Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97- 014 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Making Nondeterminism Unambiguous

Klaus Reinhardt*
Wilhelm-Schickard Institut fiur Informatik
Universitat Tubingen
Sand 13, D-72076 Tubingen, Germany

e-mail: reinhard@informatik.uni-tuebingen.de

Eric Allendert
Department of Computer Science, Rutgers University
P.O. Box 1179, Piscataway, NJ 08855-1179,USA

e-mail: allender@cs.rutgers.edu

April 25, 1997

Abstract

We show that in the context of nonuniform complexity, nondetermin-
istic logarithmic space bounded computation can be made unambiguous.
An analogous result holds for the class of problems reducible to context-
free languages. In terms of complexity classes, this can be stated as:

NL/poly = UL/poly
LogCFL/poly = UAuxPDA(log n, no(l))/poly

1 Introduction

In this paper, we combine two very useful algorithmic techniques (the inductive
counting technique of [Tmm88, Sze88] and the isolation lemma of [MVV8T]) to
give a simple proof that two fundamental concepts in complexity theory coincide
in the context of nonuniform computation.

Unambiguous computation has been the focus of much attention over the
past three decades. Unambiguous context-free languages form one of the most
important subclasses of the class of context-free languages. The complexity class
UP was first defined and studied by Valiant [Val76]; a necessary precondition
for the existence of one-way functions is for P to be properly contained in UP

*Supported in part by the DFG Project La 618/3-1 KOMET.

tSupported in part by NSF grant CCR-9509603. This work was performed while this
author was a visiting scholar at the Wilhelm-Schickard Institut fir Informatik, Universitat
Tiibingen, supported by DFG grant TU 7/117-1

[GS88]. Although UP is one of the most intensely-studied subclasses of NP, it is
neither known nor widely-believed that UP contains any sets that are hard for
NP under any interesting notion of reducibility. (Although Valiant and Vazirani
showed that “Unique.Satisfiability” is hard for NP under probabilistic reductions
[VV86], the language Unique.Satisfiability is not in UP unless NP = coNP.)

Nondeterministic and unambiguous space-bounded computation have also
been the focus of much work in computer science. Nondeterministic logspace
(NL) captures the complexity of many natural computational problems. The
proof that NL is closed under complementation [Imm88, Sze88] answered the
long-standing open question of whether the complement of every context-sensitive
language is context-sensitive. It remains an open question if every context-
sensitive language has an unambiguous grammar. The unambiguous version of
NL, denoted UL, was first explicitly defined and studied in [BJL.LR92, AJ93]. A
language A is in UL if and only if there is a nondeterministic logspace machine
M accepting A such that, for every z, M has at most one accepting computation
on input z.

Motivated in part by the question of whether a space-bounded analog of
the result of [VV86] could be proved, Wigderson [Wig94, GW96] proved the
inclusion NL/poly C @®L/poly. This is a weaker statement than NL C &L,
which is still not known to hold. @L is the class of languages A for which there
is a nondeterministic logspace bounded machine M such that z € A if and only
M has an odd number of accepting computation paths on input z. Given any
complexity class C, C/poly is the class of languages A for which there exists a
sequence of “advice strings” {a(n) | n € N} and a language B € C such that
z € Aif and only if (2, a(|z])) € B. Classes of the form C provide a simple link
between (nonuniform) circuit complexity classes, and machine-based complexity
classes (such as P, NP, NL, @L, etc.) that have natural characterizations in
terms of uniform circuit families.

(Tt is worth emphasizing that, in showing the equality UL/poly = NL/poly,
we must show that for every B in NL/poly, there is a nondeterministic logspace
machine M that never has more than one accepting path on any input, and
there is an advice sequence a(n) such that M(z,a(]z|)) accepts if and only
z € B. This is stronger than merely saying that there is an advice sequence
a(n) and a nondeterministic logspace machine such that M (z, a(|z|)) never has

more than one accepting path, and it accepts if and only if z € B.)

In the proof of the main result of [Wig94, GW96], Wigderson observed that
a simple modification of his construction produces graphs in which the shortest
distance between every pair of nodes is achieved by a unique path. We will refer
to such graphs in the following as min-unique graphs. Wigderson wrote: “We
see no application of this observation.” The proof of our main result is just such

an application.

2 Nondeterministic Logspace

The s-t connectivity problem takes as input a directed graph with two distin-
guished vertices s and ¢, and determines if there is a path in the graph from s
to t. Tt is well-known that this is a complete problem for NI, [JonT75].

The following lemma is implicit in [Wig94, GW96], but for completeness we
make it explicit here.

Lemma 2.1 There is a logspace-computable function f and a sequence of “ad-
vice strings” {a(n) | n € N} (where |a(n)| is bounded by a polynomial in n)
with the following properties:

e For any graph G on n vertices, f(G,a(n)) = (G1,...,Gp2).

e For each i, the graph G; has an s-t path if and only if G has an s-t path.

e If G has an s-t path then there is some i such that GG; is a min-unique
graph.

Proof: We first observe that a standard application of the isolation lemma
technique of [MVV87] shows that, if each edge in G is assigned a weight in the
range [1,4n*] uniformly and independently at random, then with probability
at least %, for any two vertices x and y such that there is a path from z to
y, there is only one path having minimum weight. (Sketch: The probability
that there is more than one minimum weight path from z to y is bounded by
the sum, over all edges e, of the probability of the event BAD(e, z,y) = “e
occurs on one minimum-weight path from 2 to y and not in another”. Given
any weight assignment w’ to the edges in G other than e, there is at most
one value z with the property that, if the weight of e is set to be z, then
BaD(e, 2,y) occurs. Thus the probability that there are two minimum-weight
paths between two vertices is bounded by Zx’y’e > o BAD(e, z, y|w')Prob(w’)
< Yoo Lwe 1/ (Anf)Prob(w’) = 37, (1/(4n%) < 1/4.)

Our advice string a will consist of a sequence of n? weight functions, where
each weight function assigns a weight in the range [1,4n%] to each edge. (There

are A(n) = 290" such advice strings possible for each n.) Our logspace-
computable function f takes as input a graph G and a sequence of n? weight
functions, and produces as output a sequence of graphs (G, ..., G2}, where

graph G; is the result of replacing each edge e = (z,y) in G by a path of length
j from z to y, where j is the weight given to e by the i-th weight function in the
advice string. Note that, if the i-th weight function satisfies the property that
there is at most one minimum weight path between any two vertices, then G;
is a min-unique graph. (It suffices to observe that, for any two vertices z and y
of G;, there are vertices z’ and y’ such that

e z’ and y are vertices of the original graph GG, and they lie on every path
between x and y,

e there is only one path from z to z’, and only one path from ¥’ to y, and

e the minimum weight path from z to y is unique.)

Let us call an advice string “bad for G” if none of the graphs G; in the
sequence f(G) is a min-unique graph. For each G, the probability that a
randomly-chosen advice string « is bad is bounded by (probability that G; is
not min—unique)”2 < (]/4)”2 = 2727" Thus the total number of advice strings
that are bad for some G is at most 2"2(2_2"214(11)) < A(n). Thus there is some

advice string a(n) that is not bad. [|
Theorem 2.2 NLC UL /poly

Proof: Tt suffices to present a UL/poly algorithm for the s-t connectivity
problem.

We show that there is a nondeterministic logspace machine M that takes as
input a sequence of digraphs (G4, ..., G,), and processes each (G; in sequence,
with the following properties:

o If G; is not min-unique, M has a unique path that determines this fact
and goes on to process Gy11;' all other paths are rejecting.

o If GG; is a min-unique graph with an s-t path, then M has a unique ac-
cepting path.

e If G; is a min-unique graph with no s-¢ path, then M has no accepting
path.

Combining this routine with the construction of Lemma 2.1 yields the desired
UL/poly algorithm.

Our algorithm is an enhancement of the inductive counting technique of
[Tmm88] and [Sze88]. We call this the double counting technique since in each
stage we count not only the number of vertices having distance at most k& from
the start vertex, but also the sum of the lengths of the shortest path to each such
vertex. In the following description of the algorithm, we denote these numbers
by ¢ and X, respectively.

Let us use the notation d(v) to denote the length of the shortest path in a
graph G from the start vertex to v. (If no such path exists, then d(v) = n+1.)
Thus, using this notation, Xy = Z{x|d(x)<k} d(z).

A useful observation is that if the subgraph of G having distance at most k
from the start vertex is min-unique (and if the correct values of ¢ and Xy are
provided), then an unambiguous logspace machine can, on input (G, k, ¢, Tg, v),
compute the Boolean predicate “d(v) < k”. This is achieved with the routine
shown in Figure 1.

To see that this routine truly is unambiguous if the preconditions are met,
note the following:

IMore precisely, our routine will check if, for every vertex z, there is at most one minimal-
length path from the start vertex to z. This is sufficient for our purposes. A straightforward
modification of our routine would provide an unambiguous logspace routine that will determine
if the entire graph G; is a min-unique graph.

Input (G, k, ¢k, X, v)
count := 0; sum := 0; path.to.v := false;
for each z € V do
Guess nondeterministically if d(z) < k.
if the guess is d(z) < k then
begin
Guess a path of length [< k from s to z
(If this fails, then halt and reject).
count := count +1; sum := sum +lI;
if = v then path.to.v := true;
end
endfor
if count = ¢, and sum = X,
then return the Boolean value of path.to.v
else halt and reject
end.procedure

Figure 1: An unambiguous routine to determine if d(v) < k.

e If the routine ever guesses incorrectly for some vertex z that d(z) > k,
then the variable count will never reach ¢ and the routine will reject.
Thus the only paths that run to completion guess correctly exactly the
set {x | d(x) < k}.

o If the routine ever guesses incorrectly the length I of the shortest path to
x, then if d(z) > [no path of length [will be found, and if d(z) <! then
the variable sum will be incremented by a value greater than d(z). In the
latter case, at the end of the routine, sum will be greater than Xj, and
the routine will reject.

Clearly, the subgraph having distance at most 0 from the start vertex is
min-unique, and ¢g = 1 and Xg = 0. A key part of the construction involves
computing ¢x and Xg from cx_1 and Xg_1, at the same time checking that the
subgraph having distance at most k from the start vertex is min-unique. It is
easy to see that ¢y is equal to ¢;—1 plus the number of vertices having d(v) = k.
Note that d(v) = k if and only if it is not the case that d(v) < k — 1 and there
is some edge (z,v) such that d(2) < k — 1. The graph fails to be a min-unique
graph if and only if there exist some v and z as above, as well as some other
z' # z such that d(z') < k and there is an edge (z’,v). The code shown in
Figure 2 formalizes these considerations.

Searching for an s-f path in graph G is now expressed by the routine shown
in Figure 3.

Given the sequence (G, ...,G;), the routine processes each G in turn. If
G; is not min-unique (or more precisely, if the subgraph of G; that is reachable
from the start vertex is not a min-unique graph), then one unique computation
path of the routine returns the value BAD.GRAPH and goes on to process Gi41;

Input (G, k, cp—1,3k-1)
Output (cg, Xx), and also the flag BAD.GRAPH

Ck 1= Cp—1; Xg 1= Xg—1;
for each vertex v do
if 7(d(v) <k —1) then
for each z such that (z,v) is an edge do
ifd(z) < k-1 then
begin
cpi=cp+ 18, =, + k;
for 2’ # z do
if (2',v) is an edge and d(z') < k —1
then BAD.GRAPH := true:
endfor
end
endfor
endfor At this point, the values of ¢; and X are correct.

Figure 2: Computing ¢ and Y.

Input (G)
BAD.GRAPH :=false; ¢g .= 1; %9 := 0;k := 0;
repeat
k=k+1:
compute ¢g and Ty from (cx_1,Bk_1);
until ¢,_1 = ¢ or BAD.GRAPH = true.
If BAD.GRAPH = false then there is an s-¢ path in G if and only if d(¢) < k.

Figure 3: Finding an s-t path in a min-unique graph.

all other computation paths halt and reject. Otherwise, if GG; is min-unique, the
routine has a unique accepting path if GG; has an s-t path, and if this is not the
case the routine halts with no accepting computation paths.]

Corollary 2.3 NL/poly = UL /poly

3 LogCFL

LogCFL is the class of problems logspace-reducible to a context-free language.
Two important and useful characterizations of this class are summarized in
the following proposition. (SAC' and AuxPDA (logn,n®")) are defined in the
following paragraphs.)

Proposition 3.1 LogCFL = AuzPDA(log n,no(])) = SAC" [Sud?8, Ven9l]

An Auxiliary Pushdown Automaton (AuxPDA) is a nondeterministic Tur-
ing machine with a read-only input tape, a space-bounded worktape, and a
pushdown store that is not subject to the space-bound. The class of languages
accepted by Auxiliary Pushdown Automata in space s(n) and time #(n) is de-
noted by AuxPDA(s(n),#(n)). Tf an AuxPDA satisfies the property that, on
every input z, there is at most one accepting computation, then the AuxPDA
is said to be unambiguous. This gives rise to the class UAuxPDA(s(n), t(n)).

SAC! is the class of languages accepted by logspace-uniform semi-unbounded
circuits of depth O(logn); a circuit family is semi-unbounded if the AND gates
have fan-in 2 and the OR gates have unbounded fan-in.

Not long after NT. was shown to be closed under complementation [Tmm&8,
Sze88], LogCFL was also shown to be closed under complementation in a proof
that also used the inductive counting technique ([BCD%89]). A similar history
followed a few years later: not long after it was shown that NL is contained
in ®L/poly [Wigd4, GWI6], the isolation lemma was again used to show that
LogCFL is contained in @SAC!/poly [G95, GW96]. (As is noted in [GW96],
this was independently shown by H. Venkateswaran.)

In this section, we show that the same techniques that were used in Section
2 can be used to prove an analogous result about LogCFL. (In fact, it would
also be possible to derive the result of Section 2 from a modification of the proof
of this section. Since some readers may be more interested in NL than LogCFL,
we have chosen to present a direct proof of NL/poly = UL/poly.) The first
step is to state the analog to Lemma 2.1. Before we can do that, we need some
definitions.

A weighted circuit is a semiunbounded circuit together with a weighting
function that assigns a nonnegative integer weight to each wire connecting any
two gates in the circuit.

Let C be a weighted circuit, and let g be a gate of C. A certificate for
g(z) = 1 (in C) is a list of gates, corresponding to a depth-first search of
the subcircuit of C rooted at g. The weight of a certificate is the sum of the
weights of the edges traversed in the depth-first search. This informal definition

is made precise by the following inductive definition. (It should be noted that
this definition differs in some unimportant ways from the definition given in

[G95, GWI6].)

e If g is a constant 1 gate or an input gate evaluating to 1 on input 2, then
the only certificate for g is the string g. This certificate has weight 0.

e If g is an AND gate of C' with inputs k1 and hy (where hy lexicographically
precedes hs), then any string of the form gyz is a certificate for g, where y
is any certificate for hy, and z is any certificate for hy. If w; 1s the weight
of the edge connecting h; to g, then the weight of the certificate yz is
w1 + wy plus the sum of the weights of certificates y and z.

e If g is an OR gate of C', then any string of the form gy is a certificate for
g, where y is any certificate for a gate h that is an input to g in C. If w is
the weight of the edge connecting h to g, then the weight of the certificate
gy is w plus the weight of certificate y.

Note that if C' has logarithmic depth d, then any certificate has length bounded
by a polynomial in n and has weight bounded by 2¢ times the maximum weight
of any edge. Every gate that evaluates to 1 on input z has a certificate, and no
gate that evaluates to 0 has a certificate.

We will say that a weighted circuit C' is min-unique on input z if, for every
gate g that evaluates to 1 on input z, the minimal-weight certificate for g(z) = 1
is unique.

Lemma 3.2 For any language A in LogCFL, there is a sequence of advice
strings a(n) (having length polynomial in n) with the following properties:

e Fach a(n) is a list of weighted circuits of logarithmic depth (C1,...,C,).
e For each input z and for each i, x € A if and only if C;(z) = 1.

e For each input x, if x € A, then there is some i such that C; is min-unique
on nput z.

Lemma 3.2 is in some sense implicit in [G95, GW96]. We include a proof for
completeness.

Proof: TLet A be in LogCFL, and let C be the semiunbounded circuit of size
n* and depth d = O(logn) recognizing A on inputs of length n.

As in [G95, GWI6], a modified application of the isolation lemma technique
of [MVV87] shows that, for each input z, if each wire in C is assigned a weight in
the range [1,4n>*] uniformly and independently at random, then with probabil-
ity at least %, C'is min-unique on input . (Sketch: The probability that there is
more than one minimum weight certificate for g(x) = 1 is bounded by the sum,
over all wires e, of the probability of the event BaD(e, g) ::= “e occurs in one
minimum-weight certificate for g(z) = 1 and not in another”. Given any weight
assignment w’ to the edges in C other than e, there is at most one value z with
the property that, if the weight of e is set to be z, then BaD(e, g) occurs. Thus

the probability that there are two minimum-weight certificates for any gate in
Cisbounded by 3° 3", BaD(e, glw')Prob(w') <37 57 1/(4n3*)Prob(w)
= Zg,e 1/(4n3k) S 1/4)

Now consider sequences § consisting of n weight functions (wi,..., wy),
where each weight function assigns a weight in the range [1,4n3*] to each edge

of C. (There are B(n) = 277" such sequences possible for each n.) There must
exist a string § such that, for each input z of length n, there is some 7 < n such
that the weighted circuit C; that results by applying weight function w; to C' is
min-unique on input z. (Sketch of proof: Let us call a sequence § “bad for z”
if none of the circuits C; in the sequence is min-unique on input z. For each z,
the probability that a randomly-chosen £ is bad is bounded by (probability that
C; is not min-unique)” < (1/4)™ = 272", Thus the total number of sequences

that are bad for some z is at most 2”(2_2”23(71)) < B(n). Thus there is some
sequence [that is not bad.)

The desired advice sequence a(n) = (Ci,...,C;) is formed by taking a
good sequence ff = (w1, ..., wy,) and letting C; be the result of applying weight

function w; to C. [|
Theorem 3.3 LogCFL C UAuzPDA (logn,n°™))/poly.

Proof: Let A be a language in LogCFL. Let z be a string of length n, and let
(C1,...,C;) be the advice sequence guaranteed by Lemma 3.2.

We show that there is an unambiguous auxiliary pushdown automaton M
that runs in polynomial time and uses logarithmic space on its worktape that,
given a sequence of circuits as input, processes each circuit in turn, and has the
following properties:

o If C; is not min-unique on input z, then M has a unique path that deter-
mines this fact and goes on to process C;41; all other paths are rejecting.

o If C; is min-unique on input 2 and evaluates to 1 on input z, then M has
a unique accepting path.

o If C; is min-unique on input z but evaluates to zero on input z, then M
has no accepting path.

Our construction is similar in many respects to that of Section 2. Given a
circuit C, let ¢x denote the number of gates g that have a certificate for g(z) = 1
of weight at most k£, and let Xj be the sum, over all gates g having a certificate
for g(z) = 1 of weight at most k, of the minimum-weight certificate of g. (Let
W (g) denote the weight of the minimum-weight certificate of g(z) = 1, if such
a certificate exists, and let this value be oo otherwise.)

A useful observation is that if all gates of C' having certificates of weight
at most k have unique minimal-weight certificates (and if the correct values
of ¢ and X are provided), then an unambiguous AuxPDA can, on input
(C,z,k,ck, Tk, g,a), compute the Boolean value of the predicate “W(g) = a <
k”. This is achieved with the routine shown in Figure 4.

Input (C,z,k,ck, Xk, g)
count := 0; sum := 0; a := o0;
for each gate h do
Guess nondeterministically if W(h) < k.
if the guess is W(h) < k then
begin
Guess a certificate of size [< k for h
(If this fails, then halt and reject).
count := count +1; sum = sum +I;
if h =g then a :=1;
end
endfor
if count = ¢, and sum = Y,
then return a
else halt and reject
end.procedure

Figure 4: An unambiguous routine to calculate W(g) if W(g) < k and return
oo otherwise.

To see that this routine truly is unambiguous if the preconditions are met,
note the following:

e If the routine ever guesses incorrectly for some gate h that W(h) > k,
then the variable count will never reach ¢ and the routine will reject.
Thus the only paths that run to completion guess correctly exactly the
set {h | W(h) < k}.

e For each gate h such that W(h) < k, there is exactly one minimal-weight
certificate that can be found. An UAuxPDA will find this certificate using
its pushdown to execute a depth-first search (using nondeterminism at the
OR gates, and using its O(logn) workspace to compute the weight of the
certificate), and only one path will find the the minimal-weight certificate.
If, for some gate h, a certificate of weight greater than W (h) is guessed,
then the variable sum will not be equal to X at the end of the routine,
and the path will halt and reject.

Clearly, all gates at the input level have unique minimal-weight certificates
(and the only gates g with W (g) = 0 are at the input level). Thus we can set
¢o = n+ 1 (since each input bit and its negation are provided, along with the
constant 1), and X = 0. A key part of the construction involves computing
¢x and X from (cx—1,Xk_1), at the same time checking that no gate has two
minimal-weight certificates of weight k. Consider each gate g in turn. If g is an
AND gate with inputs hy and hy and weights wq and ws connecting g to these
inputs, then W(g) < k if and only if (W(g) =1 < k—1)or (W(g) > k—1) and
(W (h1)+W (ha)+wi+ws = k)). If g is an OR gate, then it suffices to check, for
each gate h that is connected to g by an edge of weight w, if (W (g) =1 <k—1)

10

or (W(g) > k—1) and (W(h) + w = k)); if one such gate is found, then
W(g) = k; if two such gates are found, then the circuit is not min-unique on
input z. If no violations of this sort are found for any &, then C'is min-unique

on input z. The code shown in Figure 5 formalizes these considerations.

Input (C, 2z, k,cr_1,Zk_1)
Output (cg, Xy), and also the flag BAD.CIRCUIT

Ck ‘= Ch—1; Xk = Xg—1;
for each gate g do
if W(g) >k —1 then
begin
if g 1s an AND gate with inputs A1, hg, connected to g
with edges weighted wq, wy and
W(hl) + W(hz) + wy + wy = k then
e =cg+ 1,8, =% + k
if g is an OR gate then
for each h connected to g by an edge weighted w do
if W(h) = k — w then
begin
cpi=cg+1; 8 =Xk + k
for h' # h connected to g by an edge of weight w’ do
ifW(h') =k—w
then BAD.CIRCUIT := true:
endfor
end
endfor
end
endfor
At this point, if BAD.CIRCUIT = false, the values of ¢; and X are correct.

Figure 5: Computing ¢ and Xj.

Evaluating a given circuit C; is now expressed by the routine shown in Figure
6.

Given the sequence {(C1,...,C,), the routine processes each C; in turn. If
C; is not is min-unique on input z, then one unique computation path of the
routine returns the value BAD.CIRCUIT and goes on to process Cjy1; all other
computation paths halt and reject. Otherwise, the routine has a unique ac-
cepting path if C;(z) = 1, and if this is not the case the routine halts with no
accepting computation paths.]

Corollary 3.4 LogCFL/poly = UAuzPDA(logn,n®M))/poly.

11

Input (C)
BAD.CIRCUIT = false; co :=n+1; 3 := 0;
for k =1 to 294n3
compute (cg, Xg) from cx_1, Tgp_1;
if BAD.CIRCUIT = true, then exit the for loop.
endfor
If BAD.CIRCUIT = false then if the output gate g evaluates to 1, then it has
a unique minimal-weight certificate of some weight /.

Accept if and only if W(g) # oo

Figure 6: Evaluating a circuit.

4 Discussion and Open Problems

Rytter [Ryt87] (see also [RR92]) showed that any unambiguous context-free
language can be recognized in logarithmic time by CREW-PRAM. In contrast,
no such CREW algorithm is known for any problem complete for NL, even
in the nonuniform setting. The problem is that, although NL is the class of
languages reducible to linear context-free languages, and although the class of
languages accepted by deterministic AuxPDAs in logarithmic space and polyno-
mial time coincides with the class of languages logspace-reducible to determin-
istic context-free languages, and LogCF1L coincides with AuxPDA (log n, no(l)),
it is not known that UAuxPDA (logn, no(l)) or UL is reducible to unambigu-
ous context-free languages. The work of Niedermeier and Rossmanith does an
excellent job of explaining the subtleties and difficulties here [NR95]. CREW
algorithms are closely associated with a version of unambiguity called strong
unambiguity. In terms of Turing-machine based computation, strong unambi-
guity means that, not only is there at most one path from the start vertex to
the accepting configuration, but in fact there is at most one path between any
two configurations of the machine.

Strongly unambiguous algorithms have more efficient algorithms than are
known for general NI or UL problems. Tt is shown in [AL96] that problems in
Strongly unambiguous logspace have deterministic algorithms using less than
log® n space.

The reader 1s encouraged to note that, in a min-unique graph, the shortest
path between any two vertices is unique. This bears a superficial resemblance to
the property of strong unambiguity. We see no application of this observation.

It is natural to ask if the randomized aspect of the construction can be
eliminated using some sort of derandomization technique to obtain the equality
UL = NL.

A corollary of our work is that UL/poly is closed under complement. It
remains an open question if UL is closed under complement, although some of
the unambiguous logspace classes that can be defined using strong unambiguity
are known to be closed under complement [BJL.R92].

12

It is disappointing that the techniques used in this paper do not seem to
provide any new information about complexity classes such as NSPACE(n) and
NSPACE(2"). Tt is straightforward to show that NSPACE(s(n)) is contained in
USPACE(s(n))/2°0¢() but this is interesting only for sublinear s(n).

There is a natural class of functions associated with NL, denoted FNT. [AJ93].
This can be defined in several equivalent ways, such as

e The class of functions computable by NC! circuits with oracle gates for
problems in NL.

e The class of functions f such that {(z,%,b) | the i-th bit of f(z) is b} is in
NL.

e The class of functions computable by logspace-bounded machines with
oracles for NL.

Another important class of problems related to NL is the class #1., which counts
the number of accepting paths of a NI machine. #L characterizes the complex-
ity of computing the determinant [Vin91]. (See also [Tod, Dam, MV97, Val92,
AO96].) Tt was observed in [AJ93] that if NL = UL, then FNL is contained in
#L. Thus a corollary of the result in this paper is that FNL/poly C #L/poly.

Many questions about #L remain unanswered. Two interesting complexity
classes related to #L are PL (probabilistic logspace) and C=TL (which character-
izes the complexity of singular matrices, as well as questions about computing
the rank). Tt is known that some natural hierarchies defined using these com-

plexity classes collapse:

o ACY(C_L) = C_LO=1"""" = NC'(C_L) = L°=L [A096, ABOYG].

¢ AC°(PL) = PLPY" = NC'(PL) = PL [AO96, Ogi96, BF].
In contrast, the corresponding #L hierarchy (equal to the class of problems AC®

reducible to computing the determinant) AC®(#L) = FLAY ™ s not known
to collapse to any fixed level. Does the equality UL/poly = NL/poly provide
any help in analyzing this hierarchy in the nonuniform setting?

Acknowledgment: We thank Klaus-Jorn Lange for helpful comments, and
for drawing our attention to min-unique graphs, and for arranging for the second
author to spend some of his sabbatical time in Tibingen. We also thank V.
Vinay and Lance Fortnow for insightful comments.

References

[ABOY6] E. Allender, R. Beals, and M. Ogihara. The complexity of matrix
rank and feasible systems of linear equations. In ACM Symposium

on Theory of Computing (STOC), 1996.

[AJ93] C. Alvarez and B. Jenner. A very hard log-space counting class.
Theoretical Computer Science, 107:3-30, 1993.

13

[ALY6]

[AO96]

[BCD*+89]

[BF]

[BILR92]

[Dam)]

[G95]

[GS88]

[GWI6]

[Tmm388]

[Jon75]

[MV97]

[MVV87]

E. Allender and K.-J. Lange. StUSPACE(logn) is contained in
DSPACE(log?n/loglogn). In Proceedings of the 7th ACM-SIGSAM
International Symposium on Symbolic and Algebraic Computation
(ISAAC), volume 1178 of Lecture Notes in Computer Science, pages
193-202. Springer-Verlag, 1996.

E. Allender and M. Ogihara. Relationships among PL, #L, and the
determinant. RAIRQO - Theoretical Information and Application,
30:1-21, 1996.

A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo, and
M. Tompa. Two applications of inductive counting for complemen-

tation problems. STAM Journal on Computing, 18(3):559-578, 1989.

R. Beigel and B. Fu. Circuits over PP and PL. To appear in Proceed-
ings of the 12th Conference on Computational Complexity, 1997.

G. Buntrock, B. Jenner, K.-J. Lange, and P. Rossmanith. Unam-
biguity and fewness for logarithmic space. In Proc. 8th Interna-
tional Conference on Fundamentals of Computation Theory (FCT
’91), volume 529 of Lecture Notes in Computer Science, pages 168
179. Springer-Verlag, 1992.

C. Damm. DET = L#%? Informatik-Preprint 8, Fachbereich Infor-
matik der Humboldt-Universitat zu Berlin, 1991.

A. Gal. Semi-unbounded fan-in circuits: Boolean vs. arithmetic.
In IEEE Structure in Complexity Theory Conference, pages 82-87,
1995.

J. Grollmann and A. Selman. Complexity measures for public-key
cryptosystems. SIAM Journal on Computing, 17:309-335, 1988.

A. Gél and A. Wigderson. Boolean vs. arithmetic complexity classes:
randomized reductions. Random Structures and Algorithms, 9:99-

111, 1996.

N. Immerman. Nondeterministic space is closed under complement.

SIAM Journal on Computing, 17:935-938, 1988.

N. D. Jones. Space bounded reducibility among combinatorial prob-
lems. Journal of Computer and System Sciences, 11:68-85, 1975.

M. Mahajan and V. Vinay. A combinatorial algorithm for the deter-
minant. In Proceedings of the Fighth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), 1997.

K. Mulmuley, U. Vazirani, and V. Vazirani. Matching is as easy as
matrix inversion. Combinatorica, 7:105-113, 1987.

14

[NR95]

[Ogi96]

[RR92]

[Ryt87]

[Sud78]

[Sze88]

[Tod]

[ValT6]

[Val92]

[Ven91]

[Vin91]

[VV86]

[Wig94]

R. Niedermeier and P. Rossmanith. Unambiguous auxiliary push-
down automata and semi-unbounded fan-in circuits. [Information

and Computation, 118(2):227-245, 1995.

M. Ogihara. The PL hierarchy collapses. In ACM Symposium on
Theory of Computing (STOC), pages 84-88, 1996.

P. Rossmanith and W. Rytter. Observations on logn time paral-
lel recognition of unambiguous context-free languages. Information
Processing Letters, 44:267-272, 1992.

W. Rytter. Parallel time O(logn) recognition of unambiguous
context-free languages. Information and Computation, 73:75-86,

1987.

I. H. Sudborough. On the tape complexity of deterministic context-
free languages. J. Association of Computing Machinery, 25:405-414,
1978.

R. Szelepcsényi. The method of forced enumeration for nondeter-
ministic automata. Acta Informatica, 26:279-284, 1988.

S. Toda. Counting problems computationally equivalent to the de-
terminant. Technical Report CSIM 91-07, Department of Com-
puter Science and Information Mathematics, University of Electro-
Communications, Tokyo, 1991.

L. Valiant. The relative complexity of checking and evaluating. In-
formation Processing Letters, 5:20-23, 1976.

.. Valiant. Why is Boolean complexity theory difficult? In M. Pa-
terson, editor, Boolean Function Complexity, volume 169 of London
Mathematical Society Lecture Notes Series, pages 84-94. Cambridge
University Press, 1992.

Venkateswaran. Properties that characterize LOGCFL. Journal of
Computer and System Sciences, 43, 1991.

V. Vinay. Counting auxiliary pushdown automata and semi-
unbounded arithmetic circuits. In Proc. 6th Structure in Complexity
Theory Conference, pages 270-284. IEEE, 1991.

L. Valiant and V. Vazirani. NP is as easy as detecting unique solu-
tions. Theoretical Computer Science, 47:85-93, 1986.

A. Wigderson. NL/poly C @L/poly. In Proc. of the 9th IEEE
Structure in Complexity Conference, pages 59-62, 1994.

15

