On Local versus Global Satisfiability
[Preliminary Version]

LUCA TREVISAN*

March 19, 1997

Abstract

We prove an extremal combinatorial result regarding the fraction of satisfiable clauses in boolean CNF formulae enjoying a locally checkable property, thus solving a problem that has been open for several years.

We then generalize the problem to arbitrary constraint satisfaction problems. We prove a tight result even in the generalized case.

1 Introduction

We deal with the notion of k-satisfiable CNF formulae introduced and studied by Lieberherr and Specker [4, 5]. A CNF boolean formula (from now on referred to as formula) is k-satisfiable if any subset of k clauses is satisfiable. For any k, let r_k be the largest real (or, better, the supremum of the set of reals) such that in any k-satisfiable set of m clauses, at least $r_k m$ clauses are simultaneously satisfied. Roughly speaking, r_k somewhat shows how local satisfiability implies (fractional) global satisfiability. It has been known that $r_2 = 2/(1 + \sqrt{5}) > .618$ [4] (the inverse of the golden ratio), that $r_3 = 2/3$ [5], and that $\lim_{k \to \infty} r_k \leq 3/4$ [3]. Yannakakis [7] has given simplified proofs of the bounds $r_2 \geq 2/(1 + \sqrt{5})$ and $r_3 \geq 2/3$ using the probabilistic method.

To the best of our knowledge, it was still an open question to determine the exact value of $\lim_{k \to \infty} r_k$.

Our Results

We prove that $\lim_{k \to \infty} r_k = 3/4$. Our proof is constructive: for any $r < 3/4$ we show that a k exists such that given a k-satisfiable formula we can find a probability distribution over its variables in such a way that any clause is satisfied with probability at least r. It thus follows that an assignment satisfying at least a fraction r of clauses must exist. It can even be found in linear time using the greedy algorithm in [7].

We then consider a similar question for general Constraint Satisfaction Problems (CSP). An instance of a CSP is a set of boolean predicates (or constraints) over boolean variables. For a fixed integer h, the hCSP is the restriction of CSP where the arity of the constraints is at most h. Note that if a hCSP instance does not contain identically false constraints, then the random assignment where each variable is true with probability $1/2$ will satisfy at least a fraction 2^{-h} of the constraints. We say that a CSP instance is k-satisfiable if any subset of k constraints is satisfiable. For any

*trevisan@cui.unige.ch. Centre Universitaire d’Informatique, Université de Genève, Rue Général-Dufour 24, CH-1211, Genève, Switzerland. Part of this work was done while the author was visiting the IBM T.J. Watson Research Laboratories, Yorktown Heights, NY, in October and November 1995.
integers h and k, we define $r_k^{(h)}$ as the supremum of the reals such that for any k-satisfiable instance of hCSP with m constraints, at least $r_k^{(h)}m$ are satisfiable.

We prove $\lim_{k \to \infty} r_k^{(h)} = 2^{1-h}$. For the lower bound, it will be easy to use the probabilistic method to obtain $r_k^{(h)} \geq 2^{1-h}$. In order to prove the upper bound $r_k^{(h)} \leq 2^{1-h}$ for all k we will need a construction of hypergraphs that generalizes the known construction of graphs with small maximum cut and large girth [1].

Preliminary Definitions

A CNF boolean formula (or, simply, a formula) is a set $\{C_1, \ldots, C_m\}$ of disjunctive clauses over a set of variables $X = \{x_1, \ldots, x_n\}$. A disjunctive clause is a disjunction of literals where each literal is either a variable x_i or a negated variable $\neg x_i$. An assignment for ϕ is a mapping $\tau : X \to \{\text{true, false}\}$ that associates a truth value with any variable. If l is a literal, then we say that τ satisfies l if either $l = x$ and $\tau(x) = \text{true}$ or $l = \neg x$ and $\tau(x) = \text{false}$. If $C = l_1 \lor \ldots \lor l_h$ is a clause, we say that τ satisfies C if τ satisfies l_j for some $j \in \{1, \ldots, h\}$. A formula ϕ is k-satisfiable [4] if any subset of k clauses of ϕ is satisfiable.

An instance of CSP is set $\{C_1, \ldots, C_m\}$ of constraints over a set of variables $X = \{x_1, \ldots, x_n\}$. A constraint is a boolean predicate applied to variables from X. An instance of hCSP (where h is an integer) is an instance of CSP where the arity of all the predicates is at most h. We define assignments, satisfiability, and k-satisfiability as for formulae, with “clauses” replaced by “constraints” in the definitions.

A random assignment is a probability distribution over all the assignment. We will restrict ourselves to random assignments where each variable is assigned true with a certain probability, independently of the assignments to the other variables (it would actually suffice bounded independence). Thus a random assignment τ_R is entirely specified by the probabilities $\{p_x\}_{x \in X}$, where $\Pr[\tau_R(x) = \text{true}] = p_x$. To save notation, we will write $\Pr[x = \text{true}]$ in place of $\Pr[\tau_R(x) = \text{true}]$ when the random assignment is clear from the context.

2 The CNF result

2.1 Yannakakis’ Argument and How to Extend it: an Informal Account

In order to present the main ideas underlying our proof, let us first recall Yannakakis’ proof that $r_3 \geq 2/3$. Given a 3-satisfiable formula he shows how to find a probability distribution over the variables that satisfies all clauses with probability at least 2/3. If a literal l occurs in a unary clause, then we set $\Pr[l = \text{true}] = 2/3$. Note that this definition is consistent since it is impossible to have the clauses (x) and $(\neg x)$ in the same 3-satisfiable formula. To all the other variables (the ones that do not occur in unary clauses), if any, we give value true with probability 1/2. Ternary clauses, or longer ones, are satisfied with probability at least $1 - (2/3)^3 = .7037 \ldots > 2/3$; for longer clauses probabilities are even better. It remains to consider binary clauses. If at least one of the literals in a binary clause is true with probability at least 1/2, then the probability that the clause be satisfied is at least $1 - (2/3)^1/2 = 2/3$. The only bad case happens when both literals are true only with probability 1/3, but this is impossible because it would mean that the formula contains clauses $(l_1), (l_2), (\neg l_1 \lor \neg l_2)$ which contradicts the fact that it is 3-satisfiable.

When we want to achieve the same construction with an arbitrary $r < 3/4$ in place of 2/3 we run into some troubles. Let us try with $r = .74$. Literals occurring in unary clauses must be true with probability .74. If l occurs in a unary clause, and we have the clause $\neg l \lor x$, then x must be
true with probability at least $1 - (1 - r)/r = .6486\ldots$ Then we have to consider literals occurring with $\neg x$ in a binary clause: they have to be true with probability at least $.5991\ldots$ There are three more cases to be considered (probabilities will be, respectively, $.566\ldots, .5406\ldots$, and $.5191\ldots$). And we still have to make sure that we are not introducing any inconsistency, and we have to deal with ternary and 4-ary clauses (clauses with 5 or more literal are satisfied with probability at least $1 - (.74)^5 > .74$).

The above discussion leaves us with the idea that the range of values for the probabilities of the literals should be $p_1 = r$, $p_2 = 1 - (1 - r)/r$, $p_3 = 1 - (1 - r)/p_2$, \ldots $p_k = 1 - (1 - r)/p_{k-1}$. It is comforting that this sequence will eventually go below 1/2, where it can be stopped (Lemma 2).

We also note that, when we want to achieve a ratio close to 3/4, the numbers of cases to be considered explodes, and that a uniform method to deal with them has to be found.

In order to attribute probabilities to the literals in a uniform way, we introduce the idea of ranking them according to the depth of proofs of the literals in a simple propositional proof system, whose axioms are the clauses of the formula. This gives at the same time a uniform way to deal with clauses of different length and a simple method to show that the assignment of probabilities is consistent.

2.2 The Actual Proof

The following definition gives the values that we will use in the probability distribution.

Definition 1 For any real $r \neq 0$, we define the sequence $\{a_i^r\}_{i \geq 1}$ as follows:

- $a_1^r = r$;
- $a_{i+1}^r = 1 - (1 - r)/a_i^r$.

If we start from a number $r < 3/4$, the sequence eventually goes below 1/2.

Lemma 2 For any r such that $1/2 < r < 3/4$, a $h(r)$ exists such that $a_{h(r)}^r < .5$

Proof: Assume not. Note that if $a_i^r > 0$, then $a_{i+1}^r < a_i^r$, as can be easily proved by induction. Then we have a monotonically decreasing sequence that is lower bounded by 0.5: such a sequence must have a limit, let it be x. Then x is a real root of the equation

$$x = 1 - (1 - r)/x,$$

that is,

$$x^2 - x + 1 - r = 0 .$$

But such an equation has no real root when $1 - 4(1 - r) < 0$, that is when $r < 3/4$. \square

The following definition allows to rank literals and will be used to assign to each of them the right probability.

Definition 3 (Provability) Given a CNF formula ϕ,

- If $(l) \in \phi$ then l is 1-provable in ϕ.
- If $(l_1 \vee \ldots \vee l_h) \in \phi$ and l_j is i_j-provable in ϕ for $j = 1, \ldots, h-1$, then l_h is $(1+\text{max}\{i_1, \ldots, i_{h-1}\})$-provable in ϕ.

3
A literal is exactly i-provable in ϕ if i is the smallest integer such that it is i-provable in ϕ.

Lemma 4 Let ϕ be a formula with clauses of length at most 4. If x is i-provable in ϕ and $\neg x$ is j-provable in ϕ, then ϕ is not $(3^{i+1} + 3^{j+1} - 2)$-satisfiable.

Proof: Simple induction shows that when a literal l is i-provable in ϕ, then a set S_l of at most $3^{i+1} - 1$ clauses of ϕ exists such that any assignment that satisfies all the clauses in S_l must also satisfy l. Then, the set $S_x \cup S_{\neg x}$ has at most $3^{i+1} + 3^{j+1} - 2$ clauses, and no assignment can satisfy all of them.

The next theorem is clearly a sufficient condition to have $\lim_{k \to \infty} r_k \geq 3/4$.

Theorem 5 For any r such that $1/2 < r < 3/4$ a k exists (depending on r) such that for any k-satisfiable formula ϕ we can find in polynomial time a probability distribution over the variables in such a way that any clause is satisfied with probability at least r.

Proof: For any variable x, the probability p_x of x to be true will be a rational between r and $1 - r$, and, in particular, between $1/4$ and $3/4$. This implies that any 5-ary clause is satisfied with probability at least $1 - (3/4)^5 > 3/4$. Thus we only have to care about unary, binary, ternary and 4-ary clauses. Let us fix $r < 3/4$ and let $k = 2 \cdot 3^{h(r) + 1} - 1$. Let ϕ be a k-satisfiable formula, and let ϕ_i be the subset of clauses of ϕ of length at most 4. Observe that if some literal i is i-provable in ϕ_i for some $i \leq h(r)$, then it is not possible that its complement is j-provable in ϕ_i for some $j \leq h(r)$.

We shall use the values $a_i^r, \ldots, a_{h(r)}^r, 0.5$ in our probability distribution. Let $p_i = a_i^r$ for $i = 1, \ldots, h(r) - 1$ and $p_{h(r)} = 1/2$. The probability distribution is as follows.

$$
\Pr[x = \text{true}] = \begin{cases}
 p_i & \text{if } x \text{ is exactly } i \text{-provable in } \phi_i, \text{ for } i \leq h(r) - 1 \\
 1 - p_i & \text{if } \neg x \text{ is exactly } i \text{-provable in } \phi_i, \text{ for } i \leq h(r) - 1 \\
 1/2 & \text{otherwise}
\end{cases}
$$

It should be clear that the definition above is consistent. Recall that the sequence $p_1, \ldots, p_{h(r)}$ is decreasing. So if a variable x is exactly i-provable for some $i < h(r)$, the smaller is i, the larger is $\Pr[x = \text{true}]$.

Claim 6 Under the probability distribution above, any clause of ϕ is false with probability at most $1 - r$.

Proof: The statement is easy for unary clauses and for clauses with five or more literals.

Let $C = (l_1 \lor \ldots \lor l_h)$ be a clause with two or more literals; we assume $\Pr[l_1 = \text{false}] \leq \Pr[l_2 = \text{false}] \leq \ldots \leq \Pr[l_h = \text{false}]$. If $\Pr[l_2 = \text{false}] \leq 1/2$ then also $\Pr[l_1 = \text{false}] \leq 1/2$ and $\Pr[C\text{ is false}] \leq 1/4 < 1 - r$. It remains to consider the case $\Pr[l_2 = \text{false}] > 1/2$. Then $\neg l_2$ is exactly 2-provable for some $i_2 \leq h(r) - 1$; and also $\neg l_2$ and $\neg l_4$ (if present) are exactly i_3-provable (resp. i_4-provable) for some $i_3 \leq i_2$ (resp. $i_4 \leq i_2$). It follows that l_1 is exactly i_1-provable for some $i_1 \leq i_2 + 1$, and thus $\Pr[l_1 = \text{false}] = 1 - p_i \leq 1 - a_i = (1 - r)/a_{i-1}^4$, while $\Pr[l_2 = \text{false}] = p_i = a_i \leq a_{i-1}$. As a consequence, we have

$$
\Pr[C \text{ is false}] \leq \Pr[l_1 = l_2 = \text{false}] \leq 1 - r
$$

The theorem thus follows.

\footnotemark[1]

\footnotetext[1]{Note that if $i_1 = h(r)$ then l_1 will be assigned probability $1/2$ (that is exactly p_{i_1}) not because it is exactly $h(r)$-provable, but because it is not i-provable for $i < h(r)$ and, of course, neither its complement is (so l_1 falls in the “otherwise” part of the definition).}
3 Constraint Satisfaction Problems

Lemma 7 Let \(\phi \) be a \((h + 1)\)-satisfiable instance of hCSP. Then it is possible to satisfy at least a fraction \(2^{1-h} \) of the constraints.

Proof: We describe a random assignment that satisfies each constraint with probability at least \(2^{1-h} \).

We say that a constraint is conjunctive if there is only one assignment of its variables that satisfies it. For any variable that occurs in a conjunctive constraint we set it to the value imposed by the constraint. This is consistent (otherwise the instance would not be 2-satisfiable). This partial assignment does not contradict any (non-conjunctive) constraint (otherwise the instance would not be \((h + 1)\)-satisfiable). We give probability \(1/2 \) to all the other variables. It is easy to see that any constraint that is not satisfied by the partial assignment is true with probability at least \(2/2^h \): indeed, either it is still \(h \)-ary and has two or more satisfying assignments, or its arity has been decreased by the partial assignment, and so it is true with probability at least \(1/2^{h-1} \). \(\Box \)

Let \(h, r < 2^{1-h} \), and \(k \) be fixed. We will show how to find a \(k \)-satisfiable instance of hCSP such that only a fraction \(r \) of its constraints is simultaneously satisfiable.

We will use only one type of constraint, the \textsc{hypercut} \(h \) constraint, defined as follows

\[
\textsc{hypercut}^h(x_1, \ldots, x_{h-1}, y) \equiv (x_1 \neq y) \land (x_1 = \cdots = x_{h-1})
\]

For \(h = 2 \) this is the xor constraint, that gives rise to a constraint satisfaction problem that is equivalent to 2-colorability.

For a set \(\phi \) of \textsc{hypercut} \(h \) constraints, if \(\textsc{hypercut}^h(x_1, \ldots, x_{h-1}, y) \in \phi \) then we say that, for any \(i = 1, \ldots, h-1 \), \(x_i \) is adjacent to \(y \) (and that \(y \) is adjacent to \(x_i \)) in \(\phi \). A cycle of length \(l \) \((l \geq 3)\) is a sequence of variables \(x_1, \ldots, x_l \) such that \(x_i \) is adjacent to \(x_j \) and \(x_j \) is adjacent to \(x_i \) for \(i = 1, \ldots, l-1 \). The reader should easily convince himself that \(\phi \) is satisfiable if and only if it does not contain a cycle of odd length. The next theorem is well known for the case \(h = 2 \) [1].

Lemma 8 For any integers \(k, h, \) and any \(\epsilon > 0 \), there exists a family of \(m \) \textsc{hypercut} \(h \) constraints such that no more than \((2^{1-h} + \epsilon)m \) are simultaneously satisfiable and any \(k \) of them are satisfiable.

Proof: [Sketch] To meet the second requirement we just have to construct an instance without short cycles of odd length. The following construction will work for all sufficiently large \(n \). We fix a (small) constant \(\delta > 0 \) and a (large) constant \(c \) such that

\[
2^{1-h}(1 + \delta)/(1 - 2\delta) < 2^{1-h} + \epsilon
\]

\[
2k(2\epsilon)^h \leq \delta cn
\]

\[
c \geq 6 \log c \log \frac{1}{\delta^2 2^{h-1}}.
\]

Let \(m = cn \), and let \(s(n) = n(h-1) \) be all the possible \textsc{hypercut} \(h \) constraints over the variable set \(\{x_1, \ldots, x_n\} \). Fix also we construct a random instance of hCSP by choosing each of the \(s(n) \) constraints independently with probability \(m/s(n) \). We make the following claims:

1. With probability at least .9, the number of constraints in the random instance is at least \(m(1 - \delta) \).
2. With probability at least .9, the generated instance is such that any assignment satisfies at most $2^{1-k}(1 + \epsilon)m$ constraints.

3. With probability at least .5, there are at most $2k(2c)^k$ cycles of length $\leq k$ in the generated instance.

With positive probability a random instance will satisfy all the three properties. In particular, there will exist an instance satisfying such properties. By removing from it a constraint for each cycle of length $\leq k$, we obtain a new instance with no cycle of length $\leq k$, $m' \geq m(1 - 2\epsilon)$ constraints, and such that no assignment satisfies more than $(2^{1-k} + \epsilon)m'$ constraints. This modified instance proves the lemma.

We now prove the three claims.

1. The average number of constraints is m. By Chernoff bounds, it will be at least $(1 - \delta)m$ with probability at least $1 - e^{-\delta^2m/2}$ which is larger than .9 for sufficiently large n.

2. If we fix one the 2^n possible assignments, that gives value true to tn variables, and value false to $(1 - t)n$, it will satisfy a randomly chosen constraint with probability

$$t^{h-1}(1 - t) + (1 - t)^{h-1}t \leq (1/2)^{h-1}.$$

From Chernoff bounds, the probability that, for a random instance, there exists an assignment satisfying more than $m2^{1-h}(1 - \delta)$ constraints is at most

$$2^n e^{-\delta^2 2^{1-h}m^3/3} \leq 2^{-n} \leq .1$$

for sufficiently large n.

3. There are $n(n - 1) \cdots (n - l + 1)$ possible cycles of length l. Thus, there are at most kn^k cycles of length $\leq k$. Two fixed nodes are adjacent with probability at most $2c/n$. Thus the cycle exists with probability at most $(2c/n)^k$. The average is at most $k(2c)^k$; with probability at most .5 the actual number is more than twice the average.

\[\square \]

Theorem 9 For any $h \geq 2$, $\lim_{k \to \infty} \tau_k^{(h)} = 2^{1-h}$.

4 Conclusions

It is a startling coincidence that $3/4$ is the integrality gap of the tighter known linear programming relaxation of MAX SAT [2] and that 2^{1-h} is the integrality gap of the tighter known linear programming relaxation of MAX hCSP [6]. It would be interesting to understand if this fact has some explanation.
References

