
ECCC
TR97-008

Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

FTP: ftp.eccc.uni-trier.de:/pub/eccc/

WWW: http://www.eccc.uni-trier.de/eccc/

Email: ftpmail@ftp.eccc.uni-trier.de with subject ’help eccc’

Pointer Jumping Requires Concurrent Read
�

Noam Nisan
Department of Computer Science

The Hebrew University of Jerusalem
Jerusalem 91904, Israel

noam@cs.huji.ac.il

Ziv Bar-Yossef
Department of Computer Science

The Hebrew University of Jerusalem
Jerusalem 91904, Israel

zivi@cs.huji.ac.il

Abstract

We consider the well known problem of determining
the

�
’th vertex reached by chasing pointers in a directed

graph of out-degree 1. The famous “pointer doubling”
technique provides an �������
	 ��� parallel time algorithm on
a Concurrent-Read Exclusive-Write (CREW) PRAM. We
prove that this problem requires �� ��� steps on an Exclusive-
Read Exclusive-Write (EREW) PRAM, for every

���
��� ���
	�� , where � is the number of vertices and � is a con-
stant.

This yields a boolean function which can be computed
in �������
	����
	�� � time on a CREW PRAM, but requires
�� � ����	�� � time on even an “ideal” EREW PRAM. This is
the first separation known for boolean functions between the
power of EREW and CREW PRAMs. Previously, separa-
tions between EREW and CREW PRAMs were only known
for functions on “huge” input domains, or for restricted types
of EREW PRAMs.

1 Introduction

1.1 Pointer Jumping

Perhaps the most basic technique used in parallel algo-
rithms on graphs or lists is the so-called “pointer jumping” or
“pointer doubling” technique. This technique allows traver-
sal of a linked list of length

�
in �������
	 ��� time. The basic

problem may be defined as follows:
Assume that for every � � ��� � you are given

an index of its “successor”, �
 �"! (a number in the range
#
This work was supported by USA-Israel BSF grant 92-00043 and by

Israel Science Foundation grant 69/96-1.

$ ��%'&(&(&)%*�,+). The problem is to “reach” the
�

’th index in the
list: �
%*�� -� ! %.�� /�
 �� !�! %)�� /�
 /�� -� !�!0! %�&�&0& . In general, for a given input
array �
 �� ! &�&�&�& �� /� ! , we define �(1324� , and for every

�6587
, the�

’th element is �:9;2<�� /�'9>=@? ! .
The basic pointer doubling technique repeatedly executes

the following pointer doubling step: In parallel for all
�

do
�� �"!�A �� /�
 �"!-! . It is not difficult to see that after B such steps,
�� -� ! now holds the value of �:C*D . Thus, �������
	 �E� steps are
necessary to reach � 9 . This basic technique is very often
employed in various list manipulation algorithms, as well
as in many tree and graph algorithms which have list sub-
structures in them. See [KR88] for a survey and references.

Let us analyze the memory access requirements from
such a pointer doubling step. Fix some

�
, and consider the

memory location holding �� ��! . It is clear that only a single
processor writes into this cell. Many processors, though,
may need to access its value: for any F such that �� F ! 2 �

,
computing the value of �� �� F !�! requires the reading the value
of �� ��! . We thus see that concurrent access of processors to a
memory cell is needed for reading but not for writing.

In some important cases we can be assured in advance
that �� �"! &�&-&/�� /� ! really hold a simple list, i.e. that for each

�
there exists (at most) a single predecessor. In these cases
even concurrent read access is not needed. Much work has
been done in this special case to fine-tune this algorithm as to
improve its efficiency (see [KR88] for references). Our main
theorem (stated below) shows that the general problem does
indeed require concurrent read access, and that otherwise a
lower bound of �� ��� can be proved.

1.2 EREW vs. CREW PRAMs

PRAMs (Parallel Random Access Machines) provide
an elegant model for parallel computation while hiding
many “secondary” issues such as the communication mech-
anism between processors. In the PRAM model proces-
sors communicate with each other using a shared mem-
ory, where in each time step each processor can read
one shared memory cell, perform a computation on its
local memory, and write into one shared memory cell.

PRAMs are further classified according to whether dif-
ferent processors can concurrently access a memory cell
for reading, or writing. We thus get three well stud-
ied models of PRAM: Exclusive-Read Exclusive-Write
(EREW), Concurrent-Read Exclusive-Write (CREW), and
Concurrent-Read Concurrent-Write (CRCW). When at-
tempting to provide lower bounds for PRAMs, the computa-
tional power of each processor is usually not limited – the so-
called “ideal PRAM”. Upper bounds, of course, utilize only
“realistic” processing power at each processor. See [KR88]
for further details.

A well known result due to Cook, Dwork, and Reischuk
[CDR86], shows that write-concurrency provides true addi-
tional power: the OR function on � bits requires ������
	�� �
time on a CREW PRAM, but can be done in ���*� � time on
a CRCW PRAM. The lower bounds holds for any number
of processors or memory cells. It should be noted that any
function can be computed on any PRAM in �����-��	�� � time if
the number of processors is not bounded so the lower bound
is tight. A natural question is whether read-concurrency pro-
vides true additional power.

Snir [Sni85] proves that given inputs � and a sorted list� ?�� � C � &-&�& � ��� , finding the minimum
�

such that��� 5 � requires �� � ���
	�� � time on a EREW PRAM, but can
be done in ���*� � time on a CREW PRAM. This lower bound
uses Ramsey theory, and holds only if the domain of the ��� ’s
is huge. The question of whether concurrent-read helps to
compute boolean functions remained completely open. It
should be noted, though, that such a large gap can not be
shown for boolean function since it is known ([Sim83]) that
for boolean function the gap between CREW and EREW
PRAMs can not be more than exponential.

Two partial results have been proved: Gafni, Naor, and
Ragde [GNR89] exhibited a function on a full domain (but
still a huge domain) which exhibits the gap as opposed to
the function above which is on a partial domain. (Again,
this sheds no light on the case of boolean function). Fich
and Wigderson [FW90] attempted separating EREW from
CREW PRAMs for boolean functions, but their lower bound
only held for a weaker variant of EREW PRAM called an
EROW (Owner-Write). They left the general question open.

We define the “pointer jumping” function �
	 9 as accept-
ing as its input an array �� �� ! &�&�& �� /� ! , where

7 � �� ��!3� � for
each

�
, and outputting the value of � 9 as defined above. As

noted above this can be done in �������
	 ��� time on a CREW
PRAM, and we prove:
Theorem Any EREW PRAM algorithm solving ��	 9 re-
quires �� ��� time, for any

� 2 � � � � � � � ���
	�� .
While ��	 9 is not a boolean function, both its domain

and its range are small, and thus a separation for a boolean
function can be easily deduced (by encoding the input in bi-
nary, and adding an “index” input specifying the output bit
requested).
Theorem There exists a boolean function which can be com-
puted in ��������	����
	�� � time on a CREW PRAM, but requires

�� � ���
	�� � time on a EREW PRAM.

1.3 Intuition for lower bound

The basic limitation of exclusive read is that information
can’t be dispersed quickly to many processors. Intuitively
the number of processors who “know” the value of an in-
put bit can at most double each time step. This is as op-
posed to a CREW PRAM in which all processors can know
that value of, say, � ? within a single step. Another “fact”
which motivates our technique is that because of exclusive
write the number of inputs that each processor “knows” can
also at most double each time step. (both these “facts” are
essentially true in some precise sense). These two “facts”
combined imply that for almost all pairs of input indices

� % F ,
there is not even a single processor that “knows” simultane-
ously the

�
’th input and the F ’th input.

The basic strategy we will use for the lower bound is a
restriction of the input domain. We will build the restriction
step-by-step, each step “killing” some of the input indices
and fixing their values to constants. This step is done in a
way that assures that every processor or memory cell knows
the value of at most a single live input location. To see why
this can be done consider a graph over �
&�&�&/� , where an edge
connects

�
and F iff some processor or memory cell simulta-

neously knows both input values. What we have seen in the
previous paragraph is that this graph is not very dense. We
thus can use Turan’s lemma to find a large independent set in
it – these will be the live inputs.

This argument above can be formalized to indeed give a
lower bound for the EROW PRAM model. The restriction
allows making the stated “facts” indeed formally true within
this restriction, and thus the induction can proceed. In each
step another pointer in the chain is “sacrificed” in order to
allow us to continue the chain into our chosen live set.

The main problem in extending this argument to the
EREW model is that the EREW model does provide some
mechanism for fast dissemination of information. Assume
processor 1 reads input �� �� ! , and then writes a marker, “*”
into memory cell number F , where F 2 �� �� ! . Note that
now there are � memory cells which have some informa-
tion regarding the value of �
 �� ! (each cell F knows whether
�� -� ! 2 F). It is hard to control this knowledge, and thus it is
impossible to formalize the “fact” that each input is known
by only a few processors. (Note that the previous example
cannot be done on a EROW PRAM, and indeed the lower
bound for EROW PRAM is not hurt.)

Our solution for this is to note a weaker sense in which it� � possible to formalize the “fact” that each input is known
by only a few processors. What can be made formal is that
for each

� % F , the information about whether �� ��! 2 F can only
be known by a few processors. With this information we
now do not build a graph but rather a hypergraph of triplets� % F
% � , where some processor knows both whether �� ��! 2�F
and some information about

�
. The induction step still pro-

ceeds by finding a (nearly) independent set within this graph.

Several difficulties creep in at this point starting with the
fact that due to the number of hyper-edges, an independent
set cannot be found, but rather a “nearly”-independent set is
used. This in turn complicates the definition of a restric-
tion. A final complication revolves around triplets where� 2 �

which may influence the computation, but cannot be
bounded by the techniques we employ for “normal” triplets.
We handle this by finding “normal” triplets which can “take
blame” for these special ones.

1.4 Overview of the Paper

The rest of the paper is divided into five major sections.
The first section, Basic Definitions, outlines the framework
of our discussion. The EREW model and the properties of
algorithms which work according to it are described. Two
important tools (processor state and memory cell contents),
which enable us later to quantify the “knowledge” of pro-
cessors/memory cells, are introduced. A definition of the
pointer jumping function is presented. The last sub-section
introduces the main tool for proving the lower bound, the
restriction.

The second section, Processor and Memory Cell Depen-
dencies discusses the dependency of processors and mem-
ory cells on components of the input. This notion tries to
capture the amount of “knowledge” processors and memory
cells have about the input. A sequence of propositions ex-
amines the dependency notion and its interaction with the re-
striction notion. The last part of the section presents special
kind of restrictions, the clean restrictions. These restrictions
allow minimal number of dependencies. The main result of
the section (corollary 1) bounds the number of dependencies
in a clean restriction.

The objective of the following two sections is to out-
line an iterative method for proving the existence of a clean
restriction at any time B . Each stage of the iteration uses
the restriction obtained in the previous stage and throws out
the “bad triplets” from it. The third section, Bad Triplets,
discusses these triplets, and presents two lemmas regarding
them: lemma 2 proves that it is enough to remove the bad
triplets of a restriction in order to make it clean. Lemma 3
bounds the number of bad triplets a restriction may pick up
in a single step. The fourth section, The Main Lemma, gives
the main lemma: lemma 4 proves that given a clean restric-
tion at time B , we can produce a clean restriction at time B�� � .
This implies corollary 2 stating that a clean restriction can be
produced for any B which is small enough (B � ??)1*1 � ���
	��).

Finally, the fifth section, The Lower Bound, presents the
two theorems of the paper.

2 Basic Definitions

2.1 The EREW PRAM Model

In this paper we consider algorithms which work under
the EREW version of the ideal PRAM model. The algo-
rithms may use an infinite number of processors and mem-
ory cells. Each cell may contain an arbitrary amount of data.
Each of the processors and memory cells is identified by a
unique index. The input for the algorithm is set in memory
cells �
%���%(&(&'& %*� , and the output is written into cell no.1. The
processors run synchronously, and the execution proceeds in
time steps. The only difference in the model we use here
from the standard model concerns these steps: we separate
them into READ steps (steps in which processors may make
read operations only) and WRITE steps (in which only write
operations are allowed). The odd time steps are READ steps
and all the even steps are WRITE steps.

We use two notions to formalize the knowledge gained
by processors and memory cells during the execution of
the algorithm. The first is the processor state (denoted by
� B�� B����E� � % B �) which describes the precise state of a processor	 at a given time B on a given input � (i.e. the contents of its
local memory and registers, etc.). This state fully determines
the action of the processor at the next time step. The sec-
ond is the memory cell contents (denoted by ��
 �EB��'�EB���� � % B �)
which denotes the data held in a memory cell at a given
time B on a given input � . We assume WLOG that processors
and memory cells don’t “forget” anything during the execu-
tion. This means that if the states of a processor at time B
are different on inputs � and � , then they will stay differ-
ent at any time B�� 5 B . The same for memory cells. Fur-
thermore, if the algorithm terminates its execution by time B
we define for each B�� 5 B : �*B��>B���� � � % B�� � 2 � B��>B���� � � % B � and��
 �EB��(�EB � � � % B�� � 2 ��
 �EB��(�EB � � � % B � .
2.2 The Pointer Jumping Function

The following definition formally describes the function
for which we are going to prove the lower bound in the
EREW model:

Definition 1 The pointer jumping function �
	�9 �$ 7 %'��%��E%'& &'& %*�,+ ��� $ 7 %(�
%(&(&'& %*�,+ is defined recursively:
��	 1:� � � 2 � , and for

� 5 7
, ��	 9 � � � 2 � � , where� 2 ��	 9>=@?�� � � . We implicitly assume � 1 2 7

in this defi-
nition (i.e. if ��	 9>=@?*� � � 2 7

, then also ��	 9�� � � 2 7
.)

Given an input � of �
	 9 , we denote by �
�����

the input
which is identical to � in all its components, except maybe
for the

�
’th component, which equals to F .

2.3 Restrictions

Our main tool in finding inputs of �
	 9 , on which an
EREW algorithm runs relatively slow is the ���'� B�� � � B �
 � .

The restriction is a subset of the ��	 9 domain, which has
several properties, as specified in the next definition:

Definition 2 A restriction � is a subset of the ��	�9 inputs,
which is specified by the triplet � � %���%���� as follows:
1. � 2 $ � 1 %'&(&(&.% �	� +�
 $ ��%'&(&(&)%*�,+ is called the path of � .
The first element in the path,

� 1 , is always 1. The path’s
elements are arranged in an ascending order, i.e.

� 1 � � ? �
&(&'& � �	�

. � is called the length of � and it is denoted by���(�,�� � .
2. ��
 $ � � � �
%(&'&(&)%*�,+ is called the set of live elements of� .
3. � 2 $ � � + ���� are the forbidden sets of the live elements.
Each � � is a subset of ��� $ � � ��%'&(&'& %.�,+ .
We identify � with the set of all possible inputs that are con-
sistent with its definition. � 2�� ?�������� � � , where � � is
defined as follows:

� � 2
������ �����

$ �	 �! ?(+ � 2 �	 %7 � � � �#"8��%$ $ 7 + � 2 �	�
�)�	�%� $ � � ��%'&(&'& %.�,+ �'& � � � $ $ 7 + �)(�$ 7 + � B�* � ��+ � � �

The value , ��- �	� � 2/.10�2 �	�3�54 687944 � 4 is called the deficiency
of � .

Each index
��($ ��%'&(&(&)%*�,+ & ���$ � � is called a dead

element of � . � is called a constant element, if it is either a
dead element or an internal element in the path of � (i.e. it
belongs to the path, but it is not the last element in it).

An intuition for the restriction notion: let us consider the
inputs of a restriction � as graphs. All these inputs “begin”
with the path � : node no.1 points to node no.

� ? , no.
� ? to

� C ,
. . . till node no.

� � =@? which points to node no.
� �

. Node
� �

may
point to any of the nodes in the live set � , or be a leaf (if it
points to 0). Each live node can point to any other live node
which is greater than it (i.e. its serial number is greater) and
which doesn’t belong to its forbidden set of nodes. Besides,
a node in the live set may be a leaf.

3 Processor and Memory Cell Dependencies

In this section we bind the ��	 9 function to a parallel com-
putation in the EREW PRAM model. We define a few no-
tions required for establishing the lower bound. A number
of propositions is needed in order to explore the relations
between these notions and their implications over the �
	 9
computation. The proofs of these propositions are straight
forward, and we leave it for the reader to verify their correct-
ness. They are to appear in the full version of the paper.

Definition 3 An algorithm �;: is an EREW algorithm for
computing �
	 9 , if the following requirements hold for each
input � of ��	 9 :
1. �<: works under the described EREW PRAM model.
2. The input of �;: is set in � memory cells. The

�
’th cell

contains � � .
3. In the end of �<: ’s execution, the value ��	 9 � � � is written
in cell no. 1.

From now on we fix �<: as an arbitrary EREW algorithm
for computing �
	 9 . All the following definitions and propo-
sitions relate to �<: .

Definition 4 A processor 	 (memory cell) depends on
an index

�
at time B in a restriction � , if there exists an input� such that � % � ��� 1 (� and � B�� B���� � � % B �<=2 �*B��>B���� � � ��� 1 % B �

(��
 �EB��'�EB � � � % B �>=2 ��
 �EB��(�EB � � � ��� 1 % B �).
Definition 5 A processor 	 (memory cell) depends
on

� � F at time B in a restriction � , if there
exists an input � such that � ����� % � ��� 1 (� and
� B�� B����E� � � � � % B �?=2 � B�� B���� � � ��� 1 % B � (��
 �EB��'�EB � � � ����� % B �@=2��
 �EB��(�EB � � � ��� 1 % B �).

We denote the set of processors which depend on an in-
dex

�
at time B in a restriction � by � �A B � B � . Similarly, we

define the notations � �����CA B � B � (for dependency on
� � F)

and D �	A B � B � , D � � �EA B � B � (for memory cell dependencies).

Proposition 1 a. Each processor which depends on
�

at
time B , depends on it also at any time B�� 5 B . The same for
dependency on

� � F and for memory cell dependencies.

b. Each processor which depends on
�

at time B , depends on� � F for some F . And vice versa, each processor which
depends on

� � F at time B , depends on
�

too. The same for
memory cells.

c. Processors don’t gain new dependencies at write steps,
and memory cell don’t gain new dependencies at read steps.

d. If a processor or a memory cell depends on
� � F in a

restriction � , then
�

and F are not constant elements of � and� � F .
Proposition 2 Let � be a restriction, and let 	 be a pro-
cessor (be a memory cell) which doesn’t depend on any
index at time B in � . Then, � B��>B���� � � % B � 2�� B��>B����E� �E% B �
(��
 �EB��'�EB � � � % B � 2 ��
 �EB��(�EB � � ��% B �) for each � % � (� .
Proposition 3 Let � be a restriction, and let 	 be a pro-
cessor (be a memory cell), which depends on a single
index F at time B in � . Then � B��>B�� � � � % B � 2 � B��>B�� � � �E% B �
(��
 �EB��'�EB�� � � % B � 2 ��
 �EB��(�EB�� � ��% B �) for every two inputs� % � (� , that satisfy � � 2 � � .

We would like to look into the relations between proces-
sors which access the same memory cell at the same time (on
different inputs, of course). For this, we need the following
definition:

Definition 6 A processor 	 reads from (writes into) a
memory cell in a restriction � at time B , if there exists
an input � (� , such that 	 reads from (writes into) on �
at time B .
Proposition 4 Let � be a restriction, and let 	 ?'% 	 C be two
processors that depend on at most one index at time B " �
and that read from (write into) the same memory cell at
time B in � . Then, necessarily 	 ? and 	 C depend on the same
index at time B " � in � .

We would like now to examine the cases in which a pro-
cessor or a memory cell gains a new dependency.

Definition 7 A memory cell causes a processor 	 to de-
pend on

�
in a restriction � at time B , if the following hold:

1. 	 doesn’t depend on
�

at time B " � .
2. There exist inputs � % � ��� 1 (� , on which ��
 �EB��(�EB�� � � % B "
� � =2 ��
 �EB��'�EB���� � ��� 1 % B "<� � , and 	 reads from on both
inputs.

Definition 8 A processor 	 causes a memory cell to de-
pend on

�
in a restriction � at time B , if the following hold:

1. doesn’t depend on
�

at time B " � .
2. There exist inputs � % � � � 1 (� , on which �*B��>B���� � � % B "
� � =2 �*B��>B���� � � � � 1 % B8" � � , and 	 writes into on at least
one of the inputs.

In the same manner we define the corresponding notions
regarding dependencies on

� � F .
Proposition 5 a. A processor 	 gains a dependency on

�
at time B in a restriction � , iff there exists a memory cell
which causes it to depend on

�
at that time.

b. Each processor that causes a memory cell to depend on
�

at time B in � depends on
�

at time B " � .
The same for dependency on

� � F and for memory cell
dependencies.

In order to control the knowledge of processors during the
algorithm, we would like to produce a restriction which en-
ables the minimal number of dependencies as possible. We
call this type of restrictions clean restrictions.

Definition 9 A restriction � is called a clean restriction at
time t, if every processor and every memory cell depend on
at most one index at time B in � .

We would like to measure the strength of a clean restric-
tion in limiting the number of processor and memory cell
dependencies. We will need the next lemma to achieve this.

Lemma 1 Let � be a clean restriction at time B . Then
for each pair of indices

� % F it holds that:
� � �����EA B � B � � �� � � � �EA B � B " � � � � � D � � �EA B � B�" � � � and
� D �����CA B � B � � �

� D �����EA B � B "8� � � � � � � �����CA B � B " � � � .
Proof: We begin with the first inequality. If B is a write step,
then no processor gains a new dependency which means that
� �����EA B � B � 2 � �����CA B � B8" � � , and the first inequality follows.
Hence, we assume that B is a read step.

The processors that depend on
� � F at time B divide to

those which depended on it at time B " � (� �����CA B � B>" � �)
and those which gained the dependency on

� � F at time B .
We will show that the number of the last ones is bounded by� D �����EA B � B "8� � � .

Let us fix a processor 	 , that gains a dependency on
� � F

at time B . 	 can be related to the memory cell that caused
its dependency. Clearly, belongs to D �����EA B � B�" � � . 	 reads
from on an input, whose

�
’th component is F . Since 	

depends only on
�

at time B and before (recall that � is clean
at time B), it behaves the same on all the inputs that share
the same

�
’th component. Therefore, 	 reads from on all

the inputs that have F in their
�
’th component. This prevents

any other processor from reading from at time B on such
inputs, and therefore from gaining a dependency on

� � F
from . It follows that the number of processors that gain a
dependency on

� � F at time B is no more than the number
of memory cells that depend on

� � F at time B " � .
For proving the second inequality, it is enough to observe

that the number of memory cells that gain a dependency on� � F at a write step is bounded by twice the number of
processors that depended on

� � F at the previous step.
Let us fix a memory cell , which gains a dependency

on
� � F at time B . can be related to a processor 	 in

� �����EA B � B " � � , that causes this dependency. We should prove
that 	 could not have caused more than two dependencies. 	
writes to the memory cells it causes to depend on

� � F on
inputs whose

�
’th component is 0 or F . Since 	 depends on

�
only at time B " � , it behaves identically on all the inputs that
share their

�
’th component. Therefore, 	 can write into two

memory cells at the most on inputs that have 0 or F in their�
’th component. This means, that 	 can cause two memory

cells at the most to depend on
� � F . �

We get as a corollary the main result of this section:

Corollary 1 Let � be a clean restriction at time B . Then for
each pair of indices

� % F it holds that:
� � �����EA B � B � � ����� and� D �����EA B � B � � ����� .

4 Bad Triplets

Our goal is to produce a clean restriction for every given
EREW algorithm, which computes the �
	 9 function. This
clean restriction will enable us to find inputs on which the
algorithm runs slowly.

The clean restrictions will be produced in an iterative pro-
cess. In each iteration we extract a new restriction from the
previous one, such that the new restriction is clean for one
more step. In order to do this, we need to develop a tool for
identifying the ”bad” elements of each restriction. Removing
these elements would enable us to extend the ”cleanness” of
the restriction for further time steps. The bad triplets notion,
defined below, fulfills exactly this purpose.

The intuition behind the definition of bad triplets is as fol-
lows: we have a restriction � , which is clean at time B , and we
would like to keep it clean at time B � � as well. For accom-
plishing that, we should prevent any processor or memory
cell from having more than one dependency at time B �4� .
If there is a processor/memory cell that depends on

�
at time

B � � and gains a dependency on F � �
at time B � � , then the

triplet � � % F
% ��� is considered to be a bad triplet. If we either
”kill” one of the indices

� % F or
�

(i.e. make them dead ele-
ments) or add

�
to the forbidden set of F , then � � % F
% �E� will no

longer be a bad triplet. A slight complication appears when
dealing with triplets of the form � � % F
% ��� in the two lemmas
below. Therefore, we need to define the second type of bad
triplets: triplets � � % F>% ��� that specify a processor / memory
cell which depends on

� � F at time B and gains a depen-
dency on

�
at time B � � .

Definition 10 Let � be a clean restriction at time B " � . A
triplet of indices � � % F
% �E� � ��=2 F
% � =2 � %;F =2 ���

is called
a bad triplet of � at time B of type 1, if there exists a
processor (when B is a read step) or a memory cell (when B
is a write step) which depends on

�
at time B " � and gains a

dependency on F � �
at time B .

We say that � � % F
% ��� is a bad triplet of type 2 (at a read
step), if there exists a processor which depends on

� � F
at time B " � , it gains a dependency on

�
at time B from a

memory cell , and it reads from on an input � (� ,
whose

�
’th component is 0 or F .

� � % F>% ��� is a bad triplet of type 2 (at a write step), if
there exists a memory cell which depends on

� � F at time
B "8� and it gains a dependency on

�
at time B .

We say that � � % F
% ��� is a bad triplet, if it is either a bad
triplet of type 1 or bad triplet of type 2.

Lemma 2 Let � be a clean restriction at time B " � . If �
doesn’t have any bad triplets at time B , then � is clean at
time B .

Proof: We separate to cases:
Case 1: B is a read step

First, it is quite clear that memory cells don’t gain new
dependencies at read steps. Therefore, since each memory
cell depends on at most one index at time B'" � in � (because� is clean at that time), then each memory cell still depends
on at most one index at time B .

Suppose that � is not clean at time B . Then, there should
exist a processor 	 which depends on two different indices at
time B in � . 	 depends on at most one index at time B " � ,
because � was clean at that time. We separate to cases:
Case 1.1: 	 depends on an index

�
at time B " � in � .

Since 	 depends on
�

at time B " � , it depends on it at time
B too. We denote the other index, on which 	 depends at time
B , by F . There exists some index

�
such that 	 depends on

F � �
. 	 did not depend on F at time B " � , therefore it

didn’t depend on F � �
at that time as well. We conclude

that 	 gains a dependency on F � �
at time B .

Let us consider the three indices
� % F
% � . Clearly,

� =2 F
because from the beginning we chose a processor which de-
pends on two different indices at time B . F =2 �

, because 	
depends on F � �

at time B (which means that F � �
). We

are left with two possibilities:
1.
�8=2 �

. Then, the triplet � � % F
% ��� is a bad triplet of type 1.
2.

� 2 �
. 	 depends on

�
at time B " � in � . Therefore, 	

depends on
� � � at time B " � for some index � . Note that,

� 5 � 5 F (because 	 depends on
� � � and on F � �

). In
particular, � =2 �

and � =28F . Let us denote the input on which	 reads from by � . If 	 reads from on �
��� 1 too, then

the triplet � � %�� % F � is a bad triplet of type 2. Otherwise, let us
denote: ��� 2�� . Since 	 behaves differently on �

��� �
and on� � � 1 at time B , then 	 depends on

� � � at time B " � in � .
Again, � 5 �;5 F , and therefore the triplet � � %�� % F � is a bad
triplet of type 2.

We found a bad triplet of � at time B in each of the possi-
bilities. This contradicts our assumption that � does not have
such triplets.
Case 1.2: 	 doesn’t depend on any index at time B " � in � .

By proposition 2 � B�� B�� � � � % B "8� � 2 � B��>B�� � � �E% B8" � � for
each two inputs � % � (� . Thus, the behavior of 	 at time B
should be the same for all the inputs in � (because the behav-
ior of a processor at time B derives directly from its state at
time B " �).	 depends on two different indices

�
and F at time B in � .

Therefore, by proposition 5a there exist two memory cells
 ? and C which cause 	 to depend on

�
and F respectively

at time B . This means that 	 reads from ? on some input� (� and from C on some input � (� . By proposition 5b
 ? depends on

�
and C depends on F at time B " � . Then,

necessarily ? =2 C , because � is clean at time B "<� . We
see that 	 behaves differently on the inputs � and � . This is
a contradiction to what we have observed before.

Case 2: B is a write step
The proof here is very similar to what has been done

above, thus we will concentrate on the differences only.
First, let us consider case 2.1, in which we have a memory

cell that depends on
�

at time B " � in � , and a processor 	
which causes to depend on F � �

at time B . Necessarily,
 depends on

� � � for some index � at time B " � . It holds
that � 5 � 5 F . Therefore, the triplet � � %��>% F � is a bad triplet
of type 2.

Let us consider now case 2.2, which deals with a memory
cell that doesn’t depend on any index at time B " � in � ,
but depends on two different indices

�
and F at time B .

 depends on two different indices
�

and F at time B in� . Therefore, by proposition 5a there exist two processors 	 ?
and 	 C which cause to depend on

�
and F respectively at

time B . This means that 	 ? writes into on some input � (�
and 	 C writes into on some input � (� . By proposition
5b 	 ? depends on

�
and 	 C depends on F at time B " � . Then,

necessarily 	 ? =2 	 C , because � is clean at time B " � .	 ? % 	 C are both processors which depend on only one in-
dex at time B "<� in � and write into the same memory cell
at time B in � . It follows from proposition 4 that 	 ? and 	 C
depend on the same index at time B " � , i.e.

� 2 F . This
contradicts our assumption. �

Lemma 3 Let � be a clean restriction at time B . Let � be the
set of bad triplets of � at time B � � . Then, it holds that:

�
�
� �

���
! ? � � � � � � � C . (Recall that � is the set of live elements in�).

Proof: Let us denote the set �/$ $ � � + by � � . Note that for
every bad triplet � � % F
% ��� , it holds that

� % F
% � (� � . This
follows from the fact that there are processors or memory
cells which depend on

�
and on F � �

or on
� � F and on�

(which means that
� % F
% � are non-constant elements of the

restriction).

Case 1: B � � is a read step.
Let us consider a pair F
% ��(� � . Each of the bad triplets of

type 1, whose two last components are F and
�

, is caused by a
memory cell which depends on F � �

at time B . By corollary
1 there are at most

� �
such memory cells. Each of these

memory cells can contribute at most one bad triplet, since
all the processors which read from one memory cell at time
B depend on the same index (see proposition 4). Therefore,
there are at most

� � � � � � C bad triplets of type 1.
Let us consider now a pair

� % F (� � . Each of the bad
triplets of type 2, which their first two components are

�
and

F , is caused by a processor which depends on
� � F at time

B and gains a new dependency at time B � � . By corollary
1 there are at most

���
such processors. Let us fix a proces-

sor 	 , and show it contributes two bad triplets at the most.
According to the definition of bad triplets of type 2, 	 reads
from the memory cell that causes its new dependency on an
input whose

�
’th component is 0 or F . Since 	 depends only

on
�

at time B , it behaves the same on all the inputs that share
the same

�
’th component. Therefore, 	 may read from two

memory cells at the most (one on the inputs, whose
�
’th com-

ponent is 0, and one on the inputs whose
�
’th component is

F). This means that 	 is involved in at most two bad triplets
of type 2, whose first two component are

�
and F . We con-

clude that the number of bad triplets of type 2 is not more
than � � � � � � � � C .

Now, the total number of bad triplets is bounded by� � ��� � � � � C 2 ��� ! ? � � � � � � � C .

Case 2: t+1 is a write step
Let us fix a pair F
% � (� � . Each bad triplet of type 1,

whose last two components are F and
�

, is caused by a pro-
cessor which depends on F � �

at time B . We fix such a
processor 	 . In order to cause a memory cell to depend on
F � �

at time B � � , 	 should write into it on an input whose
F ’th component is 0 and/or on an input whose F ’th compo-
nent is

�
. Since 	 depends only on F at time B , it acts the same

on all the inputs that share the same F ’th component. There-
fore, 	 can write into two cells at the most (one on the inputs
whose F ’th component is 0, and one on the inputs whose F ’th
component is

�
). This means, that 	 can cause two mem-

ory cells at the most to gain a dependency on F � �
. Since

there are at most
���

processors that depend on F � �
at time

B , then the number of bad triplets of type 1 is bounded by
� � ��� � � � � C .

Let us consider now a pair
� % F (� � . Each bad triplet of

type 2, whose first two components are
�

and F is caused by
a memory cell which depends on

� � F at time B , and gains
a new dependency at time B � � . Let us fix such a memory
cell . Since all the processors that write into at time
B �<� depend on the same index (proposition 4), then can
gain only one new dependency. Therefore, is involved in
at most one bad triplet of type 2 whose first two components
are

�
and F . Again, since there are at most

� �
memory cells

that depend on
� � F at time B , then the number of bad

triplets of type 2 is bounded by
� � � � � � C .

Therefore, in this case too the number of bad triplets is
not more than

���
! ? � � � � � � � C . �

5 The Main Lemma

Our objective is to prove that for each time step B , which
is small enough, there exists a clean restriction � � , which
contains an input that �;: cannot compute fast. We show
that if we are given a restriction � � which is clean at time B ,
we can produce a new restriction � � ! ? which is clean at time
B � � . We then infer, by induction on B , the existence of such
restrictions.

Let us make a few notations regarding the restriction � �
(recall definition 2):

1. � � 2�� � ? �@����� � ��
2. The path of � � is � � .
3. The set of live elements of � � is � � , and � � 2 � � � � .
4. The forbidden set of an index

�
is denoted by � �� .

5. � 2 ?C�� � ���	�
Lemma 4 Let � � be a clean restriction at time B , for which
� ��
��� � D��	�� and , ��- �	� � �;� ?? 1�� " ��� . Then, there exists a
restriction � � ! ? which is clean at time B � � and satisfies:

1. ���(�,�� � ! ? � 2 � �'�,�	� � � � � .

2. � � ! ?
 � � D
� D���� .

3. , ��- �� � ! ? � ����� , ��- �	� � � �<� 7�� � .
Proof: The basic idea is to kill at random a subset of the
live elements. This will eliminate most bad triplets, namely,
those which contain at least one of the killed elements. Un-
fortunately, some bad triplets may remain, which we will
eliminate by enlarging some of the forbidden sets. Once all
bad triplets are eliminated, we are assured that the restriction
is indeed clean.

Let � be any subset of � � . For each F (� we denote by
�<�<� ? � F>%�� � the set of

�
’s in � , for which there exists some� (� such that � � % F>% ��� is a bad triplet of type 1 at time B � � .

Similarly, we denote by �<�<� C � F
%�� � the set of
�

’s in � for
which there exists an

� (� , such that � F>% � % ��� is a bad triplet
of type 2 at time B �4� . Finally, we denote by �<�<�6� F
%�� �
the union of � �;� ? � F
%	� � and �<�<� C � F
%	� � .
�<�<�6� F
%	� � denotes the set of indices we would like to

add to the forbidden set of F , in order to prevent bad triplets
involving F . Notice the differences in the indices positions
between the definition of � �;� ? � F>%�� � and the definition of
�<�<� C � F>%�� � (they are a result of the difference between
triplets of type 1 and triplets of type 2).

Claim 1 There exists a subset � of � � such that:

1.
� � �
 � � D

� D����
2.
� �<�;�6� F
%	� � � �
��� � � � � for each F (� .

3.
4 6 D�	�� 44 4 � ��� , ��- �� � � for each F (� .

Proof: We denote by � the set of bad triplets of � � at time
B � � , and by � the set � �� ��� (� doesn’t include bad triplets
which involve the last element in the path). We choose at
random a subset �
�� � of size

� � D
� D���� , and define two ran-

dom variables: �	� 2 � � � � �
�

and ,�� 2�� ��� � 4 6 D� � � 44 � 4 .

By lemma 3
� � � � ���

! C � � � � � �4� � C , therefore � � 	 ���	� � �
� � � 4 � 4 �4 � D 4 � � �

� � � C and � � 	 � ,�� � 2 ?4 � 4 � � 	 ��� ��� � � � �� �
� � � � ?4 � 4 � � � C , ��- �� � � 2 � � � , ��- �� � � .

It follows by Markov inequality, that for some choice
��� of � , it satisfies that: �	��� � � � � 	 ���	� � and ,���� �
� � � 	 � ,�� � . Let us define the following sets:

� �? 2 $ F (� � � � �<�;�6� F
%�� � � � 5 � � � � � � � +

� �C 2 $ F (� � �
� � �� ����� �
� � � �

5
 , ��- �� � � +
� 2!� � & �"� �? $#� �C �

We would like to show that
� � �
 4 � � 4

� . Assume this is

not true. Then, either
� � �? � 5 4 � � 4

� or
� ���C � 5 4 � � 4

� . Note that
since each bad triplet � � % F>% ��� can “contribute” two elements
at the most to $ ��� � � � �;�6� F
%%��� � (to �<�;�6� F>%%��� � if it is of

type 1, and to � �;�6� � %%� � � if it is of type 2), then
� � � � �

�
�
 ?C � ��� � � � �<�;�6� F>%%��� � � . Therefore, if

� � �? �
 4 � � 4
�

then �	� � 2 � � � � � �
�
 ?C � ��� � � � � �;�6� F
%%� � � �
 ?C � � �? � �

� � � � ��� � 5�� � � ��� � C
 � � � 	 ��� � � . This contradicts the choice

of ��� . If
� ���C �
 4 � � 4

� , then , � ��2 � ��� � � 4 6 D��� � � 44 � � 4
 � ���C � � , ��- �	� � � 5 � � ��� � , ��- �	� � �
 � � � 	 � ,�� � . Again, this is a
contradiction to the choice of � � . We conclude that

� � �
4 � � 4
� .

� ��� � 2 � � D
� D���� , therefore:

� � �
 � � D
� D���� .

Each F (� doesn’t belong to � �? . Therefore,� �<�;�6� F
%���� � � � � � � � ��� � . Clearly, �<�;�6� F
%	� �

�<�<�6� F
%���� � & & � �<�;�6� F
%	� � � � � � � � ��� � �'��� � � � � .
Each F (� doesn’t belong to � �C either. Therefore,4 6 D� � � � 44 ��� 4 � , ��- �	� � � & � �� �(�
 � �� �)��� , hence:4 6 D� �� 44 4 � 4 6 D� � � � 4* + � *�

� ��� , ��- �� � � . The claim follows from

these three properties of � . �

We choose
�	� ! ? to be the minimal element in � , and de-

fine the following set:

, 2-� & � $ �� ! ? + $.�<�<�6� �	� ! ? %�� � $ � � ��0/ �21 �#� �)�
Using the two facts that , ��- �� � � � ??)1�� " �	� and that

� �
 � � � D����� , it can be shown that
� , �
 ?C � � � .

We are now ready to define � � ! ? . � � ! ? has a path of length� � � . The first � elements of the path are
� 1 %(&(&'& % �	� (the path of� �). The last element is

�	� ! ? (the minimal element in �). The
set of live elements in � � ! ? is: � � ! ? 2 , . For each

�)(� � ! ?
we define: � � ! ?� 2 �� � ! ? �1� �� � $ �� � ! ? �.�<�;�6� � %�� �)� .

We leave it for the reader to verify that � � ! ? is defined
properly and that it is a subset of � � .

Let us show that � � ! ? satisfies all the requirements in the
lemma: ���(�,�� � ! ? � 2 ���'�,�	� � � � � , since we added precisely
one element to the path of � � to produce the path of � � ! ? .
From claim 1 and from the fact that

� , �
 ?C � � � , it follows
that � � ! ? 2 � , �
 ?C � � � D� D����
 � � D

� D���� and that , ��- �� � ! ? � ���� , ��- �� � � �<� 7�� � .
It is left to observe that � � ! ? is clean at time B �<� . Since� � ! ?
%� � , each processor or memory cell which depends on

an index
�

at time B in � � ! ? , also depends on the same index
in � � . Therefore, since � � is clean at time B , then so is � � ! ? .

By lemma 2, it suffices to show that � � ! ? doesn’t have
any bad triplets at time B � � , in order to prove that it is clean
at that time. Let us assume, to the contradiction, that � � ! ?
has a bad triplet � � % F
% ��� at time B � � . As mentioned before,
all the components of bad triplets are non-constant elements
of the restriction. Therefore,

� % F
% ��(� � ! ? $ $ � � ! ? +�
(� .
Let us separate to cases:

Case 1: � � % F
% ��� is a bad triplet of type 1.
Therefore,

� (�<�<� ? � F
%�� �
3�<�;�6� F
%	� � . It means
that there exists a processor or a memory cell which
depends on F � �

. Therefore,
� (� � ! ?� , and

� 5 F .
Necessarily

��=2 �	� ! ? , because
�	� ! ? is less than all the

members of � � ! ? . On the other hand, if F 2 � � ! ? then��(� � ! ?)� � �;�6� � � ! ?�%	� � . This contradicts the definition
of � � ! ? . We can conclude that F
% � (� � ! ? . Therefore,��(� � ! ?� . It follows that:

��(� � ! ?� �5� � ! ?� . This is a
contradiction to the definition of � � ! ?� .

Case 2: � � % F
% ��� is a bad triplet of type 2.
Hence, F (�<�<� C � � %�� �
 �<�<�6� � %	� � . In a similar

way, it follows that F (� � ! ?� ��� � ! ?� , in contradiction to the
definition of � � ! ?� .

Since all the requirements are satisfied, the proof of the
lemma is complete. �

Corollary 2 For each � which is large enough and for each
time step B � ??)1*1 � �-��	�� there exists a restriction � � for ��	 9 ,
which is clean at time B , has at least 4 live elements, its length
is B and its deficiency is at most

?C .
Proof: The proof goes by induction on B using lemma 4.
We show that there exists a restriction that satisfies the above
requirements plus the following two:

1. � �
 � D � � =@?��
�
D��/D����	�

2. , ��- �� � � � ?)1 � �� � � ��� � " � �
For B 2 7

we choose as � 1 all the inputs in which ev-
ery node points only to greater nodes. This is exactly the
restriction which is defined by the path � 1 2 $ � + , live set� 1 2 $ ��%(&'&(&)%*�,+ and forbidden sets � 1� 2� for each� (� 1 . It is easy to see that � 1 is a legal restriction and
that it satisfies all the requirements. The only non trivial fact
is that � 1 is clean at time

7
. But since every restriction is

clean at time
7

(only the memory cells which contain the in-
put components depend on anything, and they all depend on
exactly one input index), so is ��1 . The induction step fol-
lows by a direct application of lemma 4. The following in-
equalities, which all follow from our choice of � , the bound
B � � � ?? 1*1 � �-��	�� , and that � is large, are required in the
calculations:

1. B ��� ���
	 � � ��" �8" �
2. B � ���
	 1� � � " �8" �
3. B � ���
	 � �

� �? 1��
 �
We leave it for the reader to verify that given the above

inequalities and given the induction hypothesis the induction
step indeed follows using lemma 4.

�

6 The Lower Bound

Theorem 1 Let �;: be any ��� ��� algorithm for comput-
ing the function �
	 9 , while � is large enough and

� �
??)1*1 � �-��	�� . Let us denote by �;��<: � the time complexity of�;: . Then, �;��<: �
 � " � .

Proof: We shall prove that there exists an input � , on which�;: cannot compute ��	 9�� � � by time
� " � . It follows that

�;��<: �
 � " � .
Let us consider time step B 2 � " � . Since � is large

enough, then it follows from corollary 2 that there exists a
restriction � which is clean at time B , has at least 4 live ele-
ments, has a path of length B and its deficiency is less than?C .

Let F be the minimal live element of � . Our first objective
is to prove that F points to another live element. Recall that
the set of live elements to which F points are all the ones
which are greater than it but aren’t included in its forbidden
set. Since all the other live elements are greater than F , it
suffices to show that the size of its forbidden set is less than
the size of the live set minus 1. The deficiency of � is at most?C , therefore the size of each forbidden set is bounded by half
the size of the live set. This is sufficient for our needs, since
the size of the live set is at least 4.

We are now ready to choose an input � from � on which�;: may not be able to compute ��	 9 by time B . Let us
denote the live element to which F points by � . � would
be the input in which the last element of the path (denoted
by

� �) points to F , F points to � and � is a leaf (points to 0).
Assume, to the contradiction, that the algorithm terminates
its execution on � at time B�� � B and that it has written
��	 9 � � � to memory cell (2 �) by that time. We
separate to cases:

Case 1: depends on
� � at time B in � .

Let us denote the input �
� � 1 by � . � belongs to � , since

F is a live element. If the algorithm doesn’t terminate its
execution on � by time B , then we have found an input as
wanted. Otherwise, by time B the algorithm terminates and
writes ��	 9 � � � to .

It holds that � � D 2 � � D (since
�
�
=2 F). It follows from

proposition 3 that ��
 �EB��'�EB � � � % B � 2 ��
 �EB��(�EB � � �E% B � .
Therefore, �
	 9�� � � 2 ��	 9�� � � (because contains ��	 9�� � �
at time B on the input � and �
	 9�� � � at the same time on the
input �). However, ��	 9�� � � 2�� , ��	 9�� � � 2 7

and � =2 7
.

Case 2: does not depend on
� � at time B in � .

Let � be the input �
� D � � . � belongs to � , since the last

element in the path (
� �) may point to any live element. If the

algorithm doesn’t terminate its execution on � by time B , then
we are done. Otherwise, by time B the algorithm terminates
and writes ��	 9�� � � to .

It holds that � � 2 � � for each
�5=2 � � . There are two

possibilities: either depends on an index
� =2 � � or that it

doesn’t depend on any index at time B in � . In both cases,
by propositions 2 and 3 ��
 �EB��'�EB���� � % B � 2 ��
 �EB��(�EB���� �E% B � .
Hence, since consists of ��	 9>� � � on the input � at time B ,
so it does on the input � . It derives that ��	�9�� � � 2 ��	 9>� � � ,
but �
	 9�� � � 2�� , ��	 9�� � � 2 7

and � =2 7
.

We can sum up, that in either case we reach a contradic-
tion when assuming that the algorithm terminates its execu-

tion on all inputs by time B . Therefore, there exists an input,
which its computation time is at least B � � , that is

� " � . This
means that �;��<: �
 � "8� , as wanted. �

Theorem 2 There exists a boolean function which can be
computed in �����-��	����
	�� � time on a CREW PRAM, but re-
quires �� � ���
	 � � time on a EREW PRAM.

Proof: First, we should note here that the input of an EREW
algorithm computing a boolean function is arranged one bit
per memory cell. The output is written to memory cell no. 1,
as usual.

We choose the �
	 9 function as in theorem 1 (i.e. �
is large enough and

� 2 � � ���
	��). We define a boolean
function - , which is based on the ��	�9 function. The
input of - is the input of ��	 9 encoded to binary (�����
	��
bits) plus an index of the output bit of �
	 9 we would
like to get as a result (another ���
	����
	�� bits). The out-
put of - is the bit in the requested place. Therefore,- � $ 7 %(� + ��� ��� �

! � ����� ����� � $ 7 %(� + .
A CREW algorithm for computing - :

1. Gather in parallel each �-��	�� tuple of the first �����
	�� input
bits into one memory cell. After this operation, we have �
cells, each one contains a single node of the ��	 9 input graph.

2. Compute the ��	 9 function using the well known pointer
doubling technique.

3. Gather the last �-��	����
	�� bits of the input into one cell.
Now this cell contains the binary encoding of the index of
the output bit. Get this bit from the ��	 9 output, and write it
into cell no. 1.

Stage 1 takes in CREW �-��	��-��	�� time steps. Stage
2 takes �������
	 ��� steps, which is �������
	����
	�� � , since� � ���
	 � . Stage 3 takes ��������	 ����	����
	�� � . We sum up, that, � ��� � - � 2 �����-��	��-��	�� � .

Let �<:�� be an EREW algorithm for computing - in
time complexity � . We’ll present an EREW algorithm for
computing �
	 9 using �<:	� at time � � �����-��	����
	�� � :
1. Make ���
	�� copies of the input (i.e. disperse each input
index to ����	�� memory cells).

2. Encode each input component to binary, and disperse its
bits into ���
	�� cells, each one containing one bit. (Do it for
all the copies you’ve made in stage 1 in parallel).

3. Produce for each copy one index in the range
7 &-& ���
	�� " � .

Encode these indices to binary and disperse them one bit per
memory cell. At the end of this stage each copy is a legal
input for �<: � .

4. Compute in parallel the value of - over all the copies of
the input, using �;:	� .

5. Gather the outputs obtained in the previous stage into one
cell. The result is the binary encoding of the output of ��	E9 .

Complexity analysis: Making copies of data in EREW
takes �-��	 steps in the trivial algorithm (duplicate the data,
then duplicate each copy, etc.). Therefore, stages 1 and 2
take ��������	 ����	�� � steps and stage 3 takes �������
	 �-��	��-��	�� �
steps. Gathering of data items into one location takes also
�����-��	 � steps in the obvious algorithm (gather to pairs,
quadruples, etc.). Therefore, stage 5 takes �������
	����
	�� �
steps. Stage 4 takes time � , as we assumed. We sum up
that �
	 9 can be computed in time � � ��������	 ����	�� � .

By theorem 1 ��	 9 cannot be computed by an EREW
algorithm in less than

� " � steps. Therefore, � �
�����-��	��-��	�� �
 � " �
 � � ���
	�� . Hence, �<24�� � ���
	 � � .
�

References

[CDR86] S. Cook, C. Dwork, and R. Reischuk. Upper
and lower time bounds for parallel random access
machines without simultaneous writes. SIAM J.
Comput., 15:87–98, 1986.

[FW90] F. Fich and A. Wigderson. Toward understand-
ing exclusive read. SIAM J. Comput., 19:718–727,
1990.

[GNR89] E. Gafni, J. Naor, and P. Ragde. ”On separating
the EREW and CROW models”. Theoret. Com-
put. Sci., 68:343–346, 1989.

[KR88] R. Karp and V. Ramachandran. A survey of
parallel algorithms for shared-memory machines,
1988. Handbook of Theoret. Comput. Sci., Vol-
ume A.

[Sim83] H. U. Simon. A tight ������
	 �-��	�� � bound on the
time for parallel RAM’s to compute nondegener-
ate boolean functions. FCT’83, Lecture notes in
Comp. Sci. 158, 1983.

[Sni85] M. Snir. On parallel searching. SIAM J. Comput.,
14:688–708, 1985.

