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Abstract. We consider the framework of Parameterized Complexity and we investigate the issue of which
problems do admit efficient fixed parameter parallel algorithms. In particular, we introduce two classes
of efficiently parallelizable parameterized problems, PNC and FPP, according to the degree of efficiency
we want to obtain. We sketch both some FPP-algorithms solving natural parameterized problems and a
useful tool for proving membership to FPP based on the concept of treewidth. We then focus our attention
on parameterized parallel intractability and prove that a necessary condition for a parameterized problem
to be complete for the class of sequentially fixed parameter tractable problems (with respect to reductions
preserving membership to PNC) is that it is not in NC for some fixed value of the parameter (unless
P = NC). Finally, we give two alternative characterizations of both PNC and FPP and we use them to
prove the PNC-completeness of two natural parameterized problems.

Topics: Computational Complexity, Parameterized Complexity, Parallel Computations.

1 Introduction

The theory of NP-completeness [18] is a theoretical framework to explain the apparent asymp-
totical intractability of many problems. Yet, while many natural problems are intractable in
the limit, the way by which they arrive at the intractable behaviour can vary considerably.
The standard NP-completeness model is often too coarse to give insight into this variation. In-
formally, consider the following situation: suppose the instance of an NP-complete problem II
consists of two parts  and k&, and suppose the problem has some practical relevance especially
for k belonging to a small subset S of the set of all its possible values. In this case it makes
sense to pose the question: is II tractable when k is restricted to belong to S7 Of course, the
answer to the question depends on the problem II. For instance, if [ = COLORABILITY and k
is the number of colours needed to properly color a graph, the answer is probably no (indeed,
COLORABILITY is NP-complete for every k£ > 3 [18]). On the other hand, several degrees of
tractability for fixed values of & could exist. The best known polynomial-time algorithm for
DOMINATING SET [18] has running time O(n*t1), where n is the number of vertices and k de-
notes the cardinality of the dominating set. Instead, VERTEX COVER [18] can be solved in time
O(n) when the cardinality of the vertex cover is fixed. Thus, these two latter problems seem to
have different “parameterized” complexity.
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The first authors who defined a formal setting to deal with parameterized complexity are
Downey and Fellows: they assigned the degree of fixed parameter tractability (FPT) to problems
behaving like VERTEX COVER, and then they introduced several classes containing likely fixed
parameter intractable problems [12, 1, 16, 13, 15, 14].

In this paper we investigate the issue of which problems do admit efficient fixed parameter
parallel algorithms. A first attempt to formalize the concept of efficiently fixed parameter
parallelizable problems has been pursued by Bodlaender, Downey and Fellows: in a one-page
abstract [6] they suggested the introduction of the class PNC as the parameterized analogue
of NC. However, neither theoretical results nor applications to concrete natural problems were
presented. We now want to give a deeper insight to such concept.

According to the degree of efficiency we are interested to obtain, several kinds of efficient
parallelization for parameterized problems can be considered. While in the classical complexity
theory an efficient parallel algorithm is usually defined as a PRAM-algorithm running in poly-
logarithmic time and using a polynomial number of processors, in the parameterized setting we
must explicitly state the role plaid by the parameter in the degree both of the polylogarithm and
of the polynomial. More precisely, we could think of a parallel algorithm requiring a polynomial
number of processors, where the degree of the polynomial depends or does not depend on the
parameter; similarly, we could think of a parallel algorithm whose running time is bounded by
a polylogarithm having degree which is, or is not, a function of the parameter.

The number of available processors is actually a strong physical constraint on the employa-
bility of a parallel algorithm; therefore we assume that a parallel algorithm requiring a number
of processors bounded by a polynomial whose degree is an increasing function of the parame-
ter cannot be regarded as “efficient” from a parameterized point of view. This fact lead us to
consider only two classes of efficiently parallelizable parameterized problems (PNC and FPP),
which differ only for the dependence of the degree of the polylogarithm upon the parameter.

In section 2 we formally define the two classes of efficiently parallelizable parameterized prob-
lems, PNC and FPP, and we study their relationship with the class of sequentially tractable
parameterized problems (FPT). We also show two FPP-algorithms solving the natural param-
eterized problems VERTEX COVER and MAX LEAF SPANNING TREE. In section 3 we present a
useful and non trivial tool for proving FPP-membership of parameterized graph problems based
on the concept of treewidth and on the results in [3, 8, 5]. We also state the FPP-membership of
the TEXTWIDTH and FEEDBACK VERTEX SET problems. In section 4 we study the relationship
between NC, PNC, and FPP, and we show that there are problems probably not in PNC yet
included in NC for any fixed value of the parameter, despite all FPT-complete problems (with
respect to any parameterized reduction preserving membership to PNC) must have some value
of the parameter such that the problem is not in NC (unless P = NC). Thus, the class NC
and the classes FPP and PNC are somewhat “orthogonal”. In section 5 we give two alternative
characterizations of both FPP and PNC, and we use them to prove the PNC-completeness of
two parameterized problems. Finally, in section 6 we state some conclusions.

1.1 The parameterized complexity setting

Let ¥ be a finite alphabet. A parameterized problem is a set L C ¥* x ¥*. Tipically, the
second component represents a parameter k£ € N. The kth slice of the problem is defined as



Ly ={ze¥*:(x,k) € L}. The class FPT of fized parameter tractable problems contains all
parameterized problems that have a (sequential, deterministic) solving algorithm with running
time bounded by f(k)|z|%, where (2, k) is the instance of the problem, k is the parameter, f is
an arbitrary function and « is a constant independent of z and k.

Given two parameterized problems L and L', L fized parameter reduces to L' if there exist

two functions f and ¢, a constant « and an algorithm ® computing for each pair (z,k) a pair
(', g(k)) such that ® runs in time f(k)|z|” and (z, k) € L if and only if (z/, g(k)) € L.

Problems that are likely fixed parameter intractable are organized as a hierarchy of classes
W[1] € W[2] C ..., each defined as the closure under parameterized reductions of a “kernel”
problem. A boolean expression X is called t-normalized if X is in product-of-sums-of-products. . .
(¢ alternations) form. For each value of ¢ we consider the WEIGHTED {-NORMALIZED SATIS-
FIABILITY problem, whose yes-instances are ¢{-normalized boolean expressions having satisfying
truth assigments with a parameterized number of 1’s (i.e., variables set to true). The class
W(t] (for t > 2) contains all parameterized problems that fixed parameter reduce to WEIGHTED
{-NORMALIZED SATISFIABILITY, while W[1] is defined as containing all parameterized prob-
lems which fixed parameter reduce to WEIGHTED 2-NORMALIZED SATISFIABILITY restricted
to size-2 clauses. The W hierarchy contains many natural parameterized problems; see for
example [15, 11].

2 The classes PNC and FPP

From now on, with the term “parallel algorithm” we always refer to a PRAM algorithm.

The first class of efficiently parallelizable parameterized problems, PNC, has been defined by
Bodlaender, Downey and Fellows [6]. PNC (parameterized analog of NC) contains all parame-
terized problems which have a parallel (deterministic) solving algorithm with at most g(k) |z|”
processors and running time bounded by f(k)(log|z|)**), where (z,k) is the instance of the
problem, k is the parameter, f, g and h are arbitrary functions, and 8 is a constant independent
of x and k. The definition of PNC is coherent with the intuition behind the concept of efficiently
parallelizable problem, as stated in the following lemma.

Lemma 1 PNC is a subset of FPT.

Proof. Let L be a problem in PNC, and let ® be a parallel algorithm which decides any instance
(z,k) of L in at most f(k)(logn)™*) steps and with at most g(k) n® processors (where n = |z|).
Then, let ¥ be the sequential algorithm which simulates ® in at most f(k) g(k) n® (logn)"*)
steps. Since
fi (08"
n—00 n

=0,

there exists N = N(h(k)) such that, for each n > N, (logn)"*) < n. Moreover, if n < N,
then (logn)"*) < (log N)"*) = [(k). Thus, for each n, (logn)"*) < I(k)n and therefore the
algorithm W terminates in at most f(k) g(k) (k) n®*! steps. ]

A drawback with the definition of PNC is the exponent in the logarithm which bounds
the running time. Since it depends on k, it grows very rapidly thus making the running time



very close to a linear function also for not too large values of the parameter. The class of
fized-parameter parallelizable problems FPP contains all parameterized problems that have a
parallel (deterministic) solving algorithm with at most g(k) |z]® processors and running time
bounded by f(k)(log|z|)®, where (a,k) is the instance of the problem, & is the parameter, f
and g are arbitrary functions, and « and (3 are constants independent of 2 and k. Observe that,
by definition, FPP C PNC.

The previously defined classes are worthy of being considered when it is proved that they
include natural parameterized problems. A first step in this direction is taken in the remaining
of this section.

Let us consider the VERTEX COVER problem: given a graph G = (V, F), is there a set of
vertices V! C V of cardinality at most &, such that for every edge uv € F, at least one of its
ends, u or v, is in V' (k being the parameter)? The following sequential algorithm is due to
Buss [9, 14]. Observe that, for a simple graph G, any vertex of degree greater than & must
belong to every k-vertex cover of (.

e Step 1. Compute the set W = {v]|v € V and degree (v) > k} and p = |W|. If p > k, then there
is no k-vertex cover, otherwise, let k' = k — p.

e Step 2. Compute H = G — W; if |E(H)| > k'k then reject. Otherwise, compute the graph H’
obtained from H by discarding all vertices of degree 0.

e Step 3. Now H' is a graph of degree smaller than k + 1, with at most kk’ edges and 2kk’ vertices.
Exhaustively search in H’ a k’-vertex cover; if it does not exist, then reject, else the k’-vertex cover
of H' plus W is a k-vertex cover of G.

It is easy to verify that the algorithm is correct, because a simple graph with a k’-vertex cover and
degree bounded by %k has no more than kk’ edges, and therefore no more than 2kk’ non-isolated
vertices. The algorithm has running time in O(n 4 k*) and is easily parallelizable. Indeed, in
Appendix A an EREW PRAM algorithm is shown which requires 4 logn + (’)(kk) time and uses
n? processors. Thus, VERTEX COVER belongs to FPP.

Let us now consider the MAX LEAF SPANNING TREE problem: given a graph G = (V, E),
is there a spanning tree of G’ with at least & leaves (k being the parameter)? In [11] it is shown
that MAX LEAF SPANNING TREE can be solved in time O(n + (2k)**) (where n = |V|). The
simple algorithm follows.

e Step 1. Check whether G is connected (if not, the answer is no), and whether there is a vertex of
degree > k (in this case the answer is yes).

e Step 2. If the answer is still undetermined, then resolve any useless vertex of G (a vertex v is
useless if it has neighbors u, w of degree 2; such a vertex v is resolved by deleting v from GG and
adding an edge between u and w). If the new graph G’ has at least 3k(k + 1) vertices, then the
answer 1s yes.

e Step 3. Otherwise, exhaustively analyze G’ and answer accordingly, since G’ has a k-leaf spanning
tree if and only if G does.

As in the case for VERTEX COVER, this algorithm is easily parallelizable (just consider that the
problem of deciding whether a graph G is connected is in NC, see for example [20]). Thus, Max
LEAF SPANNING TREE is in FPP.



3 Treewidth and FPP-membership

The concept of treewidth was introduced by Robertson and Seymour [23], and it has proved to
be a useful tool in the design of graph algorithms. A tree decomposition of an undirected graph
G = (V,E) is a pair (T, U), where T = (X, F) is a tree and U = {U, |z € X } is a family of
subsets of V such that

1. U U, =V,
zeX

2. for all vw € F, there exists an € X such that {v,w} C U;

3. forall z,y,z € X, if y is on the path from z to z in T, then U, N U, C U,,.

The width of a tree decomposition (T, {U, |z € X }) is maxzex |Uz| — 1. The treewidth of a
graph GG, denoted as tw ((), is the smallest treewidth of any tree decomposition of G.

Let us consider the parameterized TREEWIDTH problem: given a graph G and an integer k,
has G treewidth exactly k7 Although the general problem is NP-complete [2], Bodlaender [4]
showed that there exists a linear time algorithm able to compute, for any fixed k, an optimal
tree decomposition of a graph G if its treewidth is at most k. This proves that parameterized
TREEWIDTH belongs to FPT. Successively, many authors showed parallel algorithms for such
problem. An optimal parallel algorithm has been achieved by Bodlaender and Hagerup [8] (a
direct consequence is that TREEWIDTH belongs also to FPP):

Theorem 1 For all constants k > 1 and all integers n > 2, the following problem can be solved
on an EREW PRAM using O((logn)?) time, O(n) operations and O(n) space: given a graph G
with n vertices, construct a minimum-width iree decomposition of G or correctly decide that

tw(G) > k.

The concept of treewidth turns out to be an useful tool for proving FPP-membership. Indeed,
in [3] it is shown that many problems that are (likely) intractable for general graphs are in NC
when restricted to graphs of bounded treewidth. In particular, the authors prove that some graph
properties, namely MS properties (definable in monadic second order logic with quantifications
over vertex and edge sets) and EMS properties (that involve counting or summing evaluations
over sets definable in monadic second order logic), are verifiable in NC for graphs of bounded
treewidth. A careful study of the proofs in [3] reveals that all such properties are also verifiable
in FPP under the same hypothesis'; therefore

all problems involving MS or EMS properties are in FPP when restricted to graphs
of paramelerized treewidth.

In other words, for any (E)MS property P, the following BOUNDED TREEWIDTH (GRAPHS
VERIFYING P problem belongs to FPP: given a graph G, is GG satisfying P and such that
tw(G) <k (k being the parameter)?

'A crucial idea is that any optimal tree decomposition of width k& can be transformed in O(log n) time and
O(n) operations on a EREW PRAM into a binary tree decomposition of depth O(logn) and width at most
3k + 2 [8].



Many NP-hard graph problems are (E)MS problems (in Appendix B there is a list of MS
and EMS properties). Therefore, all problems listed in Appendix B are in FPP when restricted
to graphs with parameterized treewidth.

In a few cases it is possible to prove FPP-membership even without restrictions on the
treewidth of the instance graph, since some properties directly imply a bound on the treewidth.
Examples of such properties characterize the following classes of graphs:

o series-parallel graphs (treewidth < 2) [5];

graphs with bandwidth at most k (treewidth < k) [5];

o graphs with cutwidth at most k (treewidth < k) [5];

e graphs with node search number at most k (treewidth < k) [22];

e graphs with vertex separation number at most & (treewidth < k — 1) [22, 21];
e graphs with tangle number at most & (treewidth < k) [25];

o graphs with a feedback vertex set of size k (treewidth < k + 1) [5];
¢ outerplanar graphs (treewidth < 2) [5];

o k-outerplanar graphs (treewidth < 3k — 1) [5];

o planar graphs with radius d (treewidth < 3d + 1) [24];

e Halin graphs (treewidth = 3) [28, 5];

e r x ¢ grid graphs (treewidth = min{r,c¢}) [5].

Therefore some very natural problems (like FEEDBACK VERTEX SET) are in FPP, because (i)
yes-instances have bounded treewidth, and (ii) the corresponding property is (E)MS. It should
be stressed that, in order to have FPP-membership, both conditions (i) and (ii) must hold. For
instance, the parameterized BANDWITH problem is not characterized by an (E)MS property and,
indeed, it is hard for any class W[t] [7]. Conversely, problems like CLIQUE or DOMINATING SET
are characterized by EMS properties, yet they do not appear on the above list and are hard
for W[1] (over the class of all graphs).

4 Relationship between FPP, PNC, and NC

Trivially, the slices of every parameterized problem belonging to FPP or PNC are included in
NC. In order to “separate” FPP and PNC from FPT, it is important to verify whether the
converse is true, that is, whether the parameterized versions of all problems whose slices belong
to NC are included in FPP or PNC. Consider the CLIQUE problem: given a graph G with n
vertices and an integer k, decide if G contains a complete subgraph of £ nodes. Each kth slice
CLIQUEy is trivially in NC. Indeed, CLIQUE can be easily decided by a parallel algorithm that
uses O(n*) processors and requires constant time: each processor verify if & nodes assigned to
it are a clique, and the algorithm accepts if at least one processor discovers a clique. Since
CLIQUE is W[1]-complete [15], it cannot be included in PNC (unless FPT= WTJ1]). This means
that slice-membership to NC is not a sufficient condition for membership to PNC (and, thus, to
FPP).
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Figure 1: Transformation of inner gates into subgraphs: (a) OR gate, (b) AND gate.

The above fact shows that the classes FPP and PNC are somewhat “orthogonal” to NC, as
much as the definition of FPT is orthogonal to the one of P. Nevertheless, there is a strong rela-
tion between P-completeness and FPT-completeness, where the completeness for FPT is defined
with respect to parameterized reductions preserving membership to FPP or PNC. Consider the
parameterized LONGEST PATH (in short, LP) problem: given a graph G and two nodes u and
v, decide if G' contains a path between u and v of length at least k (k being the parameter). It
turns out that the slices LPy of LP are among the most difficult problems in P, as stated in
the following theorem.

Theorem 2 For any fized k > 1, the kith slice LPy of LP is P-complete.

Proof. For any fixed k£ > 0, LPy is trivially included in P.

Let us consider the MoNOTONE CIRCUIT VALUE PROBLEM (in short, MCVP): given an
encoding C of a logical circuit C' and a binary input vector z = z[1], ..., z[n], does C'(z) accept?
The circuit is monotone because NOT gates are not allowed; moreover, each internal gate has
fanin 2 and unbounded fanout. MCVP is a well-known P-complete problem [19]; we now show
a logspace reduction from MCVP to LP,.

Let (C, ) be an instance of MCVP. The corresponding instance (G¢ ., s,t) of LP3 is derived
as follows. Each input line 7 is mapped to a pair of nodes a; and b;: they are adjacent if and only
if 2[i] = 1. Each internal gate is transformed into a subgraph (a so-called metanode) connected
to the rest of the graph by 4 input edges and 2 output edges. An OR gate is transformed into a
metanode with two vertices, 01 and 04, each of which incident on two input and one output edges:
if the input lines of the OR gate are connected to the output lines of, respectively, gate « and
gate v, then oy (and similarly o0g) is incident to one output edge of the metanode corresponding
to u and one output edge of the metanode corresponding to v (see Figure 1 (a)). An AND gate
is transformed into a metanode with 3 nodes, ay, a3 and ag: if the input lines of the AND gate
are connected to the output lines of, respectively, gate u and gate v, then a; (az) is incident to
one output edge of the metanode corresponding to u (v) and as is incident to the two remaining
output edges of the metanodes corresponding to u and v; the two output edges are incident to
ay and ay (see Figure 1 (b)). Finally, the two output edges of the metanode corresponding to
the output gate of the circuit are connected, respectively, to node s and node ¢. In Figure 2 an
example of the reduction is shown. Since each metanode can be constructed independently from
the others and each gate of the circuit is related to only four metanodes, the reduction can be
done in logspace.

In the following we show that C'(z) outputs 1 if and only if there is a path from s to ¢ in
G of length at least 2. We say that the value of some gate of the circuit C' is 1 if the value
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Figure 2: An instance of MCVP transformed into an instance of LPj.

of the boolean expression computed by it on the input vector = is true, it is 0 otherwise. For
instance, the value of gate v in Figure 2 is 1, the value of w is 0. We now claim that there is
a path connecting the two output lines of a metanode of G¢, if and only if the value of the
corresponding gate of C'(z) is 1. This can be easily verified for the gates connected to the input
lines, and the claim follows by induction on the depth of the gate. This is sufficient to prove
that G¢ contains a path from s to ¢ if and only if C'(z) = 1.

Of course, the result for any £ > 2 follows by replacing the edges incident to s and ¢ with
simple paths of total length £. a

The same proof allows us to show that the DisjoINT CONNECTING PATHS problem (given
a graph G and a set of k pairs of nodes, decide if G contains k disjoint paths connecting each
pair, where k is the parameter) has P-complete slices. More noticeably, the previous theorem
has an important consequence. Let L, L' be parameterized problems. We say that L FPP-
reduces (PNC-reduces) to L’ if there is an FPP-algorithm (PNC-algorithm) @ such that ®(z, k)
computes (z', k') and (z,k) € L if and only if (2, k') € L'.

Corollary 1 Let <g¢ be either the FPP-reduction or the PNC-reduction. If there exists an
FPT-hard problem L with respect to <g such that ils slices Ly are included in NC, then P=NC.

Proof. Since L is FPT-hard and LP is included in FPT [17], then LP <4 L. This means
that there is a PNC-algorithm A transforming an instance ((G,s,t),k) of LP into an instance
(X,I(k)) of L such that ((G,s,t), k) is a yes-instance of LP if and only if (X,[(k)) is a yes-
instance of L. Let us fix a value k. The PNC-algorithm A provides an NC-reduction from LPy
to Ly); since Ly € NC, LP belongs to NC too. From Theorem 2, LPy is P-complete, and
thus the lemma follows. O

Corollary 1 implies that every FPT-hard parameterized problem must have at least one slice
which is not in NC unless P = NC.?2 Thus, the notion of FPT-completeness does not add
anything to the classical notion of P-completeness to characterize hardly parallelizable problems

2Moreover, it is possible to consider the parameterized analogue of the classical logspace reduction, and in this
case Corollary 1 would imply that any FPT-complete problem must have at least one P-complete slice.



in the parameterized context. In particular, this means that if we want to distinguish between
parallel intractability in the two contexts, we must find an hardly parallelizable parameterized
problem having slices in NC. This is the topic of next section. However, notice that in this
way we will rely on the hypothesis FPP # PNC; therefore we can hope to characterize “FPP’s
intractability” by proving the PNC-completeness of some problem, but we have no way to
characterize “PNC’s intractability”.

5 Alternative characterizations of FPP and PNC

NC is primarly defined as the class of problems that can be decided by uniform families of
polynomial size, polylogarithmic depth circuits. Here “uniform” means that the circuit C),, able
to decide instances of size n, can be derived efficiently (i.e., in logspace) from n. Successively, it
is proved that uniform families of circuits and PRAM algorithms are polynomially related.

In this paper, we have followed the inverse pattern, by initially defining the classes FPP and
PNC in terms of PRAM algorithms. In this section, we extend the relation between PRAM
algorithms and uniform families of circuits to the parameterized setting. In this case, uniform
means that the circuit C¥, able to decide instances of size n when the value of the parameter
is k, can be derived in space f(k)(logn)®, for some function f and constant a. Since the proof
of the first part of next theorem is trivial and the proof of the second part closely resembles the

one of the original theorem in [26], it is omitted.

Theorem 3 A uniform circuit family of size s(n,k) and depth d(n,k) can be simulated by a
PRAM-PRIORITY algorithm using O(s(n, k)) active processors and running in time O(d(n, k)).

Conversely, there are a constant ¢ and a polynomial p such that, for any FPP (PNC) algo-
rithm ® operating in time T (n, k) with processor bound P(n, k), there exist a constant dg and,
for any pair (n, k), a circuit C¥ of size at most de p(T (n, k), P(n, k), n) and depth ¢T(n, k) re-
alizing the same input-output behaviour of ® on inpuls of size n. Furthermore, the family {CF}
s uniform.

The previous theorem allows us to show the first PNC-complete problem. It is denoted as
BouNDED S1ZE-BOoUNDED DEPTH-CIRCUIT VALUE PROBLEM (in short, BS-BD-CVP) and is
defined as follows: given a constant «, three functions f, g and h, a boolean circuit C' with n
input lines, an input vector z and an integral parameter k, decide if the circuit C' (having size
g(k) n® and depth h(k)(logn)/(*)) accepts .

Corollary 2 BS-BD-CVP is PNC-complete with respect to FPP-reductions.

Proof (sketch). The problem is hard for PNC. Indeed, Theorem 3 insures that for any param-
eterized problem L in PNC there are three functions f, g and h, a constant « and a family of
boolean circuits {C*} of size g(k) n® and depth & (k) (log n)/(¥) such that, for every input z of size
n and every parameter k, (z,k) € L if and only if C¥(z) = 1. Since it is possible to build C¥ in
logarithmic space, a triple (C¥, z, k) such that (z, k) € L if and only if (C¥,z, k) € BS-BD-CVP
can be derived with an FPP-algorithm.



It is also easy to verify that the problem is included in PNC. Just consider the simple parallel
algorithm which activates a processor for each gate of the circuit and computes the value of the
output gate in time proportional to the depth of the circuit. a

A second characterization of the classes of parameterized parallel complexity is based on
particular alternating Turing machines. Recall that an alternating Turing machine is a non
deterministic Turing machine AT whose non final internal states can be existential or universal:
AT(z) accepts if and only if the computations tree contains a subtree S such that:

e if S contains a node u corresponding to a global state whose inner state is existential then
it also contains one child of u in AT (z);

e if S contains a node u corresponding to a global state whose inner state is universal then
it also contains all children of w in AT (z);

e the boolean expression obtained by associating in S an V to any universal node, and A to
any universal node, the value true to any final accepting state and the value false to any
final rejecting state is true.

In order to allow underlinear time, we consider random access alternating Turing machines,
i.e., alternating Turing machines having an appropriate index tape onto which they write the
index of the cell of the input tape they need to read. Furthermore, such machines are supplied
with six special states, corresponding to the existential and universal versions of the states read-
input, 0-read and 1-read. When the machine enters the existential (universal) state read-input it
passes into the existential (universal) state 0-read or I-read depending on if the input bit (read
in the cell of the input tape whose index is contained in the index tape) is 0 or 1.

There is a strong relation between the time required by a random access alternating Turing
machine and the depth of a simulating circuit, and between the space required by a random
access alternating Turing machine and the size of a simulating circuit. This fact was pointed out
by Chandra, Kozen and Stockmeyer [10] for the classical complexity setting, and it also holds
for the parameterized one, as stated in the next theorem. As a consequence of Theorem 3, its
proof is equivalent to the one of the corresponding theorem in [10] and thus it is omitted.

Theorem 4 For any o > 0, the class of paramelerized problems thal can be decided by ran-
dom access alternating Turing machines with SPACE*(n, k)€ O(g(k)logn) and TIME(n, k)€
O(h(k)(logn)®), for some functions g and h, is included in FPP. Conversely, for each param-
eterized problem in FPP there exist an o > 0 and a random access alternating Turing machine

deciding the problem with SPACE*(n, k)€ O(g(k)logn) and TIME(n, k)€ O(h(k)(logn)®).

Stmilarly, the class of parameterized problems that can be decided by random access alternat-
ing Turing machines with SPACE*(n,k)e O(g(k)logn) and TIME(n,k)e O(h(k)(logn)!*)),
for some functions f, g and h, is included in PNC. Conversely, for each parameterized prob-
lem in PNC there exist three functions f, g and h and a random access allernating Tur-
ing machine AT deciding the problem with SPACE*(n,k)e O(g(k)logn) and TIME(n, k)€
O(h(k)(log )/ ®).

The previous theorem is a useful tool which allows us to define another PNC-complete
problem. We denote it as RANDOM ACCESS ALTERNATING TURING MACHINE COMPUTATION
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(in short, RA-ATMC): given a random access alternating Turing machine AT, an input word z
and an integral parameter k, does AT (z) halts within O(f(k)(log|z|)*) steps with SPACE*(n) €
O(g(k) log n)?

Corollary 3 RA-ATMC is PNC-complete with respect to FPP-reductions.

Proof (sketch). The problem is hard for PNC. Indeed, Theorem 4 insures that for any
parameterized problem in PNC there are a random access alternating Turing machine AT
and three functions, f, g and h, such that (z,k) € L if and only if AT (z,k) accepts in
TIME(n, k) € O(h(k)(logn)/*)) and SPACE*(n, k) € O(g(k)logn). Thus, a triple (AT, z,k)
such that (z,k) € L if and only if (AT, z,k) € RA-ATMC can be derived in constant time with
Olle Processor.

The problem is included in PNC. Indeed, a universal random access alternating Tur-
ing machine U accepting an input (AT, z, k) if and ounly if AT (z,k) accepts in TIME(n, k) €
O(h(k)(log n)f(*)) and SPACE*(n, k) € O(g(k)logn) can be easily derived. |

6 Conclusions

In this paper we have introduced two classes of efficiently parallelizable parameterized problems
according to the degree of efficiency we want to obtain. Then, we have restricted our attention
on one of them, FPP, which seems to represent a reasonable degree of efficiency while remaining
rich enough. Indeed, we have shown many natural parameterized problems belonging to it,
both by directly describing FPP-algorithms and by presenting a useful tool for proving FPP-
membership based on the concept of treewidth. We have also proved a necessary condition for
FPT-completeness: at least one slice cannot be in NC unless P = NC. Finally, we have proposed
two alternative characterizations of both FPP and PNC and, by using them, we have shown two
PNC-complete problems.

Acknowledgments. We would like to thank Michael R. Fellows and Todd H. Wareham for
their helpful comments and their encouragement.
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Appendix A

We show a parallel implementation of the algorithm for VERTEX COVER sketched in section 2:

program { input: n, E, k }
{ n is the number of vertices of G, E is the adjacency matrix of G, k is the size of the vertex cover }
begin
{ Phase 1: compute the degree of any vertex and mark any vertex having degree > k }
for i:=1 to n do in parallel
begin
for j:=1 to n do in parallel
D(i,§) = (i, );
for j:=1to logn do
for h:=1 to n/2/ do in parallel
D(i, h):= D(i,2h — 1) + D(i,2h);
if D(i,1) > k then m(i):=1
else m(i) :=0;
end;
{ Phase 2: delete all edges which are incident on any marked vertex }
for ::=1 to n do in parallel
for j:=i+ 1 to n do in parallel
if (m(i)=1) or (m(j)=1) then
begin
B(i, j):=0; B(j, i) =0;
end;
{ Phase 3: compute the new degree of any vertex }
for i:=1 to n do in parallel
begin
for j:=1 to n do in parallel
D, j) = B(i, j);
for j:=1to logn do
for h:=1 to n/2’ do in parallel
D(i, h):=D(i,2h — 1) + D(i,2h);
end;
{ Phase 4: compute the number of marked vertices in the old graph }
for ::=1 to logn do
for j:=1 to n/2! do in parallel
m(j) = m(2j — 1) + m(24);
if m(1) > k then reject;
{ Phase 5: count the edges in the new graph }
for i:=1 to logn do
for j:=1 to n/2! do in parallel
if D(1,1)/2 > k(k — m(1)) then reject;
{ now the graph has at most k(k — m(1)) edges }
search exhaustively a vertex cover of size k — m(1) in the new graph
and, according to the result, accept or reject;
end.

It is easy to verify that the running time of the previous algorithm is 4logn + (’)(kk) and the
number of processors is n?. Therefore, we have proved that VERTEX COVER belongs to FPP.
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Appendix B

The following lists are taken from [3, 27]; for definitions see also [18].

MS properties:

domatic number for fizred K, graph K -colorability for fized K, achromatic number for
fixed K, monochromatic triangle, partition into triangles, partition into isomorphic
subgraphs for fized connected H, partition into Hamiltonian subgraphs, partition into
forests for fized K, partition into cliques for fixed K, partition into perfect matchings
for fized K, covering by cliques for fizred K, covering by complete bipartite subgraphs
for fized K, induced subgraph with property P (for monadic second-properties P and
fized K ), induced connected subgraph with property P (for monadic second-order
properties P and fized K ), induced path for fired K, cubic subgraph, Hamiltonian
completion for fived K, Hamiltonian circuit, directed Hamiltonian circuit, Hamil-
tonian path, directed Hamiltonian path, subgraph isomorphism for fixed H, graph
contractibility for fixred H, graph homomorphism for fizred H, path with forbidden
pairs for fized n, kernel, degree constrained spanning tree for fired K, disjoint con-
necting paths for fized K, chordal graph completion for fixed K, chromatic index for
fized K, spanning tree parity problem, distance d chromatic number for fized d and k,
thickness < K for fizred K, membership for each minor-closed class of graphs.

EMS properties:

vertex cover, dominating set, feedback vertex set, feedback arc set, partial feedback
edge set for fired maximum cycle length [, mintmum mazximal matching, partition
into cliques, clique, independent set, induced subgraph with property P (for monadic
second-order properties), induced connected subgraph with property P (for monadic
second-order properties), induced path, balanced complete bipartite subgraph, bipar-
tite subgraph, degree-bounded connected subgraph for fixed d, planar subgraph, tran-
sitive subgraph, uniconnected subgraph, minimum K -connected subgraph for fized K,
minimum equivalent digraph, Hamiltonian completion, multiple choice matching for
fized J, k-closure, path distinguishers, maximum leaf spanning tree, mazimum length-
bounded disjoint paths for fixed J, mazimum fized-length disjoint paths for fized J,
minimum edge (vertexz) deletion for any MS property, bounded diameter spanning tree
for fized D, multiple choice branching for fixed m, Steiner iree in graphs, mazimum
cut, longest circuit, longest path, partition into isomorphic subgraphs for fired H,
partition into perfect matching, Kth best spanning tree for fixred K, bounded compo-
nent spanning forest for fived K, minimum cut into bounded sets, shortest weight-
constrained path, Kth shortest path for fived K.
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