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Abstract

We show how to simulate any BPP algorithm in polynomial time using a weak random source
of min-entropy r7 for any v > 0. This follows from a more general result about sampling with
weak random sources. Our result matches an information-theoretic lower bound and solves a
question that has been open for some years. The previous best results were a polynomial time
simulation of RP [SSZ95] and a n1oe™ n_time simulation of BPP for fixed k [TS96].

Departing significantly from previous related works, we do not use extractors; instead, we
use the OR-disperser of [SSZ95] in combination with a tricky use of hitting sets borrowed
from [ACRY6].

Of independent interest is our new (simplified) proof of the main result of [ACR96]. Our
proof also gives some new hardness/randomness trade-offs for parallel classes.

1 Introduction

Randomized algorithms are often the simpler ones to solve a given problem, or the most efficient,
or both (see [MR95]). For some problems, including primality testing and approximation of # P-
complete counting problems, only randomized solutions are known.

The practical applicability of such randomized methods depends on the effective possibility
for an algorithm to access truly random bits. Since it is even questionable whether truly random
sources really exist, much research has been devoted in the last decade to find weaker notions of
randomness that are still sufficient to run BPP algorithms in polynomial time [VV85, SV86, Vaz86,
Vaz87, CG88]. Several definitions of weak random source have been proposed in the literature, the
most general being the following [CG88]: a source has min-entropy 7 for v > 0 if it outputs a
string in {0,1}" and no string has probability of being output larger than 2"". An information-
theoretic argument shows that a black-box simulation of BPP using a source with min-entropy (")
is impossible.
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Dispersers and Extractors

The usual method to simulate a BPP algorithm using a weak random source is as follows. Say
that, for a given input, the algorithm requires m (truly) random bits; then we ask the source r bits
(note that it is required to make only one access to the weak random source since otherwise the
problem would become trivial) and we use them to produce a sample space (a set of m-bit strings).
Such strings are fed into the algorithm and then the majority rule is used to decide whether to
accept or reject. The procedure that computes the sample space starting from the output of the
source is independent of the algorithm that we want to derandomize. This simulation is basically
equivalent [Zuc90, Zuc96b, NZ96, SZ94, SSZ95, TS96] to a bipartite graph G = (V, W, E) having
2" nodes in the left component V', 2™ nodes in the right component W, degree d and such that if
we select a node v in the left component according to a weak random source of min-entropy 7, and
then a random neighbour of v, the induced distribution in W is e-close to the uniform distribution
over W . Such graph is a (27,2™,d,r7,€)-extractor. The left nodes are seen as possible outcomes
of the random source, the right nodes as possible random strings for the algorithm to be simulated.
The simulation amounts to select a node in the left side according to the weak random source and
then select as sample space the set of its neighbours. If, for some fixed -y, one could achieve d and r
polynomial in m, then a polynomial time simulation of BPP would be possible using weak random
sources of min-entropy r7. However, the best present construction of extractors for fixed v > 0
and r = poly(m) has d = plog®n [TS96]. This implies a quasi-polynomial time simulation of BPP.
A polynomial-time simulation of BPP using weak random sources of min-entropy r7 for any fixed
v > 0 was one of the major open questions in the field.

It is not difficult to show that to simulate RP by means of a weak random source, OR dispersers
[CW89] (from now on, we will simply call them dispersers) are sufficient. A (27,2™,2"")-disperser is
again a bipartite graph G = (V, W, E) with parameters r, m, and d as before, but now the property
is that for any set V' C V of at least 2" vertices on the left side and any set W’ C W of more than
2™ /2 vertices on the right side, there is at least one edge joining V and W. This construction is
somewhat easier to obtain, and Sacks et al. [SSZ95] give indeed a disperser with d = poly(n), for
any constant v > 0, allowing for a polynomial time simulation of RP.

See [Nis96] for a very complete and updated survey on extractors, dispersers, and weak random
sources.

Pseudorandom Generators and Hitting Sets

A more ambitious goal than simulating BPP with weak random sources is the deterministic simu-
lation of BPP. Research on this subject tries to isolate reasonable complexity assumptions under
which deterministic simulations of randomized algorithms are possible [Nis90, NW94]. In some
cases, combinatorial objects developed in the study of weak random sources have been used to give
derandomization [NZ96]. Here we revert this connection, and we use a derandomization method to
take full advantage from a weak random source.

Two basic combinatorial objects are studied in the theory of derandomization: pseudorandom
generators (whose efficient construction immediately implies a deterministic simulation of BPP)
and hitting set generators (whose efficient construction allows to simulate RP algorithms). Infor-
mally speaking, in the context of derandomization, pseudorandom generators play the same role
of extractors and hitting sets generators play that of dispersers. A recent result of Andreev et
al. [ACRY96] shows how to deterministically simulate BPP algorithms using hitting set generators.
This suggests that perhaps, dispersers could somewhat surprisingly be used to simulate BPP with
weak random sources.



A quick e-hitting set generator (e-HSG) is an algorithm that, given a parameter n, finds in
poly(n) time a set H,, C {0,1}" such that, for any finite Boolean function f of circuit complexity
n, if Prz[f(%) = 1] > € then f(@) = 1 for some @ € H,'. The probability is here computed with
respect to the uniform distribution in {0,1}". The main result of [ACR96] can be formalized as
follows.

Theorem 1 ([ACR96]) For any choice of constants €,y > 0, there is a deterministic algorithm
that, given access to a quick v-HSG, and given in input any circuit C of size n returns in poly(n)
time a value A such that |Prz[C(Z) = 1] — A| < €. As a consequence, if for some v > 0, a quick
~v-HSG ezists then P = BPP.

The proof involves the construction of a set S of size poly(n) that is e-discrepant for C, i.e. such
that Przcg[C(Z) = 1] approximates the value Prz/C(Z) = 1] up to an additive error e. A basic
ingredient is the definition of a discrepancy test that enjoys a “soundness” property (Theorem 12):
if the test accepts a set S, then S is e-discrepant for C (the test requires a hitting set to meet
this soundness property, but since we have a hitting set generator, this is not a problem). Thus,
proving the theorem amounts to find a set S that passes the test. This task is solved in [ACR96]
by means of a rather involved (and inherently sequential) algorithm that goes over O(n logn) local
change phases of an initial set (that is the output of the hitting set generator) that is stored in a
compressed form. The algorithm is of independent interest, since it proves a somewhat stronger
result than Theorem 1 and has been also used in [ACR97]. For the sake of proving Theorem 1 it
might however be over-kill.

Our Results

We show how to use dispersers and weak random sources to simulate BPP in polynomial time and
to even solve a more general sampling problem. As an intermediate step of independent interest,
we also present a new, simple, proof of Theorem 1.

In order to prove Theorem 1, we observe that the discrepancy test accepts often and that it has
low circuit complexity, so that the hitting set generator itself can be used to generate a family of
sets S1,...,Sk(n) (where k(n) = poly(n)) one of whom is guaranteed to pass the test. Using this
proof of Theorem 1 we note that the derandomized algorithm works in log-space (indeed, NC!)
when having oracle access to the y-HSG and to an evaluation procedure for C'. This has been used
in [ACR97] to prove hardness/randomness trade-offs for parallel complexity classes.

The sampling problem we are interested in is as follows: given oracle access to a function
f:{0,1}" — {0,1} and a weak source of randomness, we want to solve the following task: find a set
S of size poly(n) that with high probability is e-discrepant for f. It should be clear that simulating
a given BPP algorithm reduces to the above problem: the computation of a BPP algorithm on a
fixed input is an (easy to compute) function f of the outcomes of the random coins. Being able to
approximate the fraction of random coin outcomes that make f accept, allows to decide whether
the algorithm accepts or not the input.

Whether this problem is solvable in polynomial time using a weak random source with min-
entropy r7 for any v > 0 has been a long standing open question. Extractors were the only known
tool to achieve results of this kind. We remark that extractors yield oblivious sampling algorithms
(see [BR94, Zuc96a)).

Tn the next section we will give a seemingly weaker (but in fact equivalent) formal definition.



We show that dispersers are sufficient. The starting point is the observation that using a dis-
perser and a weak random source it is possible to generate polynomially many small sets S, ..., Sk
such that, with high probability, one of them is e-discrepant for f, and sets Hy, ..., H one of which
(with high probability) has the hitting property required by the discrepancy test (see Theorem 19).
Then, we define H = |J H;: since the hitting property is monotone (adding elements to a set cannot
decrease its hitting properties), we have that H will be a hitting set with high probability. We can
thus run the discrepancy test over the sets 51, ..., S; using H as the reference hitting set. We shall
then prove that, with high probability, one of the S;’s will pass the test and thus be e-discrepant
for f as required.

The main difference between our method and the extractor-based one is that the e-discrepant set
that is given in output depends on the specific function f that is accessed as oracle. The source of
this non-obliviousness is the selection of a good set S; among the candidates S1,. .., S;. As aresult,
our sampling algorithm is not oblivious according to the definition of Bellare and Rompel [BR94],
however it is non-adaptive.

Our main result can be stated in the following way

Theorem 2 For any vy > 0, €(n) = 1/poly(n), there ezists an algorithm that given a weak random
source of min-entropy r7 and oracle access to a function f : {0,1}" — {0,1} computes, in time
polynomial in n, a value A such that with probability at least 1 — 2P (1)

[Prg(f(z) =1] - A[ <e.

Note that, since the algorithm runs in polynomial time, it will make poly(n) queries to f and,
further, it will require only one access to the weak random source asking a bit sequence of poly(n)
size.

Corollary 3 For any v > 0, any BPP algorithm can be simulated in polynomzial time using a weak
random source of min-entropy 7.

Overview of the Paper

We give some definitions in Section 2. In Section 3 we present our new proof of Theorem 1. In
Section 4 we show how to use a weak random source to generate with high probability a hitting
set and a family of sets one of which is discrepant and we prove Theorem 2.

2 Preliminaries

Unless otherwise stated, probabilities are with respect to the uniform distribution. For any positive
integer n we denote by F,, the set of all n-ary boolean functions f : {0,1}" — {0,1}. For a vector
@ € {0,1}", and a function f : {0,1}" — {0,1}, let f®@ be defined as f®%(z) = f(Z ® a).

We say that a Boolean function f accepts its input Z if f(Z) = 1.

Definition 4 (Weak random source) A probability distribution D over the set {0,1}" is a weak
random source of min entropy 7 if for any x € X, D(z) <27"".

For a vertex v of a graph G = (V, E) we let I'(v) C V be the set of vertices that are adjacent to
v. For a subset S C V, we define I'(S) = U,cg I'(v). We give here a definition of dispersers which
is more convenient than that given in the Introduction to describe our results. However, it is easy
to check that they are equivalent.



Definition 5 (Disperser) A bipartite multigraph G(V,W, E) with |V| = R and |W| = N is said
to be an (R, N, T)-disperser if for any subset S CV such that |S| > T, it holds T'(S) > N/2.

Definition 6 (Circuit complexity) For a boolean function f : {0,1}" — {0,1} we denote by
L(f) the minimum size of a circuit computing f (here, for circuit we mean a circuit whose gates
have fan-in at most 2 and arbitrary fan-out.)

Definition 7 (Kolmogorov Complexity) Let us fix a universal Turing machine U with alphabet
{0,1} for programs allowing oracle queries. Given two Boolean functions f : {0, 1}k — {0,1} and
g:1{0,1}" — {0,1}, we define the conditional Kolmogorov complexity of g given f Ky (g|f) as the
shortest program for U that evaluates g having oracle access to f.

For example, Ky (f|f) = O(1). As usual, if we fix another universal Turing machine U’ it holds
Ky (g9f) = Ku(g|f)+©(1). We will usually omit the subscript. See e.g. [LV90] for an introduction
to Kolmogorov complexity. In this paper we will only need to use the obvious fact that, for any
fixed f, the number of functions g such that K(g|f) < k is at most 2*.

Definition 8 (Hitting set) A (multi)set H C {0,1}" is said to be e-hitting for a family of func-
tions G C Fy, if for any f € G with Prz[f(Z) = 1] > € there exists £ € H such that f(Z) = 1.

Definition 9 (Discrepancy set) A (multi)set S C {0,1}" is said to be e-discrepant for a family
of functions G C Fy, if for any f € G,

[Procs(f (&) = 1] - Pralf(#) = 1] <c .

Note that if a set is e-discrepant for a family G then it is also e-hitting for G, but the converse is
not necessarily true.

The definition below is a slight variant of the definition of quick e-HSG of price O(logn) given in
[ACR96].

Definition 10 (Hitting Set Generator) A quick e-HSG is a polynomial-time algorithm H that,
given in input a number n in unary, returns a multiset H(n) C {0,1}" that is e-hitting for the set

{f:{0,1}" = {0,1} : L(f) < n}.

It may seem awkward to restrict the above definition to functions having circuit complexity equal
to the number of inputs. However any n-ary function of circuit complexity K can be seen as a
K-ary function of circuit complexity K whose value is independent of K —n of its inputs (this point
of view does not change the fraction of satisfying inputs). As a consequence of this observation,
the set H(n) returned by the HSG hits any function of circuit complexity at most n.

The definition above is independent of the choice of €, as long as it is a constant.

Lemma 11 ([ACR96]) For any two constants €,€ > 0, if there ezists a quick e-HSG, then there
exists a quick €' -HSG.

We quote a proof of this result in the Appendix.



3 A New Proof of Theorem 1

The aim of this section is to show that, if we have a Boolean function f : {0,1}" — {0,1}, we can
use a quick HSG to generate a polynomial sized family of (multi)sets, one of which is a discrepancy
set for f. We will then show that the discrepancy test (that also makes use of the HSG) can be
correctly used to select the good set for f. All the results of this section (but Lemma 15) will also
be used in the next section in order to prove Theorem 2.

For starters, we present the discrepancy test and its properties. For any vector @ € {0,1}",
function f : {0,1}" — {0,1}, and set S C {0,1}", define

For any two subsets S, H C {0,1}", constant € > 0, and function f : {0,1}" — {0,1}, we define
the discrepancy test introduced in [ACR96].

DISC-TEST(f, S, H, ¢€)
begin
Pmin := min{p(a@, f, S) : @ € HU{0}};
Pmax := max{p(a, f,8):ae€ HU{0}};
if Prax — Pmin < € then return (1)
else return (0)
end

Theorem 12 (Soundness of DISC-TEST [ACR96]) Constants ¢y and ¢ ezist such that, for any
€ > 0, integer n, function f: {0,1}" — {0,1}, sets S, H C {0,1}", if DISC-TEST(f, S, H,¢) = 1 and
one of the following conditions holds

1. H is e-hitting for the set of functions g such that L(g) < co|S|L(f);

2. H is e-hitting for the set of functions g such that K(g|f) < ¢1]S|n;
then S is 2e-discrepant for f.

The sufficiency of condition (1) is used in this section to prove Theorem 1, while condition (2) is
exploited in next section in order to prove Theorem 2.

Theorem 12 is the core of the results of [ACR96]. Note that it says that a set H with a certain
one-sided pseudorandom property (the hitting property) can be used to test S for a two-sided
pseudorandom property (the discrepancy property). However H has to be hitting for a whole
set of functions while S is tested for discrepancy on f only. So, roughly speaking, the theorem
trades-off “globality” versus “two-sidedness”. For the sake of self-containment we present a proof
of Theorem 12 in the Appendix.

What remains to be done to prove Theorem 1 is to use the quick HSG to create a set S that
passes the test. As a matter of fact, we will use the quick HSG to generate polynomially many sets
S1,..., Sk such that at least one of them passes the test.

We first give a sufficient condition for the DISC-TEST to accept.

Theorem 13 (Completeness of DISC-TEST) If S is (e/2)-discrepant for the set {f®% : @ €
{0,1}"}, then p1sc-TEST(f, S, H,€) = 1, for any set H.



PROOF: Let d@; (resp. d2) be a point where pmin = p(ds, f,S) (resp. pmax = plds, f,S)).

Pmin = PrfeS[f_:@al (il?) = 1]
> Prz[f®(z) =1] —¢/2
= Prz[f(z)=1]—¢/2.

Where the first inequality is due to the discrepancy property of S. Similarly, we can prove
Pmax < Prz[f(z) =1]+¢€/2,
and thus pmax — Pmin < €. O

Lemma 14 (DISC-TEST accepts often) Let f: {0,1}" — {0,1}, and let H C {0,1}" and ¢ > 0
be fized. Define t:{0,1}™" — {0,1} as

t(#1,...,%m) = DISC-TEST(f,{Z1,-..,Zm}, H,€)

Then a constant co exists such that, for any m > E%CQn, t accepts at least a fraction 3/4 of its
inputs.

PROOF: Observe that a set of m randomly chosen elements from {0,1}" is not €/2-discrepant
for a given function with probability at most 2~ U(me?) (this follows from the well-known sampling
lemma). Since

{f®:.ae HU{0}} <27,
we have that the probability that a randomly chosen set of m > 6%cm elements of {0,1}" is not
¢/2-discrepant for {f®%:d € H U {0}} is at most

2n9~me”) < /4
for sufficiently large c;. O
Lemma 15 (DISC-TEST is easy) Let t:{0,1}"" — {0,1} be defined as in Lemma 14. Then
L(t) < (n+L(f))(H|+1)m + cam|H]|,
for some constant cs > 0.

PROOF: To compute the outcome of DISC-TEST it is necessary to evaluate, for any @ € HU{0} and
any £ € S, f(£® d). It is clear that f(Z @ @) can be computed by a circuit of size n + L(f) once
Z and @ are available. After all those computations are performed, a sum and some comparisons
have to be performed, and this can be done with a linear-sized circuit. O

PRrROOF: [Of Theorem 1] From Lemma 11 we can assume that we have a quick ¢/2-HSG (which
will also be a 3/4-HSG). Given in input a circuit C of size n, we set m = 4con/e?, where cy is the
constant of Lemma 14. We first use the HSG to generate a set H that is €/2-hitting for all the
functions g such that L(g) < cymn, where ¢y is the constant of Theorem 12. Such set will have size
poly(n). Observe that Theorem 12 now implies that any set S C {0,1}" such that |S| < m and
DIsC-TEST(C, S, H,€/2) accepts is e-discrepant for C' (here we identify C with the Boolean function
that it computes).



We then use again the HSG to generate such a set S. More formally, we use the HSG to
generate a set H' C {0,1}"" that is 3/4-hitting for the set of functions g : {0,1}™" — {0,1}
such that L(g) < 2(|H| + 1)mn + csm|H| (c3 being the constant of Lemma 15). Let us define ¢ :
{0,1}"" — {0,1} as t(Z1,...,%m) = DISC-TEST(C, {Z1,...,Zm}, H,€/2). From Lemma 15 we have
that L(t) < 2(|H|+1)mn+c3m|H|, while from Lemma 14 we have that Prz, _ z . [t(Z1,...,Zm)] >
3/4. Thus H' contains an element (#1,..., %) that makes t accept. The set S = {71,...,Um} is,
therefore, e-discrepant for C. We return A = Prycs[C(y) = 1]. O

4 Proof of Theorem 2

The starting point of our proof is the following easy observation: if we have a set I C {0, 1}N
such that Prz[Z € I| > 1/2, then using a weak random source and the dispersers of [SSZ95], we
can generate a polynomial-sized (in N) set of vectors Z1, ..., Zx such that, with high probability,
{Z1,...,Zx} NI # (. This is formalized in Lemma 17 below.

A naive way of using this fact would be to take the set I as the family of e-discrepant sets
S for f of size m. For large enough m (m = O(n/€®) would suffice) the set I will be such that
Prgcio,ym[S € I] > 1/2 and so we can use the weak random source to generate a family of sets
S1,...,Sk such that, with high probability, one of them is e-discrepant for f. But now the problem
is that we are not able to recognize which of these sets has the discrepancy property (note that an
efficient algorithm to test the discrepancy property would imply ZPP = BPP). Theorem 12 gives
indeed a way to test for discrepancy, provided that we have a hitting set at hand.

We thus define I C {0, 1}"(m+M) as the family of pairs of sets (H,S) such that H has M
elements and the hitting property as in the hypothesis of Theorem 12 and S has m elements and
the discrepancy property as in the hypothesis of Theorem 13. As shown in Lemma 18 below, for an
appropriate choice of m and M, the set I is such that Pr(y g)[(H,S) € I] > 1/2. Using the weak
random source we can thus obtain a set of pairs (H1,S1),. .., (H, Sk) such that, for some j, S; has
the required discrepancy property and H; the required hitting property (with high probability).
The next important observation is that the hitting property is monotone, that is, if a set H has a
certain hitting property, and J is any set, then H U J has at least the same hitting property of H
(the reader may want to verify that the discrepancy property is not monotone). As a consequence,
the set |J; H; has (with high probability) the hitting property required by Theorem 12.

We start quoting the disperser construction of Sacks, Srinivasan, and Zhou.

Theorem 16 (Construction of dispersers [SSZ95]) For any 0 < A < a < 1, for any suffi-
ciently large r, and for any 2"° < T < 27, there ezists an efficient construction of an (2T,2TA,T)—
disperser G = (V,W, E) with poly(r) degree.

In the previous theorem, by “efficient construction” we mean the existence of an algorithm that for
any vertex of V finds its neighbours in time poly(r).

Lemma 17 For any fized v > 0, there exists a polynomial time algorithm that, on input n > 0,
using a weak random source of min-entropy 7, outputs a set S C {0,1}" of size poly(n) such that,
for any I C {0,1}" with |I| > 2"71, it holds

Pr[SNT =] <27Polv(m)

PROOF: Fix X and « such that 0 < A < a < . Let r = n!/*. Consider a (27,2",2"")-disperser
G = (V,W, E), that can be efficiently constructed as in Theorem 16. We identify V with {0,1}"



and W with {0,1}". Let B C V be the set of “bad” vertices v such that I'(v) C W — I. We claim
that |B| < 2"": indeed, otherwise, we would have |T'(B)| > 2"/2, while |[W — I| < 2"/2. Let us
choose an element v of V by querying r bits from a weak random source of min-entropy 7, and

let S be the set of its neighbours. The probability that we picked a bad vertex v € B is at most
2r* . 277" < 27Poly(n)  Onp the other hand, if v & B, then SN I # @; the lemma thus follows. O

Lemma 18 Constants ¢4 and cs ezist such that for any e >0, n >0, f:{0,1}" — {0,1}, ¢> 0
and for m = cun/€® and M = csemn/e, for a randomly chosen element (7,4) (where © € {0,1}™"
and 4 € {0,1}"™) the following holds with probability larger than 1/2:

1. U, regarded as a multiset of {0,1}" of size M, is e-hitting for the set of functions g such that
K(glf) < emn.

2. i, regarded as a multiset of {0,1}" of size m, form a set that is €/2-discrepant for {f9% : d €

{0,1}"}.

PROOF: It suffices to prove that each event holds with probability larger than 3/4.

Regarding the first event, the number of functions g € F,, such that K(g|f) < ¢mn is clearly
at most 2" If one such g has Prz[g(Z) = 1] > €|, then the probability that M randomly chosen
elements from {0,1}" do not hit g is at most

(1—e)M <e™M .

Since M = csemn/e, it follows that, for a proper choice of c5, the probability that all the functions
g are hit is at least

1 —20mne—<M 5 3/4
The second claim easily follows from the proof of Lemma 14. i

Theorem 19 For alle,y,c > 0, there exists a polynomial-time algorithm that, using a weak random

source with min-entropy r7, and oracle access to a function f € Fy, computes sets H,S1,...,S, C
{0,1}" such that the following holds with probability at least 1 — 2 PY(")
1|1 = |Se| = - = |-

2. H is e-hitting for the set of functions g such that K(g|f) < ¢|Si|n;
3. for some j € {1,...,k}, S; is €/2-discrepant for the set of functions {f%@:.d¢c{0,1}"}.

ProoOF: By combining Lemmas 17 and 18 we can use a weak random source to generate sets
S1,...,8, and Hi,...,Hy such that, with probability at least 1 — 27P°¥(")_ for some j, S; (resp.
Hj;) has the required discrepancy (resp. hitting) property. Since the hitting property is monotone
(adding elements to a hitting set does not decrease its hitting property) we also have that, with
the same probability, H = J; Hj is e-hitting for the set of functions g with K(g|f) <c|Si|n. DO

We are now ready to prove Theorem 2.

PROOF: [Of Theorem 2] We generate a set H and sets Si,...,Sk as in Theorem 19. We then
run DISC-TEST(f,S;, H,€) for i = 1,...,k and we return S; where j is the smallest index such
that DISC-TEST(f, S;, H, €) accepts. From Theorem 13 we have that, with probability at least 1 —
2 Poly(n) " at least one such index exists, and from Theorem 12 we have (with the same probability)
that the selected set is 2e-discrepant for f. We then set A = Przcs[f(Z) = 1] O



5 Conclusions

We have demonstrated how to simulate BPP algorithms in polynomial time using weak random
sources with the smallest possible min-entropy.

The main novelty in our result has been the use of dispersers in a context where ezxtractors
seemed to be necessary. Extractors have other applications besides the use of weak random sources
(see e.g. [Nis96]). It could be case that techniques similar to ours can give stronger results or
simplified proofs in these other applications as well.

We also emphasize that our simulation runs in NC and, furthermore, it is possible to give an NC
construction of the SSZ-dispersers [SSZ97]. This implies that our method also provides an efficient
simulation of BPNC algorithms using weak random sources.

Andreev et al. [ACR97] have recently used our NC proof of Theorem 1 in order to provide
sufficient conditions (in terms of worst-case circuit complexity) for NC = BPNC. Without our
result they were only able to provide sufficient conditions for ZPNC = BPNC.
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A Appendix

A.1 Proof of Lemma 11

PrROOF: First note that, by definition, a eHSG is also a 7v-HSG for any v > €. We will show that
if there exists a quick eeHSG 7, then for any k there exists a quick (1 — (1 — €)'/¥)-HSG #/, this
will clearly imply the theorem.

We use the standard sequential repetition method. For an input n, H' first computes (using ) a
set H C {0,1}*" that is e-hitting for all the functions g : {0,1}*" — {0,1} such that L(g) < (k+1)n.
Then, it obtains a set H' C {0,1}" by “splitting” each element of H into k vectors of lenght n. We
claim that H' is (1— (1—e¢)'/*)-hitting for functions of circuit complexity n. Let f : {0,1}" — {0,1}
be such that L(f) < n and Prz[f(Z) = 1] > (1 — (1 — €)¥/*). Let f* : {0,1}*" = {0,1} be the
function that takes k vectors of {0,1}" and whose value is 1 if and only if f evaluates to one on at
least one such vector. Note that L(f*) < kL(f) + k = k(n + 1). It is easy to see that

Prol () = 1] > c.

Due to its hitting property, H contains an input that satisfies f* and thus H' contains an input
that satisfies f. The claim follows. O

Note that there is no need for € and ¢ to be constant. The argument above shows that the
existence of a (1 —27V")-HSG is equivalent to the existence of a (1/poly(n))-HSG. Using random
walks on expander graphs instead that simple repetition, Andreev et al. [ACR97] show that even
the existence of a (1 —27°")-HSG is an equivalent condition, provided ¢ > 1/2.

A.2 Proof of Theorem 12

PROOF: Let f, S = {81,...,5m}, H, € be fixed. Let us define the function BAD : {0,1}" — {0,1}
as follows

BAD(d

y = 0 i Pmin <p(@ f,5) < pma
1 otherwise.

Claim 20 L(BAD) = O(|S|(L(f) + n)) and K(BAD|f) < mn + 2logm + O(1).

ProOF: [Of Claim 20] To compute BAD, we first evaluate f over all the points of the form @ @ Z
for £ € S. This requires at most |S|n gates to compute the evaluation points and nL(f) gates to
perform the evaluations. This gives |S|p(d,S) in unary; the comparison between this value and
|S|Pmin and |S|pmax can be done with a circuit of O(|S|) size (note that pmin and pmayx are fixed,
since they only depend on f, S, and H).

Regarding the bound on K (BAD|f), we observe that BAD can be computed with the pseudo-code
depicted in Figure 1 The size of the program is mn + 2logm + O(1), since the definitions of the
constants require mn bits, and the rest of the program has constant size, besides the explicit values
of Mpmax and mpmin (that can be rounded to the closest integer) that require logm bits each. O

We assume that ¢y (respectively, c;) is large enough so that H is e-hitting for BAD.

Claim 21 Prjc(g1)»[BAD(@) = 1] <.

12



function BAD(a)

constants
z[1] := 57
z[2] 1= §y;
z[m] := 8§m;
begin

count := 0;

for i :=1to m do
count := count + f(a ® z[i]);

if count > Mmpmax Or count < Mpmin then
return (1)

else
return (0)

end.

Figure 1: How to compute BAD.

PrROOF:[Of Claim 21] Assume, by contradiction, that Prac(o1)»[BAD(@) = 1] > ¢, then by the
hitting property of H, there exists some @ € H such that BAD(@) = 1, which is impossible by
definition of BAD. O

Let E [p(d, f, S)] be the average of p(a, f,S) over the choices of a.
Claim 22 E[p(Z, f,S)] = Prz[f(Z) = 1].

ProOOF: [Of Claim 22]

E[p(Z, f,5)] = Przcpim, geslf(E@Y) =1]
- ~ Y PrlfEes =1
5%
1
|S|y§€:5 rz[f(Z) = 1]

— Prylf(a) =1].

O
From Claim 21 we have the following inequalities
E[p(d@, f,5)] < (1 = €)pmax + €1 < pmax + €
Ep(d@, f,5)] = (1 = €)pmin > Pmin — €
If the test accepts, then pmax — Pmin < €, and pmin < Przes[f(Z) = 1] < pmax. It follows that
[Prz[f(Z) = 1] — Praes[f(Z) = 1]| < 2¢
a
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