Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R97- 013 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

On Existentially First-Order Definable Languages
and their Relation to NP

Bernd Borchert Dietrich Kuske*
Universitat Heidelberg Technische Universitat Dresden
bb@math.uni-heidelberg.de kuske@math.tu-dresden.de

Frank Stephan*

Universitat Heidelberg
fstephan@math.uni-heidelberg.de

Abstract

Pin & Weil [PW95] characterized the automata of existentially first-
order definable languages. We will use this result for the following charac-
terization of the complexity class NP. Assume that the Polynomial-Time
Hierarchy does not collapse. Then a regular language L characterizes
NP as an unbalanced polynomial-time leaf language if and only if L is
existentially but not quantifierfree definable in FO[<, min, max, —1, +1].

1 Introduction

The following characterization of the first-order definable languages is a classical
result of McNaughton & Papert [MPT71].

For a language L it is equivalent:

(a) L is definable in first-order logic,
(b) L can be described by a starfree regular expression,
(c) L is accepted by a counterfree finite automaton.

Let first-order-definability in this paper refer to the usual model of defining
languages by logical formulas where in addition to the <-relation we allow the
constants min and max, and the predecessor —1 and successor +1 functions. We
will call this first order logic FO[<, min, max, —1,+1] extended first-order logic
FOX. In an analogous fashion like above the subset of the first-order ezistentially
definable languages can be characterized. For this we need the following two
definitions. According to the terminology in [PW95] a language has dot-depth

*Supported by the German Research Foundation (DFG).

z
ecF gFr

Figure 1: co-UP-pattern

1/2 if it is the finite union of languages of the form wiX*weX*ws...X*w,
where wy, ..., w, are words. The second definition is the following: Say that
a finite automaton contains the co-UP-pattern if there are two reachable states
p, q, a nonempty word v € Xt and two words w,z € X* such that p.v = p,
qv = q, pow = q, and p.z is an accepting state and ¢.z is not an accepting

state, see Figure 1 (we will explain the strange name for this pattern later, see
Lemma 3.2).

The following equivalence (a) <= (b) is due to Thomas [Th82], and (b) <=
(c) is due to Pin & Weil [PW95].

For a language L it is equivalent:

(a) L is existentially definable in FOX,

(b) L has dot-depth 1/2,

(c) L is accepted by a finite automaton which does not contain the
co-UP-pattern.

In a similar fashion, the universally and the quantifierfree definable languages
can be characterized.

We will use the known result above for the following application on the
characterization of the complexity class NP. Remember that NP is the set
of languages L for which there is a nondeterministic polynomial-time Turing
machine (NPTM) M such that a word z is in L iff some computation path of
the computation tree of M () accepts. It is easy to see that for example the
following definition also yields the class NP (note that an NPTM defines in an
obvious way an order on the computation paths): NP is the set of languages
A for which there is an NPTM M such that a word z is in A iff there is an
accepting path p of the computation tree of M () and the next path p+1in that
computation tree does not accept. Yet another example of a characterization of
NP is the following: NP is the set of languages A for which there is an NPTM
M such that a word z is in A iff there is an accepting path p of the computation
tree of M (z) and some later path p’ > p in that computation tree of M (z) does
not accept.

The reader will notice that by writing a 1 for acceptance and a 0 for re-
jection the above three examples of definitions of NP can easily be described

by languages: the language corresponding to the first standard definition is
3*1%*, the language corresponding to the second example is X*10X*, and the
language corresponding to the third is ¥*1X*0X*. This concept is the so-called
leaf language approach of characterizing complexity classes, more precisely: the
polynomial-time unbalanced one, see Borchert [Bo95] (the first paper about leaf
languages by Bovet et al. [BCS92] used the balanced approach).

We had three examples of languages such that the complexity class char-
acterized by 1t equals NP. Now the obvious questions is of course: which are
exactly the languages which characterize NP? — at least we would like to know
which regular languages characterize NP. Because the regular language 1%*
characterizes the complexity class P we would, with an answer to that question,
solve the P=NP? question. Therefore, we cannot expect a perfect answer. But
under the assumption that the Polynomial-Time Hierarchy (PH) does not col-
lapse we are able to give the following answer. The equivalence (a) <= (c)
from above will be the key for this result.

Assume that PH does not collapse. Then a regular language L char-
acterizes NP as an unbalanced polynomial-time leaf language if and
only if I is existentially but not quantifierfree definable in FOX.

Borchert [Bo95] showed that under the assumption that PH does not collapse
there is no class characterized by a regular leaf language properly between P
and NP and neither between P and co-NP. In this paper we will prove such an
emptiness result for the intervals between NP and co-1-NP and between NP and
NP@®co-NP (see Theorem 3.13).

Finally, we will show a union-style result for a correlation of the Boolean Hi-
erarchy over NP and the Boolean Hierachy over the set of first-order existentially
definable languages (see Theorem 4.4).

2 Language-Theoretic Results

Let in this paper languages be over the alphabet ¥ = {0,1}. Consider the
usual model of defining languages by formulas, see for example [MP71, St94].
In addition to the usual predicate < we allow the constants min and max and
the successor and predecessor functions +1 and —1. These additional functions
are first-order definable in FO[<] but on the level of existential definability the
extended logic is strictly more powerful. We will call this extended first-order
logic FOX. Finite automata are defined as usually, see for example [MP71, St94],
we consider them to be deterministic. The notions a language has dot-depth
1/2 and an automaton contains the co-UP-pattern were already defined in the
introduction. We already cited the following equivalence, the part (a) <= (b)
is due to Thomas [Th82]. The equivalence (b) <= (c) is not stated by Pin &
Weil [PW95] the way we present it but easily follows from their Theorem 5.2.

Theorem 2.1 (Thomas [Th82], Pin & Weil [PW95]) For a language L it

1s equivalent:

(a) L is existentially definable in FOX,

(b) L has dot-depth 1/2,

(c) L is accepted by a finite automaton which does not contain the co-UP-
pattern.

Clearly, a language L is existentially definable iff its complement is univer-
sally definable. Let A be an automaton accepting L. Exchanging the accepting
and the rejecting states, one obtains an automaton that accepts the comple-
ment of L. Therefore, the following characterization of the universally definable
languages 1s a direct corollary of Theorem 2.1. The UP-pattern is defined like
the co-UP-pattern by exchanging “€ F” and “@ F”.

Theorem 2.2 (Thomas [Th82], Pin & Weil [PW95]) For a language L it

s equivalent:

(a) L is universally definable in FOX,

(b) the complement of L has dot-depth 1/2,

(c) L is accepted by a finite automaton which does not contain the UP-
pattern.

Another result of this type can be given for quantifierfree definable languages.
A language L is generalized definite iff there exists a natural number n such that
zyz € L <= =zy'z € L for any words z,y,y’ and z with |z|, |z| = n, i.e. the
membership of a word in L depends only on the n first and the n last letters of
w.

Theorem 2.3 (Thomas [Th82], Pin & Weil [PW95], Borchert [Bo95])

For a language I it is equivalent:

(a) L is quantifierfree definable in FOX,

(b) L is generalized definite,

(c) L is accepted by a finite automaton which does neither contain the co-UP-
pattern nor the UP-pattern.

Proof. The equivalence (a) <= (b) is again due to Thomas [Th82, Lemma
2.9]. Since any quantifierfree definable language is existentially and universally
definable, the implication (a¢) = (c¢) follows from Theorems 2.1 and 2.2. In
[Bo95] the proof of Lemma 12 implicitly shows how one can find one of the two
patterns (co-UP or UP) in an automaton for a language which is not generalized
definite. This proves the implication (¢) = (b). 0

Remark. For the logic FO[<] it is known that a language is existentially and
universally definable iff it is quantifierfree definable (cf. [PW95]). We did not
find a proof for the analoguous fact for FOX. Otherwise, Theorem 2.3 would
be a direct corollary from Theorems 2.1 and 2.2, the proof of Lemma 12 from

Figure 2: co-NP-pattern

vext vext veXt
w w.w

ozeF IZQF IZeF

Figure 3: co-1-NP-pattern

[Bo95] would not be needed. Conversally, from Theorems 2.1, 2.2 and 2.3, we
get that a language L is quantifierfree definable in FOX iff it is existentially and
universally definable in FOX.

We define more patterns: the co-NP-pattern, the co-1-NP-pattern and the
counting pattern (Figures 2, 3 and 4). The co-NP-pattern looks like the co-UP-
pattern, with an additional w-loop at ¢, 1.e. g.w = ¢. In the co-1-NP-pattern,
v # e and p.v = p, q.v = q and ¢;.v = ¢q;. Furthermore, p.w = ¢, q.w = ¢1 and
giw = qiy1 for i = 1,2,...,n—1 and g, w = ¢,. Finally, pz € F,qz & F
and ¢;.z € F for i = 1,2,...,n. An automaton contains the counting pattern
(for the number n) if there are two reachable states p,q and two words w, z
such that p.w = ¢,q.w"™! = p and p.z € F and q.z ¢ F. Note that a minimal
automaton contains the counting pattern iff it is not counterfree. Finally, the
NP-pattern and the 1-NP-pattern are defined like the co-NP-pattern and the
co-1-NP-pattern, respectively, by exchanging “€ F” and “¢ F”. Note that all

z

z
er gF

Figure 4: n-counting pattern

patterns besides the UP-pattern and NP-pattern contain the co-UP-pattern as
a subpattern (with v := w” in the counting pattern for the number n). In a
straightforward way it is possible to show that besides for the co-1-NP- and the
1-NP-pattern it holds that a finite automaton contains the X-pattern iff the
minimal automaton for the language contains the X-pattern.

The following Corollary 2.4 and its dual version Corollary 2.5 will be the
bridge from Theorem 2.1 to the results about complexity classes presented in
the next section.

Corollary 2.4 Let A be the minimal automaton accepting the regular language
L. Then L is not existentially definable in FOX iff A contains one of the
following patterns:

(1) the counting pattern,

(2) the co-NP-pattern,

(3) the co-1-NP-pattern.

Proof. Suppose the automaton .4 contains one of these patterns. Then it
contains the co-UP-pattern, too. Hence, by Theorem 2.1, L is not existentially
definable in FOX.

For the other direction let L be a regular language which is not existentially
definable in FOX. Tt holds that L is not first-order definable at all iff A is not
counterfree iff A contains the counting pattern. Therefore, for the counting case
we have also the other direction. From now on assume that A is counterfree.

Because I is not existentially definable in FOX the automaton A contains
the co-UP-pattern, i.e. there is a state p and words v, w’, z with v € £t such
that pov = p, pw'v = pw', pz € F and pw'z ¢ F. Now let z = w'v'™
where n is the number of states of the minimal automaton A and p; = p.2* for
i=0,1,2,... Then p; = p.w'v'™ = p.w'. Furthermore, since A is counterfree,
Pn = Pz and p;.v = p.(w'v'") v = p;.

Suppose pn.z € F and let w := 2" and ¢q := p,. Then p.v = p, qv = ¢,
pw=gq,qw=gq,pz € Fand q.z ¢ F, i.e. we found the co-NP-pattern.

In case p,.z € F, let ¢ be the maximal natural number with p;.z € F.
Since p1.z € F we have i > 1. With w := 2%, ¢ = p.w and ¢; := q.w’ for
j=1,2,...,n, we obtain the co-1-NP-pattern. O

Note that exchanging the accepting and the rejecting states in the counting
pattern results in a counting pattern, again. Therefore, the following is a direct
consequence of the corollary above.

Corollary 2.5 Let A be the minimal automaton accepting the reqular language
L. Then L is not universally definable in FOX iff A contains one of the following
patterns:

(1) the counting pattern,

(2) the NP-pattern,

(3) the 1-NP-pattern.

Figure 5: Computation tree (whose yield is 1001110100)

3 An Application to the Leaf Language Charac-
terization of NP

In this section we will give an application of the results from the previous section
to the question which leaf languages characterize the complexity class NP. An
informal idea of the leaf language concept was already given in the introduction.
Let us be a bit more formal (for a detailed definition and more examples and
motivation see [Bo95]). Consider the computation tree given by a nondetermin-
istic polynomial-time Turing machine (NPTM) M which runs on an input z.
Note that by the original definition of nondeterminism the tree is not necessar-
ily balanced. Also note that there is a natural order on the paths of the tree:
if at some configuration there appears nondeterminism the Turing machine M
gives a natural linear order on the different possible following configurations:
this order is given by the order of the commands in the list representing the
transition table. Given the computation tree, label every accepting final con-
figuration with 1 and each rejecting final configuration with a 0. This way we
get an ordered tree in which the leaves are labeled by 0 and 1, see Figure 5.
The word consisting of the leaf labels read from left to right is called the yield
of the tree. Let any language L € Xt over the alphabet ¥ = {0,1} be given
(because the yield has always positive length we ignore the empty word). The
(unbalanced polynomial-time) leaf language class L— P is the set of all languages
A for which there is an NPTM M such that a word « is in A iff the yield of the
computation tree is in L.

Examples. In theintroduction we already presented three languages L1, La, L3
such that L1 — P = Ly— P = L3— P = NP. As another example, 0*— P =
co-NP. It is easy to see that 13X*— P = P. The classes MOD,,P for each n > 2
are defined as C,,— P where C,, is the set of words w such that the number
of 1I’s in w is not equal 0 modulo n. The two trivial leaf languages are (} and
¥* it holds §— P = {f#} and ¥*- P = {¥*}. The join of NP and co-NP,
NP & co-NP, is characterized as J— P where J = 00* U 10*, it is the smallest

co-DP DP

co-1-NP @ ® |-NP

NP co-NP

P

Figure 6: cf. Theorem 3.1

class among all classes L — P containing both NP and co-NP, see [Bo95, Proof
of Prop. 2(c)]. Another example is the class UP, a so-called promise class: Tt is
the set of all languages A for which there is an NPTM M such that the yield
of the computation tree M (z) is in 0* or 0*10* for every z, and a word z is
in A iff the yield of the computation tree is in 0*10*. We give the definition
of UP and its set of complements co-UP just in order to explain the name of
the corresponding pattern (see Lemma 3.2); we do not use them for our results.
The class 1-NP = 0*10* - P and its class of complements co-1-NP = 0*10* - P
will be crucial for our main result. The following result gives an idea about their
location, see Figure 6. DP is the class consisting of the intersections of classes in
NP and co-NP. DP and its set of complements co-DP represent the two classes
of the second level in the Boolean Hierarchy over NP, see the following section.

Theorem 3.1 (Blass & Gurevich [BG82], Kadin [Ka88], Chang, Kadin
& Rohatgi [CKR95]) Assume that PH does not collapse. Then NP, co-NP,
1-NP, co-1-NP, DP, and co-DP are siz different classes and the only inclusions
which hold are

NP C co-1-NP C co-DP, NP C DP,
co-NP C 1-NP C DP, co-NP C co-DP.

The following Lemma 3.2 gives the main connex between patterns in au-
tomata and complexity classes, it also explains the names of the patterns.

Lemma 3.2 Let L be the language accepted by a finite automaton A where any

state 1s reachable from the wnitial state.

(a) Let X be in {NP,co-NP,1-NP,co-1-NP,UP,co-UP}. If A contains the X-
pattern then X is a subset of L— P.

(b) If A contains a counting pattern, then MOD,P is a subset of L— P for
some prime p.

(c) If A contains both the NP- and the co-NP-pattern, then NP @ co-NP is a
subset of L— P.

Proof. (a) Let the automaton A contain the co-NP-pattern, see Figure 2. Let
the state p be reachable from the initial state by the word a. We want to show
that co-NP is included in L— P. It suffices to construct for every NPTM M
an NPTM M’ such that an input z is accepted by M via the leaf language
0* iff z is accepted by M via the leaf language L. Given M, let M’ be the
following machine. On input @ M’ produces first of all |a| leftmost computation
paths with @ written on them, this way the yield of the computation tree M'(z)
will have the prefix a. Then it simulates the computation of M including the
nondeterministic branchings. Everytime M accepts (rejects) it produces the
word w (the word v) by extending that computation path of M by |w| (by |v])
new computation paths. Finally it produces |z| rightmost computation paths for
z. By this construction, M'(z) has a similar computation tree as M (z), besides
that every 0 is replaced by a tree for v and every 1 is replaced by a tree for w,
and at the leftmost and rightmost part there are computation paths for @ and
z, respectively. Looking at Figure 2 one can verify: if M () does not accept on
any computation path then the yield of the computation tree of M'(z) reaches
the state p.z, i.e. the yield is in L, and if M (z) does accept on at least one
computation path then the yield of the computation tree of M’(z) reaches ¢.z,
i.e. the yield is not in L. In other words: The yield of the computation tree of
M'(2) is in L iff the yield of the computation tree of M (z) is in 0*. This means
that we have the desired inclusion: Let A be a language in co-NP witnessed
by a machine M. Then it is witnessed by the machine M’ that A € L- P. In
other words, co-NP C L — P. For the other patterns the proof including the
construction of M’ is the same.

(b) If the automaton for a language contains a counting pattern for the
number n then it contains a counting pattern for a number p which is prime,
this was shown in [Bo95, Lemma 6]. And [Bo95, Lemma 7] (using the methods
of [BG92]) shows together with the construction from (a) that MOD,P C - P
for every language L containing the counting pattern for a prime p.

(c) This follows immediately from (a) and the fact that NP@co-NP is the
smallest class L — P containing both NP and co-NP. O

Remark. It seems that Lemma 3.2 above is not possible for the polynomial-
time balanced leaf language classes. Because this connection between the au-
tomata patterns and complexity classes is crucial we can state our main results
for unbalanced leaf language classes only.

For the logic FO[<] and the balanced polynomial-time leaf languages, the
following Lemma 3.3 and Corollary 3.4 are due to Burtschick & Vollmer (see

[BV96]). They can be considered to be the first results about the close relation
of leaf languages for NP and existentially first-order definable languages. Here,
we prove it for the slightly different case of unbalanced computation trees and

the logic FOX.

Lemma 3.3 (cf. Burtschick & Vollmer [BV96]) If L is existentially first-
order definable in FOX then L— P is a subset of NP.

Proof. Let I be defined by an existential sentence f in FOX| i.e.

f=3x .. Femd(xr,. .., 2m)

where ¢ is quantifierfree and contains no more variables than zy,..., z,,. We
have to show that for every NPTM M there is a NPTM M’ such that the lan-
guage A accepted by M via the leaf language L is accepted by M’ via the leaf
language 0%. M' is defined the following way. Given an input z simulate M (z)
including all nondeterministic branchings but do not terminate when the end of
a computation path is reached. Instead, memorize the nondeterministic choices
made on that computation path as a tupel p; = (a1, ..., a;) where a number a;
denotes that in the j-th nondeterministic situation on that computation path
the a;-th possibility was chosen. After that simulate M including all nondeter-
ministic branchings once more. Coming to the leaf of a computation, again do
not stop but memorize the nondeterministic choices as a tupel ps, and simulate
M again. Tterate this procedure k times (k was the number of quantifiers in f).
This way a computation tree with k layers of the simulated computation tree
for M (z) is obtained. Now a computation path of the whole computation tree
M’(z) basically represents a k-tupel (p1,. .., pr) of computation paths of M(z),
each path p; is represented as a tupel of numbers. Let this k-tupel (p1,...,pk)
represent in the sentence f above a choice of the positions (z1,...,zx). Let
M (z)(p) denote the result (1 for acceptance or 0 for rejection) of the computa-
tion path p in the computation tree M (z). Note that it is possible to compute
the truth value of ¢(M (z)(p1), ..., M(2)(px)) in polynomial time the following
way. To get the value of M (z)(p) for a path p simulate M (z) on p. The con-
stants max and min stand of course for the paths (1,...,1) and (mq,...,my),
respectively, where the m; are the choices for the rightmost path. Given a path
p = (a1,...,a) it is possible to compute the path p 4+ 1: when p is the right-
most path then p + 1 = p, otherwise, starting with a;,a;_1, ..., check which
a; is the first non-maximal nondeterministic choice, and p 4+ 1 will be the path
(ai,...,a;+1,1,...,1). Likewise, given p, one can compute p— 1. Finally note
that it is possible to compute the predicate p < p’ just by lexicographic com-
parison. After the computation of the truth value ¢(M(z)(p1),..., M(z)(p1))
M'(z) accepts iff (M (2)(p1),..., M(z)(p1)) is true.

Now that we gave the construction of M’ we have to verify that it has the
desired properties, i.e. we have to show the language A accepted by M via

10

the leaf language L (where I is given by the sentence f) is accepted by M’
via the leaf language 0*. If z € A then the yield of M(z) is in L, i.e. there
are paths p1,...,pr such that ¢(M(z)(p1),..., M(x)(px)) evaluates to true.
Consider the computation path in M'(z) describing the tupel (p1,...,pxr). Be-
cause ¢(M(2)(p1),..., M(z)(px)) evaluates to true, this path in M'(z) is ac-
cepting. Therefore, x is in the language accepted by M’ via the leaf language
0*. Tt remains the case that = & A, i.e. for all paths p1,...,px the expression
é(M(z)(p1),...,M(z)(px)) is false. But this means that also M'(z) will reject
on all paths, in other words: the yield of the computation tree of M (z) is not
in 0*. This finishes the proof that L — P is a subset of NP if I is existentially
definable. O

The language 0* is existentially definable even in FO[] by the sentence
JzPi(z). Because by definition NP = 0*— P we have the following corollary.
Note that it is weaker than Theorem 3.9 below: even under the assumption
that PH does not collapse it still allows other regular languages than the in
FOX existentially definable ones to characterize NP.

Corollary 3.4 (cf. Burtschick & Vollmer [BV96]) The union of all classes
L — P over dll existentially first-order definable languages L equals NP.

The following Lemma 3.6 represents one direction of Theorem 3.9; note that
it does not use the assumption that PH does not collapse. First we state the
following easy result from [Bo95, Lemma 11].

Proposition 3.5 (Borchert [Bo95]) If L is generalized definite but not triv-
tal then L— P = P.

Lemma 3.6 Let I be existentially definable in FOX. If L is quantifierfree
definable in FOX then L— P equals one of the classes {0}, {¥*}, or P, otherwise
L—P =NP.

Proof. If L is quantifierfree definable then it is generalized definite by The-
orem 2.3, and we have that §— P = {#}, ¥*- P = {X*} and (by the above
Proposition 3.5) L— P = P otherwise. Let L be existentially but not quantifier-
free definable in FOX. Then it is not universally definable and by Theorem 2.2
its minimal automaton A does contain the counting, the NP-, or the 1-NP-
pattern. But by Corollary 2.4 A contains neither the counting, the co-NP-,
nor the co-1-NP-pattern. Because the co-NP-pattern i1s a subpattern of the
1-NP-pattern the automaton .4 has to contain the NP-pattern. Therefore, by
Lemma 3.2, the class NP is contained in L.— P. Because I is existentially defin-
able in FOX, L— P is contained in NP by Lemma 3.3. Therefore, L — P = NP.

O

Now we turn to state the lemma for the other direction of our main Theorem
3.9 below. The lemmarelies mainly on Corollary 2.4 which itself is a consequence

11

{0y {9

Figure 7: cf. Theorem 3.9

of the characterization 2.1 by Pin & Weil [PW95]. Note that like in Lemma 3.6
(for the other direction for the main theorem) we do not need the assumption
that PH does not collapse.

Lemma 3.7 Let L not be existentially definable in FOX. Then L— P contains
at least one of the classes co-NP, co-1-NP, or MOD,P for some prime p.

Proof. Let L not be existentially definable in FOX. By Corollary 2.4 the au-
tomaton for L contains the counting pattern, the co-NP-pattern, or the co-1-NP-
pattern. Therefore, by Lemma 3.2, L - P contains at least one of the classes
co-NP, co-1-NP, or MOD,, P for some prime p. |
Figure 7 depicts the situation. All the classes L— P with L regular but not
existentially definable in FOX are situated somewhere in the gray area.

For the proof of our main result (Theorem 3.9) and also later on we need
the following result due to Toda [To91] (see also [Bo95, Lemma 15]).

Theorem 3.8 (cf. Toda [To91]) Assume that PH does not collapse. Then
MOD,P for a prime p is not contained in PH.

Now, finally, we can state the following theorem about the close relation of
existentially definable languages and NP.

12

Theorem 3.9 (Main Result) Assume that PH does not collapse and let L be
a reqular language. Then L— P = NP iff L is existentially but not quantifier-free
definable in FOX.

Proof. Let I be existentially but not quantifier-free definable in FOX. Then,
by Lemma 3.6 I.— P = NP. If L is quantifierfree definable, then .— P C P, and
by the assumption that PH does not collapse we have L.— P # NP. Finally, let
L be not existentially definable in FOX. Then, by Lemma 3.7, L— P contains
at least one of the classes co-NP, co-1-NP, or MOD,P for some prime p. If
PH does not collapse none of these classes is a subset of NP, see Lemma 3.1
and Theorem 3.8. Therefore, also L— P is not a subset of NP. It follows that
L-P #NP. O
By duality we have the following result.

Theorem 3.10 Assume that PH does not collapse and let L be a regular lan-
guage. Then L— P = co-NP ¢ff L 1s unwersally but not quantifier-free definable
mn FOX.

Under the assumption that PH does not collapse we characterized in The-
orems 3.9 and 3.10 the regular languages which characterize NP and co-NP
respectively, as leaf languages. The following result solves this question for the
class P. It follows from the previous results of this paper but actually it could
be concluded already by the results of [Bo95], without the characterization by
Pin & Weil [PW95] (cf. Theorem 2.1).

Theorem 3.11 Assume that PH does not collapse and let I be a regular lan-
guage. Then L— P = P uff L is quantifier-free definable but not trival.

Furthermore, we get the following decidability result as a simple corollary
from Theorem 3.9 and the polynomial-time algorithm given by Pin & Weil
[PW95].

Corollary 3.12 Assume that PH does not collapse and let L be a regular lan-
guage. Then the question whether L— P = NP s decidable in polynomial time,
given the description of an automaton for L.

In [Bo95] it was shown that under the assumption that PH does not collapse
there are no classes L— P properly between P and NP and neither between P
and co-NP. Here we have the following extension, the situation is shown in
Figure 8.

Theorem 3.13 Assume that PH does not collapse. Then {0}, {¥*}, P, NP,
co-NP, 1-NP, co-1-NP and NP @ co-NP are eight different classes, and the
only inclusions which hold are the following ones and their transitive closures.
Moreover, each of the following intervals represents a nondensity in the sense
that both classes are a class L— P with L regular but no class of that kind is
located properly between them.

13

(a) {0} C P, (b) {Z*} C P,
(c) P C NP, (d) P C co-NP,
(e) NP C co-1-NP, (f) co-NP C 1-NP,
(g) NP C NP @ co—NP (h) co-NP C NP & co-NP.
NP @ co-NP
co-1-NP 1-NP
NP co-NP
P

{0y {&}

Figure 8: Nondensities in the inclusion order {L — P | L regular}.

Proof. From Theorem 3.1 it follows that we have eight different classes and
that the only inclusions which hold are the given ones and their transitive clo-
sure (remember that the class NP @ co-NP is contained both in DP and co-DP).
Because all classes are contained in PH, which by assumption does not collapse,
according to Theorem 3.8 none of them can contain a class MOD,P. The empti-
ness of the intervals (a) and (b) follows from Theorem 3.11, and the emptiness
for (c) and (d) was shown in [Bo95], it also follows from the proofs of Theo-
rems 3.9 and 3.10. For the emptiness of (e) let L be a regular language with
NP C L-P C co-1-NP. Then, by Theorems 3.9 and 3.11, L is not existen-
tially definable. Hence L— P contains co-NP, co-1-NP, or MOD,P for some
prime p by Lemma 3.7. But MOD,P is not possible, see above, and also co-NP
is not possible because then co-NP would be a subset of co-1-NP. Therefore,
L—P = co-1-NP. The emptiness of (f) is proven dually. For the emptiness
of (g) let L be a regular language with NP C L-P C NP @ co-NP. L can-
not be existentially definable by Lemma 3.3 and neither it can be universally
definable because then L— P C co-NP and NP would be a subset of co-NP.
According to Corollaries 2.4 and 2.5 the minimal automaton A for L contains
(1) the counting pattern, (2) the NP-pattern and the co-NP-pattern, (3) the
1-NP-pattern, or (4) the co-1-NP-pattern (remember that the co-NP-pattern
(NP-pattern) is a subpattern of the 1-NP-pattern (co-1-NP-pattern)). Case (1)
is not possible, see above. And also cases (3) and (4) are not possible because

14

then by Lemma 3.2(a) 1-NP or co-1-NP, respectively, would be a subset of both
DP and co-DP, this contradicts Theorem 3.1. Tt remains the case (2) and by
Lemma 3.2(c) we have that NP @ co-NP C L- P, i.e. NP@co-NP = L— P. The
proof of (h) works dually. m|

4 A Union-Style Result for the Classes of the
Boolean Hierarchy over NP

In this paper, we addressed the question what classes are characterized by single
leaf languages, see for example the main result Theorem 3.9. But there is a
different approach which asks about the union of the classes characterized by
a set of leaf languages, Corollary 3.4 is a typical example. There exist the
following examples of results in this union-style (the results were proven for
balanced leaf languages but they hold likewise for the unbalanced case). Here
BC(X}) denotes the Boolean closure of Xf.

Theorem 4.1 (cf. Hertrampf et al. [HL*93])

(a) PSPACE = J z-p,
L regular

(b) BC(Z}) = U L-P.
L with dot-depth &

Because the languages in the dot-depth hierarchy are exactly the first-order
definable languages the following corollary should be mentioned.

Corollary 4.2 (cf. Hertrampf et al. [HL*93])
PH = U L-P.
L definable in FOX

Burtschick & Vollmer [BV96] refined these results, the case k = 1 for (a) is
Corollary 3.4.

Theorem 4.3 (cf. Burtschick & Vollmer [BV96])

(a) TP = U L-P,
L is ¥i-definable in FOX

(b) T = U L-P.
L is Ij-definable in FOX

15

In this paper we will add a union-style result for the classes of the Boolean
Hierarchy over NP. Let NP(n) denote the level n of the Boolean Hierarchy over
NP, i. e.

NP(1) = NP,
NP(2n) {A\B| A€NP,BeNP@2n—1)},
NP(2n+1) = {A\B|A€NP,BeNP(@2n)}.

Let co-NP(n) be the set of complements of languages in NP(n). Note that
DP = NP(2) and co-DP = co-NP(2).

Let T'(1) = T denote the set of languages of dot-depth 1/2, and define the
Boolean Hierarchy over this class by

[(2n) = {Li\Ls|Ly €T, Ly €T(2n—-1)},

Let co-T'(n) be the set of complements of languages in T'(n).

We prove the following union-style result, note that for n = 1 it equals
Corollary 3.4 and Theorem 4.3(a) for & = 1. On the other hand, it implies
the case k = 1 of Theorem 4.1(b) above because the union of all classes NP(n)
equals BC(NP) and the union of all classes T'(n) is the set of languages with
dot-depth 1.

Theorem 4.4 For every n > 1 it holds the following.

(a) NP(n) = J z-p,
LeT(n)

(b) co-NP(n) = U r-p
L € co-T'(n)

Proof. First we show by induction on n that L— P C NP(n) for a language
L € T(n). By Lemma 3.3 we have L- P C NP = NP(1) for L € T'(1), i.e. we
have proven the case n = 1. Assume, the claim holds for 2n — 1 and let L €
['(2n). Then there exist languages Ly € T and Ly € T'(2n — 1) such that
L =1L;\ Ly. Let a NPTM M accept a language A via the leaf language L.
Let A; := {z | yleld(M,z) € L;} for ¢ = 1,2. Then A; € NP by Lemma 3.3
and Ay € NP(2n — 1) by the induction assumption. Now it holds that z € A
iff yield(M, z) € L iff (yield(M,) € Ly and yield(M, z) € Lo) iff (x € A1 and
x ¢ As). Thus, x € A iff v € Ay \ Ay proving A = Ay \ Ay € NP(2n). The
induction for the odd levels works dually.

For the other direction we show that each class NP (n) is contained in L, - P
for a language L, € I'(n). We define L,, explicitly by the following induction.
Let K,, be the language X*01"0X*. Note that for each n the language K, has
dot-depth 1/2, i.e. belongs to I'. Let Ly := Ky, La, := Ks, \ Lon—1, and let

16

Lant1 be the complement of the language Kapny1 \ Lan. By definition L, is an
element of T'(n).

We show by induction on n that NP(n) C L, — P such that for each lan-
guage A € NP(n) this inclusion is witnessed by a machine M whose yield is an
element of {0,010,...,0170}* for every input (we need the second part only as
an induction invariant).

For Ly = Ky such a machine M is given the following way: given a language
A which belongs to NP = 0* — P via a machine M’, let M simulate M': if M’
rejects let M also reject, and if M’ accepts then let M produce 3 computation
paths for 010. For n = 1 we have proven the induction claim.

Consider the language Lap = Kan \ Lon—1. Let A be in NP(2n), ie. A =
A"\ A", for a language A" € NP and A” € NP(2n — 1). Let A’ be in NP
via the machine M’ then A’ is in £*012?0%* - P via the machine M which
simulates M’ and replaces every accepting path by 2n + 2 paths for 01270
and rejects on a rejecting path. Let M’ be the machine for A” (via the leaf
language La,_1) whose yield is an element of {0,010,...,012"=10}* for every
input. Finally, let M""’ be the machine which first branches nondeterministically
and simulates M on the left branch and M" on the right branch. Note that the
yield of M"" is an element of {0,010,...,012?0}* for every input. It remains
to show that A is accepted by M’ via the leaf language Lo,. It holds z € A
iff (x € A" and « ¢ A") iff (yield(M,z) € Ka, and yield(M", z) € Lap_1) iff
yield(M"' z) € Lay,.

The proof for the odd levels works dually. Case (b) follows immediately. O

5 Open Problems

Under the assumption that PH does not collapse the authors could characterize
the regular leaf languages which characterize P, NP, and co-NP, respectively.
They would have liked to extend their result to other classes, for example to
higher classes of the Polynomial-Time Hierarchy like % . The (unproven) claim
for these classes would be the following: If PH does not collapse then a regular
language L characterizes X% as an unbalanced polynomial-time leaf language if
and only if L is ¥-definable but not Ilg-definable in FOX. Note that this claim
is motivated and supported by Theorem 4.3 due to Burtschick & Vollmer. But
Pin & Weil [PW95] remark that there is no algorithm known for the problem
whether the language given by an automaton has for example dot-depth 3/2.
This means that no automata criterion like the co-UP-pattern criterion is known
for dot-depth 3/2, 5/2, etc. But such an criterion seems to be necessary. For
the classes of the Boolean Hierarchy like DP the situation does not seem to be
as hopeless but the authors could not yet give a characterization.

17

Acknowledgements

The authors are grateful for comments by Klaus Ambos-Spies, Wolfgang Thomas
and Heribert Vollmer.

References

[BG92]

[BG82]

[Bo95]

[BCS92]

[BVY6]

[CG¥]

R. BEIGEL, J. GILL: Counting classes: thresholds, parity, mods, and
fewness, Theoretical Computer Science 103, 1992, pp. 3-23.

A. Brass, Y. GUREVICH: On the unique satisfiability problem, Infor-
mation and Control 55, 1982, pp. 80-88.

B. BORCHERT: On the acceptance power of regular languages, Theo-
retical Computer Science 148, 1995, pp. 207-225.

D. P. Bover, P. CrEsCENzZI, R. SILVESTRI: A uniform approach
to define complexity classes, Theoretical Computer Science 104, 1992,
pp. 263-283.

H.-J. BurrscHIicK, H. VOLLMER: Lindstrom Quantifiers and Leaf
Language Definability, ECCC Report TR96-005, 1996.

J.-Y. Car, T. GUNDERMANN, J. HARTMANIS, L.. A. HEMACHANDRA,
V. SEWELSON, K. WAGNER, G. WECHSUNG: The Boolean Hierar-
chy I: structural properties, SIAM Journal on Computing 17, 1988,
pp. 1232-1252

[CKR95] R. CHANG, J. KADIN, P. RoHATGI: On unique satisfiability and the

[Ka88]

[HL*93]

[MPT71]

[PW95]

threshold behaviour of randomized reductions, Journal of Computer
and System Sciences 50, 1995, pp. 359-373.

J. KADIN: The Polynomial Time Hierarchy collapses if the Boolean
Hierarchy collapses, STAM Journal on Computing 17, 1988, pp. 1263-
1282.

U. HerrrAMPF, C. LAUTEMANN, T. ScuwENTICK, H. VOLLMER,

K. WAGNER: On the power of polynomial-time bit-computations, Proc.
8th Structure in Complexity Theory Conference, 1993, pp. 200-207

R. McNauGHTON, S. PaperT: Counter-Free Automata, MI'T Press,
Cambridge, MA, 1971.

J.-E. PIN, P. WEIL: Polynomial closure and unambiguous product, In:
22th TCALP, Lecture Notes in Computer Science 944, Springer Verlag,
Berlin, 1995, pp. 348-359. A more detailed version named Rapport
LITP 94-60 from July 1996 can be found on the homepage of the first

author.

18

[St94] H. STRAUBING: Finite Automata, Formal Logic, and Circuit Com-
plexity, Birkhauser, Boston, 1994.

[Th82] W. THomas: Classifying reqular events in symbolic logic, Journal of
Computer and System Sciences 25 (1982), pp. 360-376.

[To91] S. Tovna: PP is as hard as the Polynomial-Time Hierarchy, STAM
Journal on Computing 20, 1991, pp. 865-877.

19

