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Abstract

Following Ajtai’s lead, Ajtai and Dwork have recently introduced a public-key encryption
scheme which is secure under the assumption that a certain computational problem on lattices
is hard on the worst-case. Their encryption method may cause decryption errors, though with
small probability (i.e., inversely proportional to the security parameter).

In this note we modify the encryption method of Ajtai and Dwork so that the legitimate
receiver always recovers the message sent. That is, we make the Ajtai-Dwork Cryptosystem
error-free.
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1 Introduction

A major project of our field is to find concrete hard problems which can be used for “doing Cryp-
tography” (e.g., constructing encryption schemes, message-authentication codes and digital sig-
natures). As current state of the art in Complexity Theory does not allow to prove that such
(cryptographically-useful) problems are hard, one has to rely on unproven and yet plausible as-
sumptions. It is thus important to have as many alternative/unrelated assumption as possible, so
that Cryptography can be based on any one of them. So far there are very few alternatives; and
so Ajtai’s work [1], which suggests a new domain out of which adequately-hard problems can be
found, marks an important day for Cryptography.

In particular, Ajtai constructed a one-way function based on the assumption that Lattice Re-
duction is hard in the worst-case. Following his lead, Ajtai and Dwork have recently introduced a
public-key encryption scheme which is secure, provided that the following (worst-case complexity)
assumption holds [2]:

Assumption ISVP (Infeasibility of Shortest Vector Problem): There exists no polynomial-time
algorithm, which given an arbitrary basis for an n-dimensional lattice, having a “unique poly(n)-
shortest vector”, finds the shortest (non-zero) vector in the lattice. By having a unique poly(n)-
shortest vector we mean that any vector of length at most poly(n) times bigger than the shortest
vector is an integer multiple of the shortest vector.

The encryption method of Ajtai and Dwork [2], has a non-zero decryption-error probability.
Specifically, when working with security parameter n, the ciphertext of the message bit ‘1’ is
decrypted to be a ‘0" with probability L. (The ciphertext corresponding to the message bit ‘0’ is
always decrypted as ‘0°.)

In this note we modify the encryption method of Ajtai and Dwork so that every message is
always decrypted correctly. Thus, we obtain a error-free encryption scheme which is secure under
the same assumption used by Ajtai and Dwork.

2 The Encryption Scheme

In this section we recall the construction of Ajtai and Dwork [2] and describe our modification of it.
In our scheme we set the common parameters as they do, and use almost the same key-generation
algorithm. The modification is merely in the encryption of the bit ‘1’ and respectively in the
decryption algorithm.

2.1 The Ajtai-Dwork Construction

We start by recalling the Ajtai-Dwork construction. To simplify the exposition we present the
scheme in terms of real numbers with infinite precision. In realty, following [2], one uses approxi-
mations (i.e., to n-bit binary expansions).

Common Parameters. Given security parameter n, we let m = n®, R L 90(n 8n) and r L -3,
We denote by B (for big) the n-dimensional sphere of radius R, and by S (for small) the n-
dimensional sphere of radius r.

Private-key. Given security parameter n, the private-key is a uniformly chosen vector in the
n-dimensional unit sphere. We denote this vector by .



Public-key.

1. select ay,...,a, uniformly from the set of vectors {z € B : (z,u) € Z}, where (z,y) denotes
the inner-product of the vectors z and y, and Z denotes the set of integers.

2. For i =1,...,m, select 6;1,...,06;, uniformly in 5, and set §; = >_7_, 6; ;. (Thus, each of

ji=1
the é;’s is a random variable which is almost “concentrated uniformly” among the vectors of

length v/n - r.)
3. Set v, =a; + 6;,fore=1,...,m.

4. Let g be the smallest ¢ for which the width of the parallelepiped spanned by v;41,...,vign
is at least n=% - R. (By [2], with overwhelmingly high probability i, exists and is smaller

than m/2.) For j = 1,...,n, let w; ! i+, and denote by P(wy,...,w,) the parallelepiped

spanned by w,...,w,.
The public-key consists of the sequence of vectors (vy,...,v,,) and the integer ¢, € {1,...,m}.
Encryption. To encrypt a '0’, we uniformly select by,...,b,, € {0,1}™, and reduce the vector
v’ = 57", b; - v; modulo the parallelepiped P(w,,...,w,). By reducing a vector v’ modulo P, we

mean obtaining a vector v in P so that ' = v + .., ¢; - w;, where the ¢; are all integers. The
vector v is the ciphertext which correspond to the bit "0’

To encrypt a ’1’ we uniformly select a vector v in the parallelepiped P. This vector is the ciphertext
which correspond to the bit ’1°.

Decryption. Given a ciphertext, ¢, and the private-key u, we compute 7 = (¢, u). We decrypt
the ciphertext as a ’0’ if 7 is within 1/n of some integer and decrypt it as a ’1” otherwise.

Decryption errors. In [2], Ajtai and Dwork have shown that if ¢ is an encryption of ’0’, then
the fractional part of 7 is always less than 1/n in absolute value, and that if ¢ is an encryption 1’
then the fractional part of 7 is distributed almost uniformly in (—%, +%] Thus, an encryption of ’0’
will always be decrypted as ’0’, and an encryption of '1” has a probability of 1/n to be decrypted
as 0’

2.2 An Error-free Construction

We proceed now to describe our modification which eliminates the decryption errors from the con-
struction above. In this modified scheme, just like in the original Ajtai-Dwork scheme, encrypting
a ’0’ results in a ciphertext ¢ such that (c,u) is close to an integer. However, in our scheme we also
make sure that encrypting a '1’ results in a ciphertext ¢ such that (¢, u) is far from any integer.
The modified scheme is as follows:

Common Parameters and private-key. The common parameters n,m, R, r, B and 5, and the
private key u, are set in exactly the same manner as in the original scheme.



Public-key (modified).

1. The vectors vy,---,v,, are chosen in exactly the same manner as in the original scheme.
Namely, we first select at random the vector @y, -+, a,, € B s.t. (a;,u) € Z, then choose the
“small vectors” é,---,d,, and set v; = a; + §;.

2. The integer iq us set just like in the original scheme, as the first index for which the width of
the parallelepiped P(v;y41, "+, Vigpn) i8 > 072 - R.

3. In addition, we pick ¢; uniformly at random from all the indices ¢ for which (a;,u) € 22 + 1.
That is, 7; is selected so that (a;,,u) is an odd integer. We note that such an index exists
with probability ~ 1 — 2=™.

The public-key consists of the sequence of vectors (vy,...,v,) and the integers ig,%; € {1,...,m}.

Encryption (modified). We encrypt a ’0’ just like in the original scheme, by uniformly selecting
bi,...,by € {0,1}™, and reducing the vector Y ;- b; - v; modulo the parallelepiped P(wy,...,w,).
The difference is in the encryption of a ’1’. We do that by uniformly selecting b1,...,b,, € {0,1}™,
and reducing the vector %vil + 5772, b; - v; modulo the parallelepiped P(wy, ..., w,).

Decryption (modified): Given a ciphertext, ¢, and the private-key u, we compute 7 = (¢, u). We
decrypt the ciphertext as a 0’ if 7 is within 1/4 of some integer and decrypt it as a ’1’ otherwise.

In contrast to the encryption scheme in [2], we can show that in our scheme there is no decryption
error. Furthermore, by the setting of parameters in [2] we have:

Proposition 1 (error-free decryption): For every o € {0,1}, every choice of the private and
public keys, and every choice of b;’s by the encryption algorithm, the ciphertext, ¢, satisfies (¢, u) €
Z+242

Proof: The case of 0 = 0 was proven in [2]. Actually, the non-integer part was bounded there by

1/n. The case o = 1 follows by letting ¢/ = ¢ — % - v;, and observing that

(c,uy = (0.5-v;,,u)+ (,u) (mod1)
= 05+ %) + % (mod 1)

(Using the fact that (a;,,u) is an odd integer.) The claim follows. W

3 Security of the Modified Scheme

To prove the security of the modified scheme, we start by invoking the main result of Ajtai and
Dwork [2]:

Theorem 2 [2, Thm 7.1]: Under Assumption ISVP, it is infeasible to distinguish the encryption
of o = 0 from a uniformly distributed point in P = P(wy,...,w,), when given (vy,....,v,) and
io as auxiliary inputs. (We stress that (vi,...,vm), 1 and the encryption of ‘0 are distributed as
described above.)



Note that this theorem establishes the security (cf., [3]) of the encryption scheme of Ajtai and
Dwork [2], since in that scheme ¢ = 1 is encrypted as a uniformly chosen point in P. However, to
establish the security of our (modified) encryption scheme (under the same assumption), we need
to prove

Theorem 3 (security): Under Assumption ISVP, it is infeasible to distinguish the encryption of

o = 0 from the encryption of 0 = 1, when given (vy,...,v,) and iy,%; as auziliary inputs. (We
stress that (vy,...,vm), %, and the encryptions are distributed as described above.)
Let us denote by F.(o) the probabilistic encryption of o using the encryption key e = (01, -y Um), to, 01).

Assuming ISVP, we will show that for both o € {0, 1}, it is infeasible to distinguish (e, F.(o)) from
(e, 1), where II is uniformly distributed in P = P(v;,41, ..., Vig4n)-

First we show that this holds for ¢ = 0. Note that this claim is not identical to Theorem 2, as
here the distinguisher is given ¢; as extra information. Still, Theorem 2 does imply the following

Lemma 3.1 Under Assumption ISVP, it is infeasible to distinguish (e, E.(0)) from (e, 1), where

e ((v1, ..y Um), T, 1) 15 selected as above and 11 is uniformly distributed in P = P(v; 41, -+, Viggn )-

Proof: Suppose towards the contradiction that there exists a distinguisher, D, of running-time
t(n) and distinguishing gap €(n) (between (e, £.(0)) and (e,II) as in the claim). We construct a
new distinguisher, D', as follows

input: ((v1,....,05,),%) and p.

preprocessing: Using D, we find an index j which approximately maximizes the distinguishing
gap of D on inputs of the form (e;,-), where ¢, = ((v1,....,0m),%,7). This is done by
estimating, for every 7 = 1,..., m, the value of

Prob(D(e;, E.,(0)) = 1) — Prob(D(e;,11) = 1)

where the probability is taken over the internal coin tosses of both the encryption algorithm
(i.e., choice of b;’s) and D. Invoking D for poly(n)/e(n)? times we may obtain, with over-
whelmingly high probability, an approximation of the above upto €(n)/4. Let 7 € {£1}
denote the sign of the approximated difference for the best j.

decision: Using j and 7, found in the preprocessing, we invoke D on input (e,p). Let o € {£1}
denote the output of D. Then D' outputs 7 - 0.

Clearly, D' has running time poly(n,t(n),e(n)~'), which is polynomial in n whenever ¢(n)/e(n) is.
It is easy to see that

|Prob(D'(¢', E.(0)) = 1) — Prob(D'(¢',1I) = 1)| > €¢(n)/2
where ¢ = ((v1,....,0m), 40,4, is selected as above and ¢ % ((vy,....,v,),i0). Thus, we have a
distinguisher violating the conclusion of Theorem 2, and so contradiction follows. W
Using Lemma 3.1, we easily derive

Lemma 3.2 Under Assumption ISVP, il is infeasible to distinguish (e, E.(1)) from (e,II), where
e and Il are as in Lemma 3.1.



Proof: Suppose towards the contradiction that there exists a distinguisher, D, of running-time
t(n) and distinguishing gap €(n) (between (e, E.(1)) and (e,II) as in the claim). We construct a
new distinguisher, D', as follows

input: e = ((v1,....,0m), %, %) and p.

processing: Let p’ denote the result of reducing p — %vi modulo P = P(v; 41,...,Vi,4n). Algo-

rithm D’ computes p’, and outputs D(p').

1

Observe that F,(0) and F,.(1) — $v;, (reduced mod P) are identically distributed. Similarly, I and

IT — 1v;, (reduced mod P) are identically distributed. Thus, D’ distinguishes (e, E.(0)) from (e, IT),
in contradiction to the claim of Lemma 3.1. The current lemma follows. W

Combining Lemmas 3.1 and 3.2, we have established Theorem 3. W

Comment 1 — An alternative proof of Theorem 3. The security of the [2]-encryption
scheme is established via a sequence of reductions, the first of which transforms a distinguisher
of (ciphertext,public-key) pairs into a distinguisher of public-keys from sequences of m uniformly
distributed points in the big sphere B. Omne can easily verify that this argument holds also for
distinguishers of encryptions under our modified scheme. W

Comment 2 — Added security. Recall from Proposition 1 that if the ciphertext ¢ is an encryp-
tion of the bit o, then it satisfies (¢, u) € Z+ 2+ 2, so there is a “gap” between encryptions of '0’a
and ’1’s. We can take advantage of this gap, by picking larger “errors” ¢; during the key-generation
process. Indeed, it can be shown that the scheme remains error-free even if we pick each §; as a
sum of n vectors which are uniformly selected in a sphere of radius n=2 (rather than n=3 as above).

This “larger errors” can add to the security of the system. Indeed, going through the proof in
[2] one can verify that this factor of n in the error size is translated into a corresponding factor
in the poly(n)-uniqueness of Assumption ISVP. Specifically, the security proof in [2] assumes the
difficulty of finding the shortest non-zero vector in a lattice with a “unique n®-shortest vector”.
Instead, when using these larger errors, and without any change in the other parameters in the
proof, one can show that it is sufficient to assume difficulty of finding the shortest non-zero vector
in lattices with a “unique n”-shortest vector”.
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