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Abstract

We introduce a notion of a real gamne (a generalization of the Karchmer
- Wigderson game, cf.[3]) and real communication complezity, and relate
them to the size of monotone real formulas and circuits. We give an
exponential lower bound for tree-like monotone protocols (defined in [4,
Def. 2.2]) of small real communication complexity solving the monotone
communication complexity problem associated with the bipartite perfect
matching problem.

This work is motivated by a research in interpolation theorems for
propositional logic (by a problem posed in [5, Sec. 8], in particular). Our
main objective is to extend the communication complexity approach of
[4, 5] to a wider class of proof systems. In this direction we obtain an
effective interpolation in a form of a protocol of small real communication
complexity. Together with the above mentioned lower bound for tree -
like protocols this yields as a corollary a lower bound on the number of
steps for particular semantic derivations of Hall’s theorem (these include
tree-like cutting planes proofs for which an exponential lower bound was
demonstrated by [2]).

Various interesting unsatisfiable propositional formulas occurring in length-
of-proofs lower bounds can be formulated in the following form. Let U,V C
{0, 1}* be two disjoint NP-sets. The formula formalizes that the intersection of
Up = UN{0,1}" and of V,, := V N {0,1}" is not empty. A best example is
perhaps the pair consisting of the set of graphs with a k-clique and the set of
(k — 1)-colorable graphs.

An effective interpolation for a proof system P means that a good upper
bound on the complexity of sets W,, C {0, 1}" separating U, from V;, can be
given in terms of the minimal size of P-refutations of U, N'V,, # 0. The com-
plexity of W, is often measured by circuit-size. In this note we shall measure
it in terms of a particular communication complexity. This is motivated by
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an approach to interpolation developed in [4, 5] and it bypasses in a sense the
problem singled out in [5, Sec. 8]'. The approach of [4, 5] relies on commu-
nication complexity concepts and our main objective 1s to extend the concepts
so that the same method applies to a wider class of proof systems. In partic-
ular, to cutting planes, to resolution combined with cutting planes, or even to
their first-order extensions (see [5] for definitions). This was achieved in [5] via
Boolean communication complexity for the proof systems provided the abso-
lute values of coefficients occurring in inequalities in proofs is small (cf. [5] for
details). Our hope is that a generalization of the concept of a communication
game defined here will allow analogous results for the unrestricted case. In this
paper we make a first step towards this goal.

This paper is a continuation of the research pursued in [4, 5], and we do
not give any background information, motivations, or references to related
work. All this can be found in detail in [4, 5]. Vectors of integers are denoted
a,b,...,z,y,...and their coordinates a;, ..., x;, .. ..

1 Real game
Let U and V be two subsets of {0, 1}*.

Definition 1.1 A real game on the pair U,V is played by two players I and II.
Player I gets u € U and II gets v € V. At every round each player announces
one real number.

A position n a play is a binary word

w

whose length is the number of steps need to reach the position.
The initial position s

0

where B is the empty word.
In (k+1)*t step player I announces a real a and player I announces a real
B. The position after the (k + 1) step is

w0 ifa>p

or
wl fa<f

The move o (resp. ) is computed by I (resp. by II) from u (resp. from v) and
the position w only.

IThat problem, calling for a particular upgrading of the communication complexity part
of the interpolation theorem for semantic derivations ([4, Thm. 5.1]), is still open.



Let 7 be a finite set and let R C U x V x [ be any relation such that
YueUweVI3iel, R(u,v,i)
Relations satisfying this condition will be called multifunctions.

Definition 1.2 The real communication complexity of a multifunction R, de-
noted CC®(R), is the minimal number h such that there are strategies for the
players of the real game on U,V , and there is a function

g:{O,l}h—>[

such that for every u € U v € V, if the position in the game after the h*t step
1s w then

R(u, v, g(w))

A partial Boolean function is monotone if it has at least one extension to
a total monotone Boolean function. Let W C {0,1}" be a set and let f :
W — {0,1} be a partial monotone Boolean function. Put U := f(_])(l),
V= fC1(0) and I :={1,...,n}. Following [3] define RP? CU x V x Iby

R}"’“”o(u,v,i) WuceclUAveEVAuy;=1ANv; =0

Definition 1.3 ([7]) Monotone real circuit is a circuit that computes with reals
using constants and binary non-decreasing functions at gates, and that outputs
0 or 1 on all Boolean inputs.

Lemma 1.4 C’CR(R}”""") ts at most the minimal depth of a monotone real
circuit C' that computes (on W) the function f. In fact,
COR(R7™) <logy;y FSi,, ()

mon

where FSB

von (F) is the minimal size of a monotone real formula computing f.

Proof :

The first inequality is trivial. In particular, at a node of a circuit the players
announce the values at the left incoming subcircuit. In this way they construct
a path through the circuit such that in every node the value at u 1s bigger than
the value at v. Hence at an input node this gives i such that u; = 1 Av; = 0.

The strategies of the players yielding the second inequality are similar, except
that they use Spira’s trick. At a node corresponding to the output of a formula
F they find a node & splitting F' in the 1/3 - 2/3 fashion. They announce the
values on u and v at §.

If £(u) > &(v), they go to the subformula determined by &. If £(u) < &(v),
they take a formula F'(z1, ..., z,,y) such that

Fz1,...,zn) = F'(z1,..., &0, y/&(x1,...,20))



Then they continue with the game analogously, with player T substituting the
value {(u) for y in ' and 11 substituting {(v). Hence the players need logg, | F'|
rounds.

q.e.d.

A probabilistic communication complexity of a multifunction R with public
coins and error ¢ is denoted CP**(R). Denote by RS, C {0,1}™ x {0,1}" x{0,1}
the set of all triples (e, 3,4) such that 6 = 0 if & >  and § = 1 otherwise.

Theorem 1.5 (Nissan [6]) For ¢ < 3, CP**(Ry) = O(logm + loge™1).
Lemma 1.6 Let RCU x V x I be a multifunction. Then for ¢ < % it holds

CP**(R) < CC®(R) - O(logn + loge™")

Proof :
In a real game with h rounds at most |U|-|V]-2- (2" —1) < 22n+h+1 different
reals occur. Let ag < a3 < ... < ag, k < 227Th+1 be their enumeration in

an increasing order. The players may use 7 in place of a; without affecting the
game.,

One step in such a game can be simulated by O(logm + log(¢~'h)), m =
2n 4+ h + 1, steps of probabilistic Karchmer - Wigderson game with error eh™1
(Theorem 1.5). Hence the whole real game can be simulated by a probabilistic
game with error € of length

h-O(logm 4 log(e™"h) = h-O(logn + loge™")

as we may assume that h < n.

2 Protocols

We use the notion of a monotone protocol for a game on pair U, V defined in [4,
Def. 2.2]; we only measure its monotone communication complexity differently.
We define first protocols for general multifunctions; a monotone protocol will
be then just a protocol for a particular multifunction.

Definition 2.1 Let U,V C {0,1}" be two sets. Let R C U x V x I be a
multifunction. A protocol for R is a labelled directed graph G satisfying the
following four conditions:
1. G is acyclic and has one source (the in-degree 0 node) denoted ).
The nodes with the out-degree 0 are leaves, all other are inner nodes.

All inner nodes have out-degree 2 (this condition was not present in [4]
and it s added here for technical reasons only).



2. All leaves are labelled by elements of 1.

3. There is a function S(u,v,x) (the strategy) such that S assigns to a node
x and a pairw € U and v € V the edge S(u, v, ) leaving from the node x.

FEvery pair u € U and v € V defines for every node z a directed path PL, in G

from the node x to a leaf: P}, = x1,..., 2z, where x1 = x, the edge S(u, v, x;)
goes from x; to x;41, and zp, s a leaf.

4. For everyu € U and v € V there is a set F(u,v) C G satisfying:

(a) D€ F(u,0)
(b) € F(u,v) = P7, C F(u,v)
(¢) If i is the label of a leaf from F(u,v) then R(u,v,1) holds.

Such a set F' is called the consistency condition.

The protocol is tree-like iff the underlying graph is a tree.

A protocol for a particular multifunction R
{(u,v,%) | us = 1 Awv; =0}
15 called a monotone protocol for U, V.

Note that some S(u, v, z) could be defined in terms if F'(u,v) (as the leftmost
son that is also in F'(u,v)). In applications however, some other definition may
be more natural, cf. [4].

Definition 2.2 Let G be a protocol for R. Let S(u,v,z) and F(u,v) be the
strategy function and the consistency condition of G respectively.

The real communication complexity of G, denoted CCR(G), is the minimal
t such that for every x € G the players (one knowing u and z, the other v and
z) decide whether x € F(u,v) and compute S(u,v,z) in at most ¢ rounds of the
real game.

Lemma 2.3 Let U,V C {0, 1}" be two disjoint sets. Any monotone real circuit
C of size S separating U from V determines a monotone protocol G for U,V
with S nodes whose real communication complexity is 1.

Proof :

G is the underlying graph of C'. The consistency condition F(u,v) con-
tains all subcircuits z such that the value at x for u is bigger than for v. The
strategy S(u,v,z) assigns to z one of its two subcircuits that is also in F(u, v)
(monotonicity of C' guarantees its existence).

q.e.d.



In Boolean case a form of a converse statement holds, see [4, Thm. 2.3] that
restates [10, Thm. 3.1] in terms of protocols.

Theorem 2.4 Let G be a tree-like protocol of size S for a multifunction R and
assume that CC®(G) =t. Then

CP"*(R) <log S -t-O(logn + loge™! + log S)

Proof :

The protocol GG is a binary tree that the players use to find 7 € I such that
R(u,v,1) holds. We shall transform it into a balanced binary tree G* that will
serve as a strategy for the probabilistic Karchmer - Wigderson game.

In the first step we transfer G into G’ that will have the tree height O(log S)
and the same real communication complexity as (G. The players take a node z
dividing G in the 1/3 - 2/3 fashion. They decide (in ¢ rounds at most) whether
x € F(u,v). If the answer is affirmative they will concentrate on the subtree of
G with root . Otherwise the remain in the same root and delete the subtree
from G. This procedure defines G’.

By Lemma 1.6 the strategy function in G’ can be computed by a probabilistic
game with error €571 and length ¢ - O(logn +loge~! 4+ log S). Hence the whole
tree G', with the original edges replaced by the binary trees of height ¢-O(log n+
loge™! +log S), works as a strategy for the probabilistic game with total error
€.

This new tree G* has height O(log S -t - (logn + loge™" + log 5)).

q.e.d.

Using Theorem 2.4 we shall be able to transfer a lower bound from [9] to a
lower bound for tree-like protocols of small real communication complexity. We
use the same Boolean function as [9].

Let I, J be two sets of size n. Consider a monotone Boolean function BPM
that gives to a bipartite graph G C I x J the value 1 iff G contains a perfect
matching. Tnputs to BPM are n? variables z;;, i € I,j € J. Their truth
evaluations are in one to one correspondence with bipartite graphs.

Theorem 2.5 Let G be a tree-like protocol for BPM of size S, and such that
CCR(G) =t. Then

n

——)?)

5= eXp(Q((tlogn

Proof :
By Theorem 2.4

CI"*(RE37) <logS -1 -O(logn +1logc ™" +log S)



By [9, Thm. 4.4]
CP*(Rpsrg) = Q(n)

while by [8, Lemma 1.4] for any R

CH*(R) < (CP""(R) +2)(logy /. n+ 1)

Taking ¢ := n~! we get

n

log? S = Q( )

tlogn’

3 An interpolation theorem

The notion of a semantic derivation was defined in [4, Def. 4.1]. A sequence
of sets Dy, ..., Dy (tacitly all subsets of some {0, 1}"V) is a semantic derivation
of Dy from Ay, ..., Ay if each D; is either one of A;’s or contains D;, N D;,,
for some 1,42 < 7. We modify the definition of its communication complexity
([4, Def. 4.3]) to accommodate new communication complexity over reals. We
consider only the monotone case, as that is the case potentially yielding lower
bounds.

Definition 3.1 Let N = n + s+t be fived and let A C {0,1}V. Let u,v €
{0.1)7, v € 0,1} and =" € {0,1}"

Consider three tasks:
1. Decide whether (u,y",z") € A.
2. Decide whether (v, y",z") € A.
3. If (u,y*,z%) € A and (v,y*,2") & A either find i < n such that
w;=1Av; =0
or learn that there is some v’ satisfying
u' >uA(u yt )¢ A
(v’ > u means /\ign up > u;.)

These tasks can be solved by two players, one knowing u,y* and the other one
knowing v, 2.

The monotone real communication complexity w.r.t. U of A, MCCE(A), is
the minimal t such that the tasks 1.-3. have real communication complezity < t.



The word monotone in MCCII} refers to the form of task 3..

Let N = n 4 s+t be fixed for the rest of the section. For A C {0,1}"+
define the set A by:

A= {ab,e)|cefo,1}%}

(a,b)eA

where a,b, ¢ range over {0,1}", {0,1}* and {0, 1}" respectively, and similarly
for B C {0, 1}"** define B:

Bi= |J {(abe)lbe{0,1)).

(a,c)€B

Theorem 3.2 Let Ay, ..., Ay C {0,1}"* and By,..., B, C {0,1}**'. As-

sume that there is a semantic derivation # = Dy, ..., Dy of the empty set § = Dy,
from the sets Ay,..., Am,B1,..., Bg.
Assume that the sets Ay, ..., A, satisfy the following monotonicity condition:
(u,y") € ﬂ AjAu<u — (v, y") € ﬂ A;
js<m jsm

and that MCCR(D;) <t foralli <k

Define two sets

U={ue{0,1}" | Iy €{0,1}"; (u,y*) € [ 4}
ji<m

and
V={ve{0,1}" |3 0,1} (v,2*) €[ B}
jse
Then there is a monotone protocol G for U,V of size at most k + n whose real
communication complerity CC®(G) is at most t.
Moreover, if the semantic derivation is tree-like then so is G.

Proof :
The proof of the theorem entirely parallels the proof of the monotone part
of [4, Thm. 5.1].

q.e.d.

CP is the cutting planes proof system, R is the resolution, and R(CP) is a
proof system introduced in [5] combining naturally R with CP (working with
clauses formed by integer inequalities). We shall not repeat the formal defin-
itions here as we wish to stress that the method applies to all CP-like proof
systems. These are proof systems satisfying the following conditions:



1. Proof-steps are integer inequalities of the form a12z1 4+ ...+ anz, > b, with
a; and b integers and x; variables (called CP-inequalities).

2. All axioms are tautologically valid.

3. All inference rules are sound and have at most two hypotheses (the later
condition is just a technical one).

Theorem 3.3 Let Ei(x,y), ..., Em(z,y), Fi(z,z),..., Fi(z,z) be a system of
CP-inequalities in which only the displayed variables x = (x1,...,2,), y =
(y1,...,ys) and z = (z1,...,2) occur. Let N :=n+s+t. Assume that there
s a refutation w of the system in a CP-like proof system such that 7 contains k
steps. Assume also that x; occur in all Eq, ..., E,, with non-negative coefficients
only.

Then there is a monotone protocol G for U,V :

U={ue{0,1}" | 3y* €{0,13*; A\ FEi(u,y*)}

V={ve{0,1}" 32" €{0,1}; )\ Fj(v,2")}
i<t
such that the size of G 1s at most k + n and its real communication complezity
is O(1).

Moreover, if the refutation m s tree-like then also G is tree-like.

Proof :

Replace each CP-inequality D in 7 by the subset D of {0, 1}V of assignments
satisfying it. This yields a semantic refutation of E;’s and Fj’s. It is easy to see
that for every set A occurring in the refutation it holds that M CCH(A) = O(1).
The rest follows from Theorem 3.2.

q-e.d.

4 Lower bounds for Hall’s theorem

Impagliazzo, Pitassi and Urquhart [2] proved that a set of clauses related to
BPM (similar to Hall,, below) requires exponential size tree-like CP - refuta-
tions. In this section we derive a mild generalization of their theorem (with
CP - like proof systems in place of just CP) as an immediate corollary of the
monotone interpolation Theorem 3.3 and of Theorem 2.5.

We shall define two sets of CP-inequalities formalizing Hall’s theorem. Let
Yai and yg;, a € {1,...,n}, i € I, j € J be 2n? variables. Consider the
inequalities:



.Y vai > 1 allae{l,... n}.

2. 1= yai + 1 —yu; > 1, all different a,a’ € {1,...,n}.

3. ij:”.ZLallaE{l,...,n}.

4ol =y +1 - yfl,j > 1, all different a,a’ € {1,...,n}.

5. 1= Yai+1—yp;+ai;j > 1 allaa" €{l,...,n},i€land jeJ.

The inequalities 1. and 2. force that y,; determines a bijection f: {1,...,n} —
I, and similarly 3. and 4. say that y;; determine a bijection g : {1,...,n} — J.
Conditions 5. imply that the edges {(f(a),g(a)) € I x J |a € {1,...,n}} form
a perfect matching in G.

Let Ej(x,y,y') be all these CP-inequalities. Clearly the set

U:={xec{0,1}"" |3y,y; N\ Ei(z,v.9)}

is the set of graphs given 1 by BPM.

The set V' of graphs given 0 by BPM can be defined analogously by CP-
inequalities Fj(xz, z, z’, z"") using Hall’s theorem. They formalize that X is a
subset {1,...,n} of containing n which is determined on {1,...,n — 1} by
z{,...,z_,, and that for some bijections f : X N {1,...,n} — [ and g :
Xn{l,...,n=1} > J(or f: Xn{l,...,n} > Jandg: Xn{l,...,n—1} > I)
determined by z,; and z;;, all neighbors of nodes in Rng(f) are in Rng(g). The
set of all these 0(114) inequalities £; and Fj is denoted Hall,,.

Theorem 4.1 Let m be a tree-like refutation of Hall, in any CP-like proof
system. Assume that ™ has k steps.
Then n
k> exp(Q((—)Y?
> exp(@(2m) )
Proof :
By Theorem 3.3 there is a tree-like protocol G for BPM whose size is k+n and
whose real communication complexity is O(1). The lower bound then follows
by Theorem 2.5.

q.e.d.

5 Problems

An obvious problem is to generalize Theorem 2.5 and to prove strong lower
bounds for general non - tree - like protocols (perhaps for a different monotone
function than BPM as in Thm. 2.5, e.g. for the clique function). Using Theorem
3.3 this would give a new proof of the lower bound for CP proved in [7, 1] (in

10



fact, for all CP - like proof systems). Assuming that Lemma 2.3 admits some
form of a converse, the exponential lower bounds for monotone real circuits
proved in [1, 7] would yield a ground for such a generalization.

Another problem is to extend Theorem 4.1 from tree - like CP-like proof
systems to tree - like R(CP)-like proof systems (or even, together with a solution
of the previous problem, to general R(CP) - like proof systems). In [5] a lower
bound for R(CP) was given that depends on the maximum number W of CP-
inequalities in a clause and on the maximum absolute value M of a coefficient in
any CP-inequality. Theorem 4.1 drops the dependence on M for tree-like proofs,
assuming W = 1. A similar bound for W > 1 could be deduced from an estimate
of the real communication complexity of the following decision problem.

For b € ZW define

Q) :={xeZV |z <balli<W}

Player I gets a,ci,...,cn, € ZW while II gets b € Z". They should decide

whether
at+ > e €Q(b)
el
for some I C {1,...,n}.

Let t(W, n) be the real communication complexity of this decision problem.
Then if A C {0,1}" is defined by a disjunction of W CP-inequalities it holds
that

MCCE(A) = O(t(W,n)logn)
(this is analogous to [5, Lemma 5.1]). Hence we would get a lower bound of the
nl/2
form exp(Q(it(Wﬁ)l/2 Togm ).
Acknowledgements: I thank R. Impagliazzo for telling me about [6], and
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