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Abstract

We prove an extremal combinatorial result regarding the fraction of satisfiable clauses in
boolean CNF formulae enjoying a locally checkable property, thus solving a problem that has
been open for several years.

We then generalize the problem to arbitrary constraint satisfaction problems. We prove a
tight result even in the generalized case.

1 Introduction

We deal with the notion of k-satisfiable CNF formulae introduced and studied by Lieberherr and
Specker [4, 5]. A CNF boolean formula (from now on referred to as formula) is k-satisfiable if any
subset of k clauses is satisfiable. For any k, let 71, be the largest real (or, better, the supremum of the
set of reals) such that in any k-satisfiable set of m clauses, at least rpym clauses are simultaneously
satisfied. Roughly speaking, r; somewhat shows how local satisfiability implies (fractional) global
satisfiability. It has been known that ro = 2/(14+/5) > .618 [4] (the inverse of the golden ratio),
that r3 = 2/3 [5], and that limg_ 7, < 3/4 [3]. Yannakakis [7] has given simplified proofs of the
bounds ry > 2/(1 4+ V/5) and r3 > 2/3 using the probabilistic method.

To the best of our knowledge, it was still an open question to determine the exact value of limy_, o, 7.

Our Results

We prove that limy_. o, rx = 3/4. Our proof is constructive: for any r < 3/4 we show that a k exists
such that given a k-satisfiable formula we can find a probability distribution over its variables in
such a way that any clause is satisfied with probability at least r. It thus follows that an assignment
satisfying at least a fraction r of clauses must exist. It can even be found in linear time using the
greedy algorithm in [7].

We then consider a similar question for general Constraint Satisfaction Problems (CSP). An
instance of a CSP is a set of boolean predicates (or constraints) over boolean variables. For a fixed
integer h, the hCSP is the restriction of CSP where the arity of the constraints is at most h. Note
that if a hCSP instance does not contain identically false constraints, then the random assignment
where each variable is true with probability 1/2 will satisfy at least a fraction 27" of the constraints.
We say that a CSP instance is k-satisfiable if any subset of k constraints is satisfiable. For any
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integers h and k, we define 7, as the supremum of the reals such that for any k-satisfiable instance

(k)

of hCSP with m constraints, at least r; ’m are satisfiable.

We prove limg_ o 'r,(ch) = 27" For the lower bound, it will be easy to use the probabilistic
method to obtain " > 2=k In order to prove the upper bound 'r](ch) < 2=k for all k we will

h+1
need a construction of hypergraphs that generalizes the known construction of graphs with small

maximum cut and large girth [1].

Preliminary Definitions

A CNF boolean formula (or, simply, a formula) is a set {C1,...,Cp,} of disjunctive clauses over a set
of variables X = {x1,...,2,}. A disjunctive clause is a disjunction of literals where each literal is
either a variable z; or a negated variable —z;. An assignment for ¢ is a mapping 7 : X — {true, false}
that associates a truth value with any variable. If [ is a literal, then we say that 7 satisfies [ if
either / = 2 and 7(z) = true or [ = =z and 7(z) = false. If C' =11 V...V [} is a clause, we say that
7 satisfies C' if 7 satisfies [; for some j € {1,...,h}. A formula ¢ is k-satisfiable [4] if any subset of
k clauses of ¢ is satisfiable.

An istance of CSP is set {Cy,...,Cy,} of constraints over a set of variables X = {x1,...,2,}.
A constraint is a boolean predicate applied to variables from X. An instance of hCSP (where
h is an integer) is an instance of CSP where the arity of all the predicates is at most h. We
define assignments, satisfiability, and k-satisfiability as for formulae, with “clauses” replaced by
“constraints” in the definitions.

A random assignment is a probability distribution over all the assignment. We will restrict
ourselves to random assignments where each variable is assigned true with a certain probability,
independently of the assignments to the other variables (it would actually suffice bounded inde-
pendence). Thus a random assignment 7y is entirely specified by the probabilities {p,}zcx, where
Pr[rr(z) = true] = p;. To save notation, we will write Pr[z = true] in place of Pr[rr(z) = true]
when the random assignment is clear from the context.

2 The CNF result

2.1 Yannakakis’ Argument and How to Extend it: an Informal Account

In order to present the main ideas underlying our proof, let us first recall Yannakakis’ proof that
rs > 2/3. Given a 3-satisfiable formula he shows how to find a probability distribution over the
variables that satisfies all clauses with probability at least 2/3. If a literal [ occurs in a unary
clause, then we set Pr[l = true] = 2/3. Note that this definition is consistent since it is impossible
to have the clauses (z) and (—z) in the same 3-satisfiable formula. To all the other variables (the
ones that do not occur in unary clauses), if any, we give value true with probability 1/2. Ternary
clauses, or longer ones, are satisfied with probability at least 1—(2/3)% = .7037... > 2/3; for longer
clauses probabilities are even better. It remains to consider binary clauses. If at least one of the
literals in a binary clause is true with probability at least 1/2, then the probability that the clause
be satisfied is at least 1 — (2/3)1/2 = 2/3. The only bad case happens when both literals are true
only with probability 1/3, but this is impossible because it would mean that the formula contains
clauses (1), (l2), (=1 V —l3) which contradicts the fact that it is 3-satisfiable.

When we want to achieve the same construction with an arbitrary r < 3/4 in place of 2/3 we
run into some troubles. Let us try with r = .74. Literals occurring in unary clauses must be true
with probability .74. If [ occurs in a unary clause, and we have the clause =/ V z, then z must be



true with probability at least 1 — (1 —r)/r = .6486 ... Then we have to consider literals occurring
with =z in a binary clause: they have to be true with probability at least .5991 ... There are three
more cases to be considered (probabilities will be, respectively, 0.566 ..., 0.5406 ..., and 0.5191...)
And we still have to make sure that we are not introducing any inconsistency, and we have to deal
with ternary and 4-ary clauses (clauses with 5 or more literal are satisfied with probability at least
1—(.74)° > .74.)

The above discussion leaves us with the idea that the range of values for the probabilities of
the literals should be py =r, po=1—-(1—-r)/r,p3=1—(1—=7r)/p2, ... pr=1—(1—7)/pp—1. It
is conforting that this sequence will eventually go below 1/2, where it can be stopped (Lemima 2).

We also note that, when we want to achieve a ratio close to 3/4, the numbers of cases to be
considered explodes, and that a uniform method to deal with them has to be found.

In order to attribute probabilities to the literals in a uniform way, we introduce the idea of
ranking them according to the depth of proofs of the literals in a simple propositional proof system,
whose axioms are the clauses of the formula. This gives at the same time a uniform way to deal
with clauses of different lenght and a simple method to show that the assignment of probabilities
is consistent.

2.2 The Actual Proof
The following definition gives the values that we will use in the probability distribution.
Definition 1 For any real v # 0, we define the sequence {af};>1 as follows:
o af =7;
eal  =1-(1-r)/a].
If we start from a number r < 3/4, the sequence eventually goes below 1/2.
Lemma 2 For any r such that 1/2 < r < 3/4, a h(r) exists such that Wy < 2D

Proor: Assume not. Note that if af > 0, then a],; < @, as can be easily proved by induction.
Then we have a monotonically decreasing sequence that is lower bounded by 0.5: such a sequence
must have a limit, let it be . Then z is a real root of the equation
r=1-(1-r)/z,
that is,
2 _
z —x+1—-r=0.

But such an equation has no real root when 1 —4(1 — r) < 0, that is when r < 3/4. ]

The following definition allows to rank literals and will be used to assign to each of them the right
probability.

Definition 3 (Provability) Given a CNF formula ¢,
o If(l) € ¢ thenl is 1-provable in ¢.

o If(lyVv...ly) € ¢ and —l; isij-provable in ¢ for j = 1,... h—1, thenly is (14max{i1,...,th_1})-
provable in ¢.



A literal is exactly i-provable in ¢ if ¢ is the smallest integer such that it is t-provable in ¢.

Lemma 4 Let ¢ be a formula with clauses of lenght at most 4. If z is i-provable in ¢ and -z is
j-provable in ¢, then ¢ is not (3*11 4 37+1 — 2)_satisfiable.

Proovr: Simple induction shows that when a literal [ is ¢-provable in ¢, then a set S; of at most
3i+t1 — 1 clauses of ¢ exists such that any assignment that satisfies all the clauses in S} must also
satisfy I. Then, the set S, U S-, has at most 3't! 4 3/%1 — 2 clauses, and no assignment can satisfy
all of them. O

The next theorem is clearly a sufficient condition to have limg_o, 7% > 3/4.

Theorem 5 For any r such that 1/2 < r < 3/4 a k exists (depending on r) such that for any
k-satisfiable formula ¢ we can find in polynomial time a probability distribution over the variables
in such a way that any clause is satisfied with probability at least r.

Proor: For any variable z, the probability p, of  to be true will be a rational between r and
1 —r, and, in particular, between 1/4 and 3/4. This implies that any 5-ary clause is satisfied with
probability at least 1 — (3/4)% > 3/4. Thus we only have to care about unary, binary, ternary and
4-ary clauses. Let us fix r < 3/4 and let k = 2- 3Mr)+1_ 1. Let ¢ be a k-satisfiable formula, and let
¢4 be the subset of clauses of ¢ of lenght at most 4. Observe that if some literal is i-provable in ¢4
for some i < h(r), then it is not possible that its complement is j-provable in ¢4 for some j < h(r).

We shall use the values af,.. '7“2(7«)—170'5 in our probability distribution. Let p; = a! for
i=1,...,h(r) = 1 and pp(,) = 1/2. The probability distribution is as follows.

i if z is exactly i-provable in ¢4, for ¢ < h(r)—1
Pr[z = true] = ¢ 1—p; if -z is exactly i-provable in ¢y, for i < h(r)—1
% otherwise
It should be clear that the definition above is consistent. Recall that the sequence pi,...,pp() is

decreasing. So if a variable z is exactly i-provable for some ¢ < h(r), the smaller is ¢, the larger is
Pr[z = true].

Claim 6 Under the probability distribution above, any clause of ¢ is false with probability at most
1—r.

ProoF: The statement is easy for unary clauses and for clauses with five or more literals.

Let C = (I3 V...V 1) be a clause with two or more literals; we assume Pr[l; = false] <
Pr[l; = false] < ... < Pr[l = false]. If Pr[l; = false] < 1/2 then also Pr[l; = false] < 1/2
and Pr[C is false] < 1/4 < 1 — r. Tt remains to consider the case Pr[l; = false] > 1/2. Then
=ly is exactly ip-provable for some i3 < h(r) — 1; and also —l3 and —ly (if present) are exactly
ig-provable (resp. i4-provable) for some i3 < iy (resp. iq4 < i3). It follows that [y is exactly -
provable for some i1 < i3 + 1, and thus Pr[l; = false] = 1 — p;, <1 —a;; = (1 = r)/a;—1", while
Pr[l; = false] = p;, = a;, < a;;—1. As a consequence, we have

Pr[C is false | < Pr[l; = l; =false] < 1 —r
a

The theorem thus follows. O

'Note that if i1 = h(r) then I will be assigned probability 1/2 (that is exactly p;,) not because it is exactly
h(r)-provable, but because it is not i-provable for i < h(r) and, of course, neither its complement is (so {1 falls in the
“otherwise” part of the definition).



3 Constraint Satisfaction Problems

Lemma 7 Let ¢ be a (h + 1)-satisfiable instance of hCSP. Then it is possible to satisfy at least a
fraction 22" of the constraints.

Proo¥r: We describe a random assignment that satisfies each constraint with probability at least
210,

We say that a constraint is conjunctive if there is only one assignment of its variables that
satisfies it. For any variable that occurs in a conjunctive constraint we set it to the value imposed
by the constraint. This is consistent (otherwise the instance would not be 2-satisfiable). This
partial assignment does not contradict any (non-conjunctive) constraint (otherwise the instance
would not be (h + 1)-satisfiable). We give probability 1/2 to all the other variables. It is easy to
see that any constraint that is not satisfied by the partial assignment is true with probability at
least 2/2": indeed, either it is still h-ary and has two or more satisfying assignments, or its arity
has been decreased by the partial assignment, and so it is true with probability at least 1/2"~1. O

Let h, r < 217" and k be fixed. We will show how to find a k-satisfiable instance of hCSP such
that only a fraction r of its constraints is simultaneously satisfiable.
We will use only one type of constraint, the HYPERCUT” constraint, defined as follows

HYPERCUT(21,...,2h_1,y) = (21 Z y) A (21 =+ = zp_1)

For h = 2 this is the xor constraint, that gives rise to a constraint satisfaction problem that is
equivalent to 2-colorability.

For a set ¢ of HYPERCUT” constraints, if HYPERCUTh(.’L'l, ey Thp—1,Y) € ¢ then we say that, for
any ¢ = 1,...,h — 1, z; is adjacent to y (and that y is adjacent to z;) in ¢. A cycle of lenght |
(I > 3) is a sequence of variables z1,...,z; such that z; is adjacent to z; and z; is adjacent to ;41
fore=1,...,1 — 1. The reader should easily convince himself that ¢ is satisfiable if and only if it
does not contain a cycle of odd lenght. The next theorem is well known for the case h = 2 [1].

Lemma 8 For any integers k, h, and any ¢ > 0, there exists a family of m HYPERCUT" constraints
such that no more than (2'=" 4+ €)m are simultaneously satisfiable and any k of them are satisfiable

Proor: [Sketch] To meet the second requirement we just have to construct an istance without
short cycles of odd lenght. The following construction will work for all sufficiently large n. We fix
a (small) constant § > 0 and a (large) constant ¢ such that

214+ 6)/(1-26) <27 4 ¢
2k(2¢)* < ben
¢ > 6logelog %22}“1 .

Let m = en, and let s(n) = n(}_}) be all the possible HYPERCUT" constraints over the variable
set {z1,...,2,}. Fix also we construct a random instance of hCSP by choosing each of the s(n)
constraints independently with probability m/s(n). We make the following claims:

1. With probability at least .9, the number of constraints in the random instance is at least

m(1l - 4).



2. With probability at least .9, the generated instance is such that any assignment satisfies at
most 21_h(1 + &)m constraints.

3. With probability at least .5, there are at most 2k(26)k cycles of length < k in the generated
instance.

With positive probability a random instance will satisfy all the three properties. In particular, there
will exist an instance satisfying such properties. By removing from it a constraint for each cycle
of length < k, we obtain a new instance with no cycle of length < k, m’ > m(1 — 26) constraints,
and such that no assignment satisfies more than (2!=* + €)m/ constraints. This modified instance
proves the lemma.

We now prove the three claims.

1. The average number of constraints is m. By Chernoff bounds, it will be at least (1 — §)m
with probability at least 1 — e=8"m/2 which is larger than .9 for sufficiently large n.

2. If we fix one the 2" possible assignments, that gives value true to {n variables, and value false
to (1 — ¢)n, it will satisfy a randomly chosen constraint with probability

A -+ (1= < (1/2) L.

From Chernoff bounds, the probability that, for a random instance, there exists an assignment
satisfying more than m2'~"(1 — §) constraints is at most

2n6—5221_hcn/3 <2< 1
for sufficiently large n.

3. There are n(n—1)---(n—[+1) possible cycles of length . Thus, there are at most kn* cycles
of length < k. Two fixed nodes are adjacent with probability at most 2¢/n. Thus the cycle
exists with probability at most (2¢/n)*. The average is at most k(2¢)*; with probability at
most .5 the actual number is more than twice the average.

Theorem 9 For any h > 2, limp_, 'r](ch) = 91-h,

4 Conclusions

It is a startling coincidence that 3/4 is the integrality gap of the tighter known linear program-
ming relaxation of MAX SAT [2] and that 2!~ is the integrality gap of the tighter known linear
programming relaxation of MAX ACSP [6]. It would be interesting to understand if this fact has
some explanation.
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