algebraic closure of F.

Theorem 23 Let Q € Flz,vy1,Y2,---,Ym] be a degree | polynomial that is absolutely irre-
ducible and monic in z. Then the fraction of (a1, @, ..., am,b1,bs,...,by) € F*™ for which

Q(z, a1t + b1, ..., ant +by,) € Flz,1] has a factor of the form z — p(t) in Flz,1]
is at most 1 — O(13/q).

Remark: The monicity condition is not strictly necessary. It suffices instead that if
Q=Y,Q:(v1,-,Ym)?" then gcd(Q1,...,Q;) = 1. If this condition is satisfied then we can
apply the lemma to the polynomial Q;(yi, .. .,ym)’Q(é, Yty v s Ym)-

In the proofs that follow we will use F(y1,¥a,---, %) and F(y1,¥a,---,Y) to denote the
quotient fields of F[yy, s, ..., v:] and Fly1, s, . . ., yx] respectively.

In the following lemma, congruence (i.e., =) modulo [yy,. .., Y]t means that the poly-
nomials on the two sides of the = are identical once we throw away all terms of total degree

I+ 1 or higher.

Lemma 24 Let Q € Flz,y1,...,Ym] and g € Fly1,...,ym] be any polynomials. Then for
any l > 0,

Q(g(yla . '7ym)7y17 . '7y‘m) =0 ( mod [yla . '7ym]l+1) (20)
iff there is a polynomial h € Fz,y1,...,Ym| such that
Q(zayla e 'ay‘m) = (z - g(yla . '7ym))h(zay17 . -ay‘m) ( mod [yl, . 'aym]l+1)' (21)
Furthermore, if such an h ezists, then it is unique modulo [yi, ..., Ym]'tt.
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Proof: By the division theorem, there exists a unique pair of polynomials h(z,y1,...,¥m)
and 7(yi1,...,Ym) such that

Q(zayla H ','yM) = (z - g('yla H 'ayM))h(zayla H ','yM) + T(yla H 'ayM)'

Thus
Q(g(yla .. 'ay‘m)ayl, .. '7ym) =0 ( mod [yla . '7ym]l+1)

iff 7(y1,---,%m) =0 (mod [yy,...,Yn] '), which happens iff

Q(zayl, . '7ym) = (z - g(yla s ',y‘m))h(z$y1, . -,ym) ( mod [yl, s 'ayM]l+1)'

Lastly, uniqueness of h follows by the uniqueness of the solution to the division theorem.
O

The following lemma will be important.

Lemma 25 (A Version of Hensel Lifting) Let Q € F[z,y1,...,Yn] be any polynomial
and a € F be a root of multiplicity 1 of the polynomial p(z) o Q(2,0,0,...,0). Then for
each | > 1 there ezxists a unique polynomial q; € Flyy, ..., ym| of total degree | such that

Q(@(Y1s- -, Um)s Y1y -+ Ym) = 0 ( mod [y1,...,¥m]™) and ¢(0,0,...,0) = a.

Proof: We simplify notation by using the symbol § as a shorthand for yy, ..., ¥ throughout
the proof.

By Lemma 24, it suffices to prove that for each [ > 0, there exists a unique pair of
polynomials h; € F|z, 7], ¢; € F[§] whose total degree in § is at most / and which satisfy:

Q(z,%9) = (z — a(2,9)) - ki(2,9) ( mod [§]"!) and ¢(0,0,...,0) = a. (22)

We use induction on I. The base case [ = 0 is trivial, since go = a and ho(z) =
Q(z,0,...,0)/(z — a) are the only such polynomials.

Assume the statement is true up to ! < k. The uniqueness property implies that
905915 - -5k, Ro, .- -, hy satisfy forall 1 <: < k,0< 5 <

%(9) = () ( mod [§]"~7 1)

and
hi(2,9) = hi—;(2,9) ( mod [§]"~7*1).

This means, for example, that each ¢; is expressible as
¢(9) = ¢;(9) + terms whose degree in § is between j + 1 and %.

A similar fact holds for the h;’s. Thus if any polynomials g1, 41 satisfy condition (22)
for I = k + 1, then they must necessarily be of the form

@1(9) = @ (9) + 3 Cayymdm || % (23)

dl,...,dmzzld,,:k+1

hiya(2,9) = ha(z,9) + > ea,...a(2) [T v (24)
dyyeenydm:y . di=h+1 i
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where each c;, 4, € F and each eg, . 4, € F[z].
Now we show that there exist unique values for the ¢4, .. 4,.’s and the e4, . 4. ’s such that
@r+1, P41 have the required properties. Let R € Flz,91,...,Ym] be defined as

R(z,@) = Q(zalg) - (Z - Qk(@))h(zayla e -7ym) ( mod [,‘g]k+2). (25)
Note that each term in R has degree k + 1 in §. Express it as
R(z,9) = > Tay,.an (2) [] .
dl,...,dmzztd.,:k+1 i

Since we desire gy, Ay to satisfy

Q(2,9) = (2 = qe41(9))hasa(9) (mod []°*7]),
we replace this in (25) to get
R(Z,’!A/) = (Z - qk+1('g))hk+1(§) - (Z - qk('g))h(zvyla H '7ym) ( mod [@]k+2)'

Now replacing the expressions from (23) and (24) in (25) and equating coefficients of like
terms, we get the following for every tuple of degrees (dy, ..., d,,) satisfying >, d; = k + 1:
(z = q0)ed,,....am (2) + ho(2)Cay,....dm = Tds,...dm (2)-

Since o is a root of multiplicity 1 of @(z,0,...,0), ho(2) = Q(z,0,...,0)/(z— a) does not
have a root at z = a. Furthermore, ¢o = a. So this system solves as

Cdyynydm — le,...,dm(a)/ho(a)

and
1

z —

€dyyedm — a(le,...,dm(z) - ho(z)cdl,...,dm)-

Thus we have proved both the existence and uniqueness of gx11, ~Ari1, thus completing

the induction.
O

We say that a univariate polynomial p € F[z] is square-free if it doesn’t have a repeated
root. For such a polynomial if f - g = p is any factorization of p in F[z], then f, g have no
common factor. The following lemma about discriminants gives a necessary and sufficient
condition for square-freeness.

Lemma 26 A degree k polynomial p = E?:o p;z* € Flz| is square-free iff the determinant
of the following (2d — 1) X (2d — 1) matriz (the so-called discriminant) is nonzero, where
9= (14 1)pig1 fori < d—1 and g, = 0.

Do 0 0 0 go 0 0 0
P1 Do 0 0 g1 o 0 0
P2 D1 Do 0 g2 g1 9o 0
P3P D1 0 g3 g g1 0
Pd DPd-1 Dd-2 Po Ga Gd-1 Ga-2 ' Yo
0 pi pa-x - 1 0 gs Gai1 0 1
0 0 Pa - p2 O 0 94 - 92
0 0 0 -++ ps 0 0 0 g3
0 0 0 pg O 0 0 da
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Proof: p has a repeated factor iff p and p’ (the derivative of p) share a factor, which
happens iff there are nonzero degree d — 1 polynomials A and B such that A-p+ B -p’' = 0.
We can try to find such polynomials by representing their coefficients as unknowns and
writing a (homogeneous) linear system of equations. The determinant we have written is
the determinant of this system; it is zero iff a nontrivial solution (i.e., A and B) exists. O

Corollary 27 Let Q € Flz,y1,...,Ym]| have degree | and be absolutely irreducible. Then
there is a nonzero polynomial @4 € Flyy,. ..,y of degree O(1?) such that for all by, ..., b, €
F,

®o(b1,...,bm) #0 = Q(2,b1,...,by,) is square-free in Flz].

Proof: Write Q as Yi_o 2'0i(¥1, . . ., Ym), that is, as a polynomial in Flyy, ..., %n][2]. Let
®, be the discriminant of this polynomial. Since the discriminant is a polynomial of degree
(20 + 1) in the coeeficients, and each coeeficient in this case is itself a degree ! polynomial
in Fly1,...,Ym], we conclude that &5 € Flyi,...,y] has degree [(2/ 4 1). Furthermore,
since @ is irreducible in F[yi,...,yn][2z], Gauss’ Lemma implies that @ is irreducible in

F(y1,...,Ym)[2], so the discriminant &g is non-zero. O

Lemma 28 Let Q € Flz,v1,Y2,---,Ym] be a monic, degree | polynomial that is absolutely
irreducible. Suppose by, ..., b, satisfy ®g(b1,...,b,) # 0, where ®q is the polynomial in
Corollary 27. Then there exists a nonzero polynomial ¥g € Flvs,...,v,,] of degree [* such
that for all ay,...,a,, € F,

Vo(ar,as,...y0,) #0 = f(z,a:1t+by,...,ant+b,) has no factor like z — p(t) in Flz,t].
Proof: By the hypothesis, @(z,by,...,b,) is square-free. Define T' € F[z, 1, ..., Ym] as
T(z,Y1,--yYm) = Q(2,91+ b1, -+ ., Ym + bin).

Clearly, T is absolutely irreducible and T'(2,0, ..., 0) is square-free. For each a4,...,a, € F,
let T.,,.....a,. € F[z,t] be defined as

T,

A1yeenyOom

(z,t) = T(z,a1t,ast,...,ant). (26)

We wish to give a “nice” description (namely, as roots of a low-degree polynomial ¥4) of
those tuples (aq,.. ., a,) for which

Ta,...a, has a factor of the form z — p(t), where p € F[t]. (27)

Let ay,...,04 be all the roots of T'(z,0,...,0). Thus k <[ and the o;’s are distinct. By
Lemma 25, for each 4 = 1,...,k, there is a unique degree [ polynomial g; € F[y1,. .., ¥%mn]
such that

T(Gi(Y1y -y Um)s Y1y - > Ym) = 0 ( mod [yy, ..., Ym] ") and ¢;(0,...,0) = o;. (28)
Note that g; # g; for ¢ # j, since g; and g; differ at (0,...,0). Further, for each ¢

T(9:(Y1s -+ > Ym)s Y15+ > Ym) # 0, (29)

since otherwise z — ¢;(y1,...,Ym) would be a factor of T' and T is known to be absolutely
irreducible.

24



Now let us identify tuples (aq,...,a,,) for which T,, . has a linear factor. For each

it =1,...,k, think of the polynomial g;(ait,...,ant) as a univariate polynomial in ¢. By
examining (28) and the definition of T, . ..., we see that for each aq,...,a, € F,
Tar,....an (gi(a1t, ..., ayt),t) = 0 ( mod [1]'*!) and gi(ait, ..., amt) is a; at t = 0.
The degree of g;(ait,...,ant) € F[t] is at most [. So we conclude from the uniqueness

condition in the conclusion of Lemma 24 that T,, .  has a factor of the form z — p(¢)
for p € F[t] iff that factor is z — g;(ait,. .., ant) for some 7 € [1..k]. In other words, iff
Tas,....an (gi(@1t, . .., apt),t) is the zero polynomial. Now we show that the set of (a4, ..., ay,)

for which T, . a,.(gi(a1t,. .., ant),t) is the zero polynomial have a nice description as the
roots of some polynomial ¥y,.
When vy,...,v, are indeterminates, then polynomial T'(g;(vit, ..., vmt),v1t,...,Vyt) is

nonzero (see (29)). Write this polynomial as }; pi;(vy, .- . Um)t', where each p;; € Fluy,
..., Um] is a degree [* polynomial. For each 7 pick a j; such that p; ;, is nonzero. Then define
Vo, as

\IJQ(’U]_,...,’UM) = Hpi’jl(’vl,...,’vm). (30)
Now consider any (ai,...,a) such that ¥o(ai,...,am) # 0. Then T(gi(ait,...,ant),
ait,...,an,t) is a nonzero polynomial in F[t] for 7 = 1,...,k. As already argued, T, ...
has no linear factor for such an (a4,...,ay).

a

Now we are ready to prove Theorem 23.
Proof:(of Theorem 23) Pick (by,...,b,) randomly from F™. With probability 1 — O(1?/g),
the polynomial 4 Corollary 27 becomes nonzero. Pick (a4,...,a,,) randomly from F™.
With a further probability 1 — [3/g, the polynomial ¥4 from Lemma 28 becomes nonzero
and so Q(z,ait + by,...,ant + by) has no linear factor. Thus we have shown that with
probability (1 — O(1?/¢)(1 — O(1*/q)) = (1 — O(13/q)), Q(z, a1t + by, ..., amt + by) has no

linear factor. O

5 Conclusions

We do not know how to reduce the number of provers in our constructions to 2. So long
as we use the verifier composition idea of [AS92], 3 provers appears to be the best possi-
ble. Reducing the number of provers to 2 would imply the NP-hardness of approximation
problems dealt with in [ABSS93].
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A Construction of Constant-Prover 1-Round systems

A p-prover 1-round proof system for a language L consists of a verifier that checks mem-
bership proofs for L (a proof that a given input z is in L) in the following way. The proof
consists of p oracles. (An oracle is a table that, for some a,b > 0, contains 2° strings
from {0,1}". When we supply this oracle a b-bit address, it returns the a-bit string stored
at the corresponding location. We call a the answer size of the oracle. ) The verifier is
probabilistic. It uses its randomness to compute one address in each of the p oracles, reads
the strings in those locations, and then computes an ACCEPT or REJECT decision. (The
name “p-prover l-round system” is a holdover from the past; we could also use “p-oracle
1-round systems.” )

To construct very efficient O(1)-prover 1-round proof systems for SAT we use two stan-
dard techniques. First we plug our low degree test into a construction of [ALMSS92] to get a
proof system with 3 provers that uses O(logn) random bits but the oracles in the proof have
answer size 21°6°™ for some B < 1. Then we use “verifier composition,” a technique from
[AS92], to reduce the answer size to O(logn) (the number of stays O(1)). Our technique
for verifier composition will also rely on the low degree test.

To use verifier composition we also need to ensure that the verifier’s ACCEPT/REJECT
decision is computed in a very simple way, by evaluating a small circuit. At the start,
the verifier uses its random string and the input to compute a circuit C' and one location
in each of the p oracles. After reading the oracles, the verifier outputs ACCEPT iff the
concatenation of the strings it just read is a satisfying assignment to C. The size of C (=
number of wires in it) is called the circuit size of the verifier.

Now we define MIP[p,r,a,e|, the class of languages that have such verifiers.

Definition 5 ( MIP|[p,r,a,e]| ) For a positive integer p and functions r,a,e: Z* — Z% a
language L is said to belong to MIP[p,r,a,e€] if there exists a probabilistic polynomial-time
verifier V that on any input z € {0,1}" uses r(n) random bits, ezpects the membership
proof to contain p oracles of answer size a(n), and has the following behavior:

1. If ¢ € L, then there exist oracles mq,...,m, such that V always outputs ACCEPT
(i.e., outputs ACCEPT with probability 1).

2. If ¢ ¢ L, then there for every set of oracles m4,...,m,, verifier V outputs ACCEPT
with probability at most e(n).

Furthermore, the circuit size of the verifier is polynomial in a(n).

A.1 A basic primitive

Our constructions of verifiers rely on an algebraic procedure that allows them to reconstruct
“many” values of a polynomial using O(1) queries. In describing this procedure we closely
follow the exposition in [A94], chapter 3. The only difference is a tremendous performance
gain due to our new analysis of the low degree test.

As already mentioned, our verifiers rely on the fact that a satisfying assignment can be
encoded as a degree d polynomial, for some appropriate d. The verifier expects the proof of
satisfiability to contain such a polynomial, represented by value. This means that the proof
contains some oracle f : F™* — F (the encoding is such that |F|™, the size of this oracle, is
polynomial in the size of the assignment being encoded). Using the low degree test the the
verifier checks that f has reasonable agreement with a degree d polynomial. Next, to check
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satisfiability, the verifier picks in some way (note: we’re omitting many details here) k points
21,29,...,2; € F” and then has to reconstruct the values of P at those points, where P is
any polynomial that has significant agreement with f. Now we describe a procedure from
[ALMSS92] (who essentially borrowed it from [LS91]) that allows the verifier to do this
reconstruction, provided the proof contains additional information. The most important
property of this procedure is that the verifier reads only 3 entries from the oracles provided
to it, even though k might be pretty large (and not a constant).
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Reconstruction Procedure:

Given: A function f : F™ — F, an integer d, a fraction § > 0, and k points
Zi,...,2; €EFTL

Desired: One of the k-tuples (Pi(21),...,Pi1(2)), (Pa(z1),...,Pa(2)),... or
(P.(z1),...,P.(21)), where Pi,..., P, are all the the polynomials that have
agreement at least § with f.

Augziliary Information: Two tables T and T; in which each entry has poly(dklog ¢
bits.

Procedure’s Properties: The procedure outputs either REJECT or a k-tuple.

o Let ¢ > (cod)**: and € = g~/*%:%2, Then
) kd
Pr[procedure doesn’t output one of the desired tuples] < 7 + e
q

o If f is a degree d polynomial, then there exist tables 7', T} such that

Pr[procedure outputs f(z1),..., f(z)] = 1.

Procedure’s Complezity: Uses O(mlogq) random bits. Reads 1 entry from each of
T and T; and one value of f.

Now we describe the procedure. Recall that a degree-k curve is a set of points with
a parametric representation like {(ci(t),...,cn(t)) :t € F}, where each ¢; is a degree k
univariate polynomial. Note that the restriction of a degree d polynomial to this curve is a
univariate polynomial of degree kd.

Below, we talk about a random degree k curve that passes through z,...,2;,. We can
pick such a curve by choosing a random point y € F,, and identifying (using interpolation)

m degree k univariate polynomials ¢;(%),. .., cxu(t) such that
Vi<i<k (c1(2),e2(2), ... em(?)) = 2 (31)
(ci(k+1),c2(k+1),...;em(k+ 1) = ¥y (32)
Here we are using the integers 1,2,...,|F| to also denote field elements. Note that by

choosing the k + 1th point of the curve randomly from F™, we have ensured that the the
last |F'| — & points on the curve are randomly (though not independently) distributed in F™.
This will be important.

Now we describe the procedure. Note that part of the procedure just consists in doing
the low degree test at a point C(a) on the curve C.
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Description of Reconstruction Procedure:

INPUTS: Function f : F™ — F, two oracles T,T;, and k points
Z1,...,2 € .

T, contains a sequence of univariate degree d polynomials, one for each
line in F™. Oracle T; contains, for each degree-(k + 1) curve in F™ that
passes through zi,..., 2, a univariate degree (k + 1)d polynomial.

PROCEDURE:

1. Randomly pick a degree k curve C(t¢) in F™ whose first
k points are zj,...,2;. Pick a random ¢ € F, and compute
the point C(a) € F”. Pick a random line [ that passes
through C(a).

2. Read the value of f at C(a). Read the polynomial given
for curve C in oracle T; say it is g¢(t). Read the
polynomial given for line [ in oracle 7j; say it is

hi(t).

3. If g¢(t) and hy(t) produce the value f(C(a)) at point
C(a), then output
(9¢(1),9¢(2),...,9¢c(k)), the values of gc at 1,2,...,k € F.
Otherwise output REJECT.

Complezity: The procedure runs in time poly(m + d+ log |F| + k). Randomness is required
only to generate O(1) elements of F™*, so only O(mlog|F|) random bits are needed. When-
ever we use this procedure, the function f is supposed to represent an assignment to n
variables. The field size, the degree and the number of variables have been carefully chosen
so that |F|™ = poly(n). Thus the procedure require O(mlog|F|) = O(logn) random bits.
Also, d > m, so the running time and the size of the oracle entries are poly(d + k).

Now we prove the correctness of the procedure. We are only interested in two cases. In
the first case, the oracle-constructor is trying to help the verifier. Then it is clear that by
just taking f to be a degree d polynomial and constructing oracles 7,7, appropriately,
it can make the verifier accept with probability 1. Now suppose the oracle constructor is
malicious. Let ¢, ¢y, c3 be constants of the same name that appeared in Theorem 3. Let
€ =g /%1% Tet Py,...P, be all degree d polynomials that have agreement at least €2 /c,
with f. We say that the procedure makes a mistake if it outputs a k-tuple that isn’t one of

(Pi(z1), .-, Pi(z1)), (Pa(21), ..., Pa(21)), ... 0r (Pu(21),..., Pu(21)).

Lemma 29 Suppose € is as described in the previous paragraph and q > (cod)***. Then

Pr[procedure makes a mistake] < kd + e

Proof:(sketch) Let us try to identify characteristics of any curve C, point C(a) and line
[ that causes the procedure to make a mistake. It must be that (i) For each polynomial

P; there is some point among zi,...,2; at which P; and g¢ disagree (since otherwise the
procedure would output (P;(z1),..., Pi(2)), and thus not make a mistake). In other words,
the univariate polynomial go differs from each of the restrictions P |¢, ... P.|c. (ii) f passes
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the low degree test using line [ (iii) The curve polynomial gc produces the value f(C(a))
at C(a) (since otherwise the procedure would output REJECT).

We upperbound the probability of making a mistake as follows. Suppose curve C satisfies
condition (i). Since two univariate degree kd polynomials can agree at at most kd points,
we conclude that on such a curve, 1 — dkr/q fraction of a € F are such that go does not
agree with any of Pi|¢,...P.|c at C(a). Thus conditions (i) and (iii) become difficult to
satisfy: if gc(a) = f(C(a)) for “many” a — as required by condition (iii) — then on most
such points f must disagree with all of Py,..., P,, in which case the low degree test is very
unlikely to succeed.

Now we formalize this. Let S C F™ be the set of points where f doesn’t agree with any
of Py, P,..., P,. With each point z € F™ let us associate a number p, as follows: if z ¢ S
then p, = 0 and otherwise p, is the success probability of the low degree test at 2. By
Theorem 3,

EmeF"‘[Pz] <e.

Now if C is a curve, we denote by Yy € [0, 1] the average of p, among all points z € C.
When the test picks a random curve C, then the last |F| —k points of the curve are randomly
distributed in F™. Hence by linearity of expectations E¢[Y¢| < € (we are assuming k < g,
so the first k£ points don’t affect the expectation by much).

On any curve C that satisfies condition (i),

dk dk
PIZ‘[made a mistake on C(a) using line [] < o + E, Flocw)] = arr + Y.
a, q q

Hence

dk dk
CPrl[made a mistake on C(a) using line [] < =Ty EqlYs] < e
!af q q

Now the lemma follows by noticing that r, the number of polynomials with agreement at
least €°* /c, with f, is at most 4€°*/c, by Proposition 2. O

A.2 A 3-Prover Proof System

The reconstruction procedure described above can be used in conjunction with any efficient
PCP system to obtain efficient constant prover proof systems. For instance, we could start
with an amplified version of the proof system of [ALMSS92]: In this proof system the verifier,
Vi1, queries a proof of length n in k& places and accepts valid proofs, while accepting proofs
of incorrect theorems with probability at most 4 = exp(—k). Furthermore the randomness
complexity of this verifier is O(logn) + O(k). To turn this verifier into a verifier for a
constant prover proof system (in particular a 3-prover proof system), we extend the proof =
used by verifier V; into a low-degree polynomial and then use the reconstruction procedure
described above to reconstruct the responses to all k& queries making only 3 queries to three
tables. Details follow:

Let 7 be a table of n bits. Let F be a field of order ¢ and let H C F. Then if m is such
that |H|™ > n, then we can view 7 as a function from H™ — {0,1}. Further we can extend
T to obtain a polynomial 7 : F™ — F so that 7 restricted to H™ is 7 and the degree d of
7 is at most m|H|. The new verifier works with 3 tables, f (which is supposed to be 7), T
and Ty, where the latter two are supposed to be the auxiliary tables of the reconstruction
procedure. To simulate the action of the verifier on queries zq,...,2; € H™, we use the
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reconstruction procedure on three tables f, T' and T; to reconstruct a tuple (aq,...,a;) such
that, with high probability, this is the output of (P;(z1),..., P(z;)) for some ¢ € {1,...,7r}
where Py, ..., P, are all the polynomials which agree with f in ¢ fraction of the places. The
new verifier then accepts the proof only if the verifier of the reconstruction procedure does
not reject and only if the k& tuple returned by the reconstruction procedure is accepted by
V1 as responses to queries 2y, ..., 2.

To analyze the complexity of this verifier, first observe that the number of provers used
is 3. Also the length of the provers responses (entry size in the tables) is at most mdlogg.
The randomness complexity is the sum of the randomness complexity of the two verifiers
which is at most O(logn) + O(k) + O(mloggq). Finally the error of the verifier is at most
the sum of the errors of the two components and is thus at most % + € + v. By picking
F and H appropriately, we can now obtain efficient 3-prover proof systems. In particular,
given any (3 < 1, by setting ¢ = 218’ and |H| = ¢ for some sufficiently small but positive
a, we obtain the following lemma.

Lemma 30 For every 3 < 1, NP ¢ MIP[3,O(logn),20(1°gﬁ”),2_1°gﬁ”].

The verifier described above can be used as a starting point for applying the recursive
proof checking technique of Arora and Safra [AS92]. In particular we can use the following
lemma from Bellare et al. [BGLR93| proved using recursion.

Lemma 31 ([BGLR93]) MIP[p,r,c,a,27%] C MIP[p + 2,7 + (loga + k)3, (loga + k)3,
o~ (b(m)/)43]

Combining Lemma 31 with Lemma 30 we get the following theorem.
Theorem 32 NP C MIP[5,0(logn),O(logn), 2_1081/371].

In order to reduce the error probability above to 2~ log”n for any § < 1, we need to replace
Lemma 31 with our own protocol to be used for recursive application. The protocol involves
simple modifications of the protocol used to obtain Lemma 30. We list the differences here:

e First the lemma is used to prove that a verifier for a p-prover proof system would ac-
cept a given set of answers. Hence the recursive verifier works in the encoded theorems
model of [BFLS91] and uses further the concatenated input model of [AS92]. Specif-
ically the protocol is designed to prove that z4,...,2z, would form a satisfying input
to a circuit C, given an encoding of z4,..., 2, in the form of low-degree polynomials.

e This procedure uses the reconstruction procedure to verify that an efficient PCP
system would have accepted the encodings of z4,...,z,. In order to do so, it generates
k points used to check that the concatenation of z,,...,z, would be accepted by C,
and in addition generates p points, one from each z; which is used to verify that the
claimed concatenation of the z;’s is really consistent with the individual encodings of
z;’s.

o Last point of difference is that we don’t use the protocol of [ALMSS92] to generate
the test for the reconstruction procedure. Instead we go back to the protocol of Babai
et al. [BFLS91] and use this protocol and use a fresh analysis of the protocol keeping
the improved low-degree test in mind. This allows us to push the parameter 3 in the
exponent of the error term arbitrarily close to 1.
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We omit the details of the protocol and simply state the lemma that can be obtained
from the above.

Lemma 33 There exist € > 0 and a < oo such that for every r,p,a,e the following holds:
MIP[p,r,a,e] C MIP[p+ 3,7+ O(mlog|F|),0((polylog a)dlog |F|),em+]. where d, m are

any positive integers and F is a any finite field satisfying the following conditions:
o emi > d%/|F|.
o (d/m)™ > a®W.
Using Lemma 33 we now get the following theorem.

Theorem 34 For every B < 1, there exists a p < oo such that
NP C MIP[p, O(log n), O(log n), 2—Q(log’3 n)]

Proof: We start with a 3-prover proof system with 8 = 1/2 as given by Lemma 30
We then recurse (ﬁ)-times using Lemma 33 with |[F| = 298" m = log'#n for
all applications. The choice of d is set to satisfy the condition (d/m)™ > a®®) and

we pick d = m2°8 7" in the 4th application. This yields NP C MIP[3($ +
1)10(10gn),0(10gﬁnloglogn),Q—Q(losﬁn)]_ 0

B Self-correction of programs

Consider a program P that is supposed to be computing an unknown polynomial g. Suppose
P is correct on only some tiny é fraction of the inputs. Our testing procedure allows us
to estimate the largest § for which the program’s output agrees with the output of some
polynomial, to within an additive error of O(1/¢¢) over a field of size g.

The task of self-correcting this program needs to be defined carefully. For starters, there
can be more than one polynomial agreeing with the program P in § fraction of the inputs.
In fact, we can have O(}) such polynomials. However we can be expected to reconstruct
O(3) (randomized) “programs”, each of which computes a polynomial (and is correct on
every input with high probability), such that every polynomial that has } agreement with
P is computed by one of the programs. This task was left as an open problem in Ar et
al. [ALRS92], and no polynomial (in m, d and }) time algorithm is known for this problem.
Goldreich et al. [GRS] solve this problem when § > 2,/d/q in time exponential in d. We
now describe our solution that works when § > (md/q)¢, for some positive €, and is the first
polynomial time-bounded solution for any § < 1/2.

Given a program P, our algorithm works in two phases: First, a preprocessing phase,
where we instantiate k < O(%) programs Pq,...,P,. In the second phase a program P;
takes an input z € F™ and computes its output P;(z). The guarantee is that at the end
of the first phase, with high probability, we create k£ randomized programs, such that the
output of each is (with high probability) a polynomial; furthermore, for every polynomial g
which agrees with P on § fraction of the input, one of the programs P; computes g correctly
with high probability on every input.

The two phases are based on the analysis of the bootstrapping method described in
Section 3.3 which is in turn based on the work of Arora [A94]. In the preprocessing stage,
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we pick a random line [ from the space F™ and find all degree d univariate polynomials
describing P restricted to the line on §/2 fraction of the places. We claim (without proof)
that no polynomial which describes P on § fraction of the places will be unrepresented.
Further, no two such polynomials will turn out to be identical on this line. Lastly we claim
(based on the strong version of the low-degree test) that no “spurious” polynomials will be
discovered by this procedure. Let pi,...,py be the polynomials found this way. We create
k programs with P; containing p; and [ as its identifying polynomial.

In the second phase, given an input z € F™, the program P; picks a random line I,
passing through z and computes all trivariate degree d polynomials hq,...,h; agreeing
with P in §/4 fraction of the points on the cube containing ! and I/;. Again, with high
probability, we assert that no two of the polynomials %;,, h;, turn out to be identical on /.
We then pick the unique polynomial h; such that h; restricted to [ is p;. We then return
the value of h; evaluated at z as the output of P; on input z. It can be argued that if
all the assertions (claimed to hold with high probability earlier) hold, then the output of
P; is always according to some fixed polynomial g; which agrees with P on at least §/2
fraction of the input. Furthermore, g; is the unique polynomial (among all such) such that
g; restricted to [ is p;. Thus we get the following theorem:

Theorem 35 There exists a randomized polynomial time algorithm that, when given oracle
access to a program P and parameters d, 6, F and m, can create O(3) randomized programs
Pi, ..., Py such that for every degree d polynomial g : F™ — F which has § agreement with
P, there exists a program P; that computes g correctly on every input with high probability.
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