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Exponential Lower Bounds for Semantic
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Abstract

In a semantic resolution proof we operate with clauses only but
allow arbitrary rules of inference: consistency is the only requirement.
We prove a very simple exponential lower bound for the size of bounded
fanin semantic resolution proofs of a general Hitting Set Principle stat-
ing that, for any set system with hitting set number 7, no set of size
less than 7 can be a hitting set. The pigeonhole principle and known
blocking principles for finite (affine and projective) planes are special
cases of this general principle.

1. Introduction

The resolution proof system introduced by Blacke [2] and further developed
by Davis and Putnam [12] and Robinson [17] is one of the first and simplest
in the hierarchy of propositional proof systems. This system operates with
clauses and has one rule of inference
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called the resolution rule. First exponential lower bound for regular resolution
(these are resolution proofs with the additional restriction that along every
path every particular variable z; can be resolved at most once) was proved
by Tseitin [18] almost 30 years ago. However, despite its apparent simplicity,
the first lower bounds for non-regular resolution were proven only in 1985 by
Haken [13]. These bounds were achieved for the pigeonhole principle PH P!
asserting that n+ 1 pigeons can not sit in n holes so that every pigeon is alone
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in his hole. Buss and Turan [8] extended this bound to exp (Q (n?/m)) for
more general form PH P of the pigeonhole principle in which the number of
pigeons, m is another parameter. Haken’s argument was further refined and
applied to other tautologies by Urquhart [19] and Chvétal and Szemerédi [9].

In a recent work [1] Beame and Pitassi have found a direct and elegant
proof of Haken’s [13] lower bound for PHP™"!. In this paper we simplify
and generalize the combinatorial part of their argument and show that it in
fact works: (i) for other principles than PH P}, and (ii) for proof systems that
generalize resolution. Examples of these new principles are, so-called, blocking
principles for finite (affine and projective) planes. The model generalizing res-
olution is that of semantic resolution. Like in standard resolution proof, here
we operate with clauses only. The main difference is that we allow arbitrary
inference rules

Ci,...,C
C

Their consistency is the only requirement: every truth assignment satisfying
all the hypotheses (1, ..., C}, must also satisfy the conclusion C'. The number
of hypotheses, [ is the fanin of that rule. The resolution rule is a very special
case of this general rule with [ = 2. The size (or length) of a proof is the total
number of clauses in it.

We will prove a very simple exponential lower bound for the size of semantic
resolution proofs of a general principle, which we call the Hitting Set Principle.
This principle, HS(F) states that for any set system F with hitting set number
7, no set A of size less than 7 can be a hitting set. The hitting (or blocking) set
for F is a set which hits (i.e. intersects) every edge of F; the hitting number
7(F) is the minimal possible size of such a set. This number is hard-coded
into the CNF, and the underlying variables are the variables describing A and
other variables may be used to explain that A has the right size. This principle
is a generalization of the pigeonhole principle PHP": here F consists of m
mutually disjoint n-element sets. The sets A of interest are all sets of n points
which define partial 1-to-1 mappings from n of the pigeons to the n holes. The
pigeonhole principle states precisely that either A is too large, or some edge is
not intersected by A (see also Example 1 below).

Our main result (Theorem 1) says that as long as the set system F satis-
fies certain combinatorial conditions, then any CNF formula formalizing the
hitting set principle for F requires an exponentially long semantic resolution
proof. Our argument is essentially the same argument employed by Beame
and Pitassi [1] in the case of PHP™!. Using simple ”greedy” algorithm, we
first show that some small restriction will kill off all long clauses if the proof is
short. Then we complete the proof with a direct argument that the remaining
restricted proof cannot exist because there are no long clauses in it.



2. The lower bound

In this section we state our main result and describe several its applications.
We first need to setup some notation. A hypergraph (or set system) over a set
X is simply a family F of its subsets; elements of X are points, and sets in
F are edges. We will be interested in the size of semantic resolution proofs
for the hitting set principles HS(F). In any such proof we have |F| leaves
labeled by (positive) clauses Cp = V;cpz;, one for each edge E € F. We
call these leaves primary. All other leaves are secondary and may be labeled
by arbitrary clauses. In particular, besides the z-variables (corresponding to
points of F) these clauses may contain any other variables. We require only
that the conjunction of all these secondary clauses must be satisfiable on any
set, of size less than 7(F). For example, one can take as secondary the following
set, of clauses:

Yir Vo VYim, Wik VY Wik, Wik V Tk

where 1 <i# j<m—7(F)+1,1 <k <mand m = |X]| is the total number
of points in the hypergraph F. It is easy to see that, given an assignment
to z-variables, this set of clauses is satisfiable if and only if the number of
ones in that assignment is less than 7(F). For now, let us point out that our
lower bounds argument does not depend on the actual form of these secondary
clauses: important will be only combinatorial properties of primary clauses,
corresponding to the edges of F.

Simple (but useful for the rest of the paper) observation is that, due to
consistency of inference rules, any semantic resolution proof for HS(F) is in
fact a nondeterministic algorithm for the following search problem: Given a
set A of size less than 7(F), find an edge E € F such that ANE = (). To
see this, associate with each such set A an assignment u4 to the remaining
variables so that f(va,uas) = 1, where f is the conjunction of all secondary
leaves and v, is the incidence vector of A. Fix this injection A — wu 4, and
traverse the proof starting from the last clause of the proof (which is empty) by
always choosing that of hypotheses C, for which C(v4,u4) = 0. Consistency
ensures that proceeding this way we will necessarily reach a leaf. The fact that
C(va,us) = 1 for all the secondary leaves C, ensures that the reached leaf is
primary, i.e. has the form Cg = V;cpx; with E € F. Since Cg(va,uas) = 0,
the edge E avoids our set A, and we are done: the desired edge is found.

This observation allows us to concentrate on the lower bounds problem
on the length of semantic resolution proofs, solving the search problem for
particular hypergraphs F: any such bound is immediately a lower bound on
the length of a shortest semantic resolution proof of any CNF, describing the
hitting set principle for F.

We will be particularly interested in special k-partite hypergraphs. Let
S1, ..., Sk be mutually disjoint subsets of X, called blocks. A partial transversal
is a set B C X which intersects each block in at most one point; B is a



transversal if |B| = k (in this case B intersects each block in exactly one
point).

Definition. We call a hypergraph F a (k, b, \, d)-design if there exist k£ mu-
tually disjoint blocks Si, ..., Sk such that:

1. Every edge of F is a transversal for S, ..., Sg;
2. |Si| <bforalli=1,...,k;

3. |[ENF| < \forall edges E # F € F;

4. Every point belongs to at most d edges of F.

Such a design F is large if every transversal of Si,..., S, avoids at least one
edge of F. The corresponding edge-search problem for F is to find such an
edge. Note that any design, with more than kd edges, is large, but there also
are large designs with smaller number of edges.

Our main result is the following general lower bound for semantic resolu-
tion.

Theorem 1. Let F be a large (k,b, \, d)-design, and G be a semantic resolu-
tion proof of fanin at most l. Let s and t be integers satisfying

Is <min{|F|—dt,k—t} and t>k/2 (1)
If G solves the edge-search problem for F then

s(k—t—1Is+1)?
E+X-(s—1)

size(G) > 2M/°  where M =

(2)

In particular, if |F| > k(d+1)/2 then

size(G) > exp (Q (b(l’“i;)» . (3)

Few words about the parameters. The bound (3) follows from (2) by taking
t = [k/2] and s = [k/(4l)]. The bound itself becomes trivial if the block size
b is near to the square of their number k. But this is inherent weakness of our
argument (as well as all previous lower bound proofs for PHP"): in order to
eliminate a single variable we are forced to do this simultaneously for all the
variables in whole block (see also Remark 2 in Section 5).

To motivate the rest of the paper, let us mention several applications of
Theorem 1.

Example 1. (Pigeonhole principle). The generalized pigeonhole principle
PHP!™ (m > n+ 1) says that if each of n holes may be occupied by only one
of m pigeons then at least one pigeon must have no hole. The corresponding
search problem is to find such a pigeon. More exactly, given an n x m (0,1)-
matrix M with m > n and exactly one 1 in each row, the problem is to find an
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all-0 column. In this case we have a hypergraph F with m edges, corresponding
to columns, and n blocks, corresponding to rows. Since |F| = m > n, this
hypergraph is a large (k, b, A, d)-design with k =n, b=m, A =0 and d = 1.
Since |F| = m > n = k(d+ 1)/2, we can apply (3), which yields the lower
bound 22(n*/(mD) Recall that 2%"”/m) ig the best known lower bound for the
minimal length of a resolution refutation proof of PHP!™ [13, 19, 8, 10]. So,
the reason why PH P is hard for resolution, seems to lie not in the weakness
of the resolution rule itself, but rather in the impossibility to keep enough
information about possible outcomes, using small (up to [) sets of clauses.

Example 2. (Affine planes). Take an affine plane AG(2,q) of order gq.
Every point lies on ¢ + 1 lines, and there are g(g + 1) lines, each two of which
intersect in at most one point. It is known (see [14, 4]) that every set of
less than 2¢ — 1 points misses at least one line of AG(2, ¢). This result leads
to the following line search problem for AG(2,q). We have n = ¢(q + 1)
variables z1, ..., z, corresponding to points, and n leaves, labeled by clauses
Cr = Ve @i, corresponding to lines L. Given a set of at most 2(¢ — 1)
points, the problem is to find a line with no point in this set. By the result,
mentioned above, this problem is well defined. Any semantic resolution proof
for this problem solves the edge-search problem for the following design F.
Take any set Ly, ..., L, of ¢ parallel (i.e. mutually disjoint) lines, and consider
the hypergraph F, the edges of which are all the remaining ¢ lines. Since
every such line intersects each of the lines Li,...,L, in exactly one point,
the hypergraph F is a (k,b, A, d)-design with k = b = d = ¢ and A\ = 1.
To verify the largeness of this design, let B be a transversal of Li,..., L,.
If B would intersect all the lines in F then it would intersect all the lines
of AG(2,q), which is impossible because |B| = ¢ < 2¢ — 1. Thus, every
transversal B avoids at least one line of F, and hence, F is large. Since
|F|=¢*> > q(g+1)/2 = k(d + 1)/2, we we can apply (3), which yields the
lower bound 2%/ = exp (\/m /l) on the size of any semantic resolution
proof of fanin at most [/, solving the edge-search problem for F, and hence, for
any such proof solving the line search problem for AG(2, q).

Example 3. (Projective planes). Take a projective plane PG(2, ¢) of order
g. It has the same number n = ¢? 4+ ¢ + 1 of lines and points; each line has
q + 1 points and every point lies in ¢ + 1 lines; any two lines share exactly
one point. It is known (see [5, 6]) that any set of at most ¢ + /g points must
either contain a line or must avoid a line. This result leads to the following
line search problem for PG(2,q). We have n = ¢*> + q + 1 variables 1, ..., 7,
corresponding to points, and and 2n leaves, labeled by clauses C} = Ve 2
and Cp = V,er, —;. Given a set of at most ¢ + /g points, the problem is
to find a line which lies entirely either in this set or in its complement. This
problem reduces to the line search problem in affine planes. The idea is to use
the well-known fact that deletion of any one line Ly from PG(2,q) (together
with all its points) gives us affine plane AG(2, ¢); the lines of this new plane

5



are sets L\ Ly where L # Lg are lines of the projective plane. Let now G be a
fanin-/ semantic resolution proof solving the line search problem for PG(2, g).
Fix an arbitrary line Ly of PG(2, ¢) and set to 0 all the variables x; with i € Ly.
This restriction kills (evaluates to 1) all negative leaves of G and deletes (i.e.
evaluates to 0) exactly one variable from each positive leaf. The restriction
Ly — 0 corresponds to deletion of Ly from PG(2,¢q), and hence, leads to
AG(2,q). Thus, we obtain a proof which solves the line search problem for
AG(2,q). As shown in the previous example, this proof (and hence the original
proof G) must have at least 249/Y) clauses.

3. Combinatorics

The proof of Theorem 1 consists of three simple steps.

1. Firstly, we replace each clause in the original proof G' by a positive clause
so that the resulting proof G still solves the original edge-search prob-
lem for F.

2. The goal of the second ‘killing large clauses’ step is to show that, if the
proof G would have less than 2M/® clauses, with M defined by (2),
then it would be possible to set some t variables to constants so that
all long clauses in G are killed (i.e. are evaluated to 1). Conditions
(1) are necessary to ensure that we do not kill too many primary leafs,
i.e. that the whole search problem becomes not much easier after this
restriction. Our restrictions are deterministic. Thus the whole argument
avoids randomness.

3. The goal of the final ‘forcing large clauses’ step is to show that any
proof solving the desired search problem, must have at least one long
clause. Here we essentially use the fact that edges of our design are
almost disjoint, i.e. that |[EN F| < X for any E # F € F.

This implies that G could not have less than 2M/% as desired.
All the combinatorics we need is accumulated in two easy lemmas: the
‘killing” lemma and the ‘forcing’ lemma.

Lemma 1. (Killing Lemma) Let A be a hypergraph over a set X, and
S1,...,Sk be a partition of X into sets of cardinality at most b. If |A| <

b
(%)r/ and each edge of A has more than r points then there is a partial
transversal T of S1, ..., Sk such that |T| < t+1 and T intersects all the edges

of A.

Proof. Let n = |X|. We construct the set T via the following “greedy”
procedure. Let A' = A and X! = X. For each 4, 1 < i < t, include in T
the element z; € X which occurs in the largest number of sets of A’. Then



remove from X* all the points of that block, which contains z;, to obtain X+,
and remove all the sets containing z; from A’ to obtain A**!. Sets deleted
after ¢ + 1 steps intersect the set {x1,..., 21} Since n < kb, the number of
remaining sets in 4 is bounded from above by « - |A| where

(=D -7 ()< ()

Since A has less than a~! sets, all the sets of A are already intersected by T,
as desired.m

Let now F be a large (k, b, \, d)-design with blocks Sy, ..., Sk. Fix an ar-
bitrary partial transversal 7" of these blocks, and consider only those transver-
sals which contain this particular transversal 7. Let A be a set of points and
H C F. We say that H is a witness of A if, for every transversal B containing
T, we have that either BN A # () or BN E = () for at least one E € H (or
both). Put otherwise, every extension of T, intersecting all the edges of H,
must also intersect the set A. Given a set of points A C X, define its weight,
wr(A) to be the minimum number of edges in a witness for A.

Lemma 2. (Forcing Lemma) Let T be a partial transversal, t = |T|, and
let A C X be a set of points of weight s = wp(A). Then

s(k—t—s+1)?
E+As—1)

Al > (4)

Proof. Lemma follows directly from the following two claims. Let H =
{F1,...,E;} C F a minimal set of edges witnessing the weight of A.

Claim 1. The set A intersects every edge of H in at least kK —¢ — s+ 1 points.

Proof. Take an arbitrary edge £ € H. Since H is minimal, there must
be a transversal B O T which intersects all the edges of H' = H \ {E} but
avoids both sets A and E. For each edge E' € H' choose any one point from
the intersection B N E’, and let I be the set of these choosed < |H'| =s—1
points. Let E denote the set of all points in E, which belong to no of the
blocks intersecting I U T. Since every edge E is a transversal, every block
contains only one point of E, and hence, |E| > |E| —|T| - |[I| > k—t—s+1.
It remains therefore to prove that A D E for every edge F € H.

To prove this, take an edge E € H and an arbitrary point z € E. Our
goal is to show that z belongs to A. Let S be the (unique) block containing
this point x. The fact that point x belongs to E implies that this block S is
disjoint from both T and I. Since B is a partial transversal and BN E = 0,
the block S intersects B in some other point y # z. Remove from B the
point y and add the point z. The resulting set (B \ {y}) U {z} intersects the
edge E. Moreover, B\ {y} D I UT, because y € S and SN (IUT) = 0.
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Therefore, the set (B \ {y}) U {z} contains T and intersects all the remaining
edges in H' (since I intersects them). Since H is a witness for A, we have that
AN((B\{y}) U{x}) # 0. This together with ANB = (), implies that x € A.m

Claim 2. Let A be a hypergraph with s edges such that v < |E| < v and
IENF| < Aforall E# F € A. Let X = Ugey £ be the underlying set of
points. Then |X| > (u?s)/(v+ (s — 1)A).

Proof. The proof is a slight modification of a similar counting argument used
by K. Corrddi [11] in the case when v = v. For a point z € X, let d(x) be
the number of sets in A containing z. Then, for each edge E, ¥ ,cpd(z) =
Yrea|ENF| <v+ (s—1)\. Summing over all edges we get

> 2 dl) = 3 dla) |X|<Zd> |X|<Z'E‘) T

EcAzceE reX zeX EcA

Using the previous estimate we obtain (us)? < s-|X|(v+ (s — 1)\), which
gives the desired lower bound on | X |.m

Now we can finish the proof of Forcing Lemma as follows. By Claim 1
there exist s subsets E; C F; such that A D Fy U---UFE; and u < |E;| < v
with u = k —t— s+ 1 and v = k. Since sets E; belong to the witness H
(and hence, to the design F), no two of them intersect in more than A points,
and Claim 2 yields the desired lower bound on |E;, U--- U E|, and hence, the
desired lower bound (4) on |A|.m

4. Proof of Theorem 1

Since G solves the edge-search problem for the design F, it is possible to
associate with each transversal B, a truth assignment up to the remaining
variables so that f(vp,up) = 1, where f is the conjunction of all secondary
leaves and vp is the incidence vector of B. Fix this injection B +— up, and
call a truth assignment legal if it has a form (vg, up) for some transversal B.

Our first goal is to replace the clauses in G by clauses without negated main
variables. The idea of this transformation is similar to that used by Buss [7]
in case of the pigeonhole principle. For a point i, let S(i) = S\ {i} where S
is the (unique) block containing this point i. Replace every clause C' of G by
the clause C'™ which is obtained from C by replacing each negated literal —z;
by the set of positive literals {z; : 7 € S(¢)}. Since for any transversal B we
have that s € B <= BN S(i) = 0, it follows that C*(vp,up) = C(vp, up),
and hence, the resulting proof G still solves the edge-search problem for F.
Moreover, GT has at most £ = size(G) clauses. Let r be the smallest number

for which
k r/b
/¢ — .
< (k — t) (5)



By Killing Lemma, there is a partial transversal T of size at most ¢ + 1 such
that, setting to 1 all the variables z; with ¢ € T', we kill off of all the clauses
in G with at least 7 main variables. Let G’ be the resulting proof.

Since every primary leaf of G' corresponds to an edge of F and each point
belongs to no more than d edges of F, at least |F| — dt of these leaves survive
the restriction. We will use them to weight the clauses of G'. Namely, define
the weight, W(C) of a clause C to be the minimum number of primary leaves
of G' whose conjunction implies C' on all the legal truth assignments (vg, ug)
with B D T'. Note that primary leafs have weight 1, whereas secondary leaves
have zero weight (they are satisfied by every legal assignment). On the other
hand, the root must have weight larger than min {|F| — dt, k — t}, since we
have at least |F| — dt primary leaves, for any k — t of them we can find a
transversal B DO T such that B \ T intersects all of them (recall that |B| = k
and |T'| = t). Since (by soundness) the weight of every clause is at most the
sum of the weights of the (at most /) clauses from which it is derived, we
can find a clause C such that s < W(C) < [s, as long as s does not exceed
the weight of the root, which is ensured by (1). This clause has the form
C = Vicaz; V C" where C' is the auxiliary part of C. Since primary leaves
have only z-variables, the weight W (C') of C' is exactly the weight wr(A) of
the corresponding set of points A. By Forcing Lemma this set has at least

_s(k—t—1Is+1)°
kE+As—1)

points. Since all clauses with at least » main variables, are already killed, we
have that M < r. Since r was minimal for which (5) holds, this means that

k M/b
SiZG(G) = g 2 (m) y

which is > 2M/® since t > k/2, as desired. This completes the proof of Theo-
rem 1. m

5. Concluding remarks

1. The input size of an edge-search problem for a hypergraph F is the number
|F| of edges. It is interesting to compare the lower bounds which we obtain
for searching problems, resulting from the generalized pigeonhole principle and
from the line search problem in finite geometries. By Theorem 1, the general
lower bound is exponential in Q(k2/b) if F is k-partite with block size b. Thus,
in case of PH P}, the bound is exp (k?/|F|), which is super-polynomial only
if | F| = o (k*/logn), and it is still not known if it remains such for |F| > k2.
(Recall that & is the number of holes and |F| = b is the number of pigeons).
In this respect, the lower bound for AG(2, q) is better: here we have |F| = k?

(with k£ = ¢) and the bound is exp ( |.7-"|)
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2. The reason, why our argument (as well as previous arguments, based on
Haken’s ”bottlenecks counting” idea [13, 19, 8, 10]) does not work for PH P}
with b > k2, is that we a priori restrict our search domain to transversals
only. This makes possible the transformation G — G™ but binds our hands
when trying to kill long clauses, since now our killing set 7" must be (partial)
transversal. Note that without this last restriction, we could replace the bound

(ﬁ)r/b in Killing Lemma by (%)T, which does not depend on the block size b
at all (!). The overall conclusion is that, in order to get lower bounds for PH P}
with b > k?, one should learn more on how to force large clauses which are
not assumed be positive. Quite recently, Razborov, Wigderson and Yao [16]
have made an interesting attempt to overcome this k? barrier. Using a novel
technique they where able to prove exponential lower bounds (for arbitrarily
large b!) on the size of some restricted versions of regular resolution proofs for
PHP}.

3. In this paper we have shown that the combinatorics of semantic Reso-
lution is captured by two simple "killing” and ”forcing” lemmas. Next logical
step could be to understand the combinatorics of cutting planes proofs. All
the known superpolynomial lower bounds for the length of such proofs fol-
low from the corresponding lower bounds on the size of monotone Boolean
circuits via appropriate interpolation theorems (see, e.g., [15] for a survey).
Thus, these bounds capture the weakness of corresponding circuits rather than
the weakness of cutting planes themselves. Moreover, this approach fails in
the situations where the corresponding problems (like all three examples in
Section 2) have small circuits. To get more insight into their nature of cut-
ting planes proofs, it would be interesting to understand the cutting plane
complexity of blocking principles for finite geometries. These geometries have
more structure then the pigeonhole principle, and the corresponding principles
have very natural formulation in terms of linear inequalities. The Jamison-
Brower-Schrijev’s theorem [14, 4] for AG(2, q) is given by the system of 2n+1
inequalities:

n
€L i=1

Bruen’s theorem [5] for PG(2,¢) also can be stated as a system of 3n + 1
inequalities:

n
ST =1

What is the cutting plane complexity of these systems? The ”quadratic count-
ing” trick used in Bruen’s proof makes plausible the conjecture that this sys-
tem does not have a short cutting planes proof, unless we allow quadratic
inequalities and/or multiplication of two inequalities. Both answers - a short
cutting planes proof of Bruen’s theorem or the absence of such proof - would
be interesting.
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