Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97- 019 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

A Lower Bound for Randomized
Read-£-Times Branching Programs

Martin Sauerhoff™
FB Informatik, LS II, Univ. Dortmund, 44221 Dortmund, Germany
sauerhoff@ls2.informatik.uni-dortmund.de

Abstract

In this paper, we are concerned with randomized OBDDs and randomized read-k-
times branching programs. We present an example of a Boolean function which
has polynomial size randomized OBDDs with small, one-sided error, but only non-
deterministic read-once branching programs of exponential size. Furthermore, we
discuss a lower bound technique for randomized OBDDs with two-sided error and
prove an exponential lower bound of this type. Our main result is an exponential
lower bound for randomized read-k-times branching programs with two-sided error.

1 Introduction

Branching programs are a theoretically and practically interesting data structure for the repre-
sentation of Boolean functions. In complexity theory, among other problems, lower bounds for
the size of branching programs for explicitly defined functions and the relations of the various
branching program models are investigated.

A branching program (BP) on the variable set {z1,...,2,} is a directed acyclic graph with one
source and two sinks, the latter labelled by the constants 0 and 1. Fach inner node is labelled
by a variable z; and has exactly two outgoing edges labelled by 0 or 1. This graph represents
a Boolean function f:{0,1}" — {0,1} in the following way. To compute f(a) for some input
a € {0,1}", start at the source node. For an inner node labelled by z;, check the value of this
variable and follow the edge which is labelled by this value. Iterate this until a sink node is
reached. The value of f on input « is the value of the reached sink. The size of a branching
program (7 is the number of its inner nodes and is denoted by |G].

We can also assign a Boolean function to every node of a branching program, not only to
the source. Furthermore, note that every path of a branching program can be regarded as an
assignment of variables.

*This work has been supported by DFG grants We 1066/7-3 and We 1066/8-1.

Read-k-times branching programs are branching programs with the restriction that on each path
from the source to a sink each variable is allowed to be tested at most k& times. This model is
sometimes termed syntactic read-k-times BP, in contrast to the “non-syntactic” variant with the
restriction that only on each consistent path from the source to a sink each variable is allowed to
be tested at most k times (a path is called consistent if its assignment of variables is consistent).
In this paper, we only consider syntactic read-k-times BPs.

The first exponential lower bounds for a branching program model have been proved for read-
once branching programs (i.e. the case £ = 1 in the above definition). The theory of this model
is especially well understood, and there is a large collection of interesting lower bound results
for it (Razborov (1991) gives an overview, for a summary of proof techniques, see Simon and
Szegedy (1993)). In the context of this paper, lower bounds for general k are more interest-
ing. For syntactic read-k-times BPs, exponential lower bounds have been independently proved
by Okolnishnikova (1993) for k < e(logn/loglogn), ¢ < 1, and by Borodin, Razborov, and
Smolensky (1993) even for non-deterministic syntactic read-k-times BPs and k < elogn, for
appropriate e. Recently, Jukna (1995) extended these results by showing an exponential gap
between the size of non-deterministic read-k-times BPs for the function of Okolnishnikova and
its complement. Up to now, proving lower bounds for non-syntactic branching programs is an
open problem.

We mention another type of branching program which will be important in the sequel. OBDDs
(ordered binary decision diagrams), introduced by Bryant (1986), are a restricted form of read-
once-branching programs. An OBDD is a branching program with a prescribed ordering of
variables. On each path from the source to the sinks, the variables have to be tested according
to this ordering. OBDDs are the most important branching program type for applications (see
the survey of Bryant (1992) for further information). Lower bounds for OBDDs have been
proved, e.g., by Bryant (1991), Hosaka, Takenaga, and Yajima (1994) and Bollig, Sauerhoff,
Sieling, and Wegener (1996).

In this paper we are concerned with randomized branching programs, i.e. branching programs
with additional “coin-tossing nodes”. Probabilistic complexity classes can be defined as for
probabilistic Turing machines, which have been intensively studied since their introduction by
Gill (1972). There are very few published results on randomized branching programs so far.
Ablayev and Karpinski (1996a) analyzed randomized OBDDs defined in analogy to randomized
circuits from switching theory (Ajtai and Ben-Or 1984). They used a string-comparison function
to show that there are functions that have randomized OBDDs which are exponentially smaller
than deterministic KOBDDs for k = o(n/logn). (A kKOBDD with variable ordering 7 is a read-
k-times BP which can be partitioned into k layers such that each layer is an OBDD ordered
according to 7. This model has been studied by Bollig, Sauerhoff, Sieling, and Wegener (1996).)
Recently, Ablayev and Karpinski were able to extend the lower bound even to non-deterministic
EOBDDs for a modified version of the function (unpublished manuscript, Ablayev and Karpinski
1996h).

Ablayev and Karpinski have also shown that a nonboolean variant of their string-comparison
function has exponential read-once BP size. But it has been an open problem so far to find
a Boolean function exhibiting an exponential gap between deterministic and randomized com-
plexity for read-once BPs.

What is known about lower bounds for randomized branching programs? Of course, all lower
bounds for non-deterministic branching programs are also lower bounds for randomized branch-

ing programs with one-sided error (as for Turing machines, one-sided error is a weaker concept
than non-determinism). Lower bounds for non-deterministic OBDDs can be obtained by the
well-known fooling set technique (see Krause (1991), Bryant (1991) and also Kushilevitz and
Nisan (1997) for the related technique for covers by 1l-rectangles). Thus, we know e.g. for the
multiplication function (see Bryant 1991) or for the functions analyzed in the paper of Krause
(1991) that they are not computable by polynomial size randomized OBDDs with one-sided
error, since it follows from the known fooling set constructions that these functions have expo-
nential non-deterministic OBDD size.

But in order to get lower bounds for randomized branching programs with two-sided error, the
known proof techniques cannot be used. Lower bounds for randomized OBDDs with two-sided
error have been proved independently already in 1996 by Ablayev (manuscript, Ablayev 1996,
accepted at ICALP ’97) and the author.

We contribute to the theory of randomized branching programs in the following way. We
first present an example of a Boolean function which has polynomial size randomized OBDDs
with small one-sided error, but which has exponential size even for non-deterministic read-once
branching programs (this extends the gap between deterministic and randomized OBDDs shown
by Ablayev and Karpinski (1996a)). On the other hand, we show how exponential lower bounds
on the size of randomized OBDDs with two-sided error can be established using tools from
communication complexity theory.

Our main result is an exponential lower bound on the size of randomized read-k-times branching
programs. We use a function introduced by Borodin, Razborov, and Smolensky (1993) that
decides if a special kind of inner product of the input vectors is zero. We show that randomized
read-k-times branching programs with two-sided error for this function have exponential size.
The rest of the paper is structured as follows. In Section 2, we first state some further definitions.
Section 3 contains results on randomized OBDDs. The last two sections are devoted to our main
result. In Section 4, we introduce our proof technique for randomized read-k-times BPs, and
Section 5 contains the proof of the lower bound.

2 Definitions and Basic Facts

All the following definitions deal with variants of general branching programs, but it is easy to
see that analogous notions can also be defined for the restricted models, especially read-k-times

BPs and OBDDs.
For non-deterministic branching programs we use the definition of Meinel (1988).
Definition 1: Let be a set of binary Boolean operators. An Q-branching program is a branch-

ing program which may contain nodes labelled by a function w € € and which have two unla-
belled outgoing edges.

The semantics of an Q-branching program is inductively defined. We assign a Boolean function
Jfv to each node v as follows. For a sink with value ¢, let f, = ¢. If v is an inner node labelled by
a variable z;, and vg, vy are the nodes reached from v by the 0- and 1-edge, resp., then define

fv :::E_i'fvo \/:Ei'fvly

as for an ordinary branching program. If v is an inner node labelled by w € Q and has successors
v1 and vy, let

fo 1= w(v1,02).
The size of an Q-branching program is the number of all its inner nodes.

Non-deterministic branching programs are {V}-branching programs in the sense of this defin-
ition, ordinary branching programs are obtained by choosing @ = (). We denote the class
of sequences of Boolean functions which are computable by polynomial size non-deterministic
branching programs by NP-BP. The class coNP-BP contains all sequences of Boolean functions
computable by {A}-branching programs of polynomial size. (Analogously define the classes

NP-BPk and coNP-BPE for read-k-times BPs, NP-OBDD and coNP-OBDD for OBDDs.)

Definition 2: A randomized branching program G syntactically is a (deterministic) branching
program with two disjoint sets of variables zq,...,2, and z1,...,2,. We will call the latter
“stochastic” variables. Let g: {0,1}"*t" — {0, 1} be the function computed by G as a determin-
istic branching program.

We say that G (as a randomized branching program) represents a function f: {0,1}" — {0,1}
with

o one-sided error at most ¢, 0 < ¢ < 1, if for all z € {0,1}" it holds that

Prig(r)=0) =1, i f()=0;
Pr{g(z,z) =1} >1—-¢, if f(z)=1;

o two-sided error at most £, 0 < e < 1/2,if for all z € {0,1}" it holds that
Pr{g(z,z)= f(a)} > 1—e.

In these expressions, z is an assignment to the stochastic variables which is chosen according to
the uniform distribution from {0,1}".

A randomized read-k-times BP is a randomized branching program with the restriction that on
each path from the source to a sink, each variable z; and each variable z; is tested at most k
times. For a randomized OBDD, a variable ordering on all variables zq,..., &, and z,..., 2, is
given.

In analogy to the well-known complexity classes for Turing machines, let RP.-BP be the class of
sequences of functions computable by polynomial size randomized branching programs with one-
sided error at most ¢, ¢ < 1/2. Let BPP.-BP be the class of sequences of functions computable
by polynomial size randomized branching programs with two-sided error at most ¢, ¢ < 1/2.
Furthermore, let

RP-BP:= |J RP.-BP,
0<e<1/2

BPP-BP := U BPP.-BP.
0<e<1/2

Analogous classes for read-k-times BPs and OBDDs obtain “-BPE” and “-OBDD”, resp., as a
suffix to their name.

As for Turing machines, it holds that RP-BP C NP-BP (analogously for read-k-times BPs,
OBDDs). We can also adapt the well-known technique of iterating probabilistic computations
to improve the error probability of randomized branching programs.

Lemma 1 (Probability amplification):

(1) Let G be a randomized read-k-times BP representing f: {0,1}" — {0,1} with one-sided
error at most ¢ € [0,1). Then a randomized read-(mk)-times BP G' for f with one-sided
error alt most €™ and size |G'| = O(m|G|) can be constructed.

(2) Let G be a randomized read-k-times BP representing f: {0,1}" — {0,1} with two-sided
error at most ¢ € [0,3). Let 0 <&’ <e. Then a randomized read-(mk)-times BP G' for f
with two-sided error less than &' can be constructed which has size |G'| = O(m?|G|), with

m=0 <log((6’)_1) (3 - s)_2>.

Proof: We use standard construction techniques for branching programs to simulate the proof
for Turing machines. We only sketch the construction, the estimation of the error works in the
same way as for Turing machines.

Part (1): Use m copies of G with disjoint sets of stochastic variables, and compute the con-
junction of these copies simply by identifying the 1-sink of the ith copy with the source of the
(i + 1)-th copy.

Part (2): Use a branching program consisting of m levels, where the ith level contains ¢ copies

of GG, to count the number of 1’s occuring during an m-fold iteration of the computation of G.
The 1-sink is reached for all paths for which at least half of the copies of G computed 1. a

Corollary 1: RP-BP = BPP-BP = P-BP.

Proof: Decrease the error probability of a given randomized branching program for an n-
variable function with two-sided error ¢ < 1/2 to less than 27" by Lemma 1. As for randomized
circuits, it can be shown that the resulting branching program can be made deterministic by an
appropriate choice of the stochastic variables (see the proof of Ajtai and Ben-Or (1984)). a

There is also an OBDD-version of Lemma 1.

Lemma 2 (Probability amplification for OBDDs):

(1) Let G be a randomized OBDD with variable ordering © representing f: {0,1}" — {0,1}
with one-sided error at most ¢ € [0,1). Then a randomized OBDD G’ for [with the same
variable ordering m can be constructed, which has one-sided error alt most €™ and size

G| = O(G™).

(2) Let G be a randomized OBDD with variable ordering © representing f: {0,1}" — {0,1}
with two-sided error at most ¢ € [0, %), and let 0 < ¢’ < . Then a randomized OBDD G'
for [with the same variable ordering ™ can be constructed, which has lwo-sided error less

than &' and size |G'| = O(|G|™), where m = O (log((s’)_l) (2 -¢) _2>.

Proof, part (1): As for part (1) of Lemma 1, but here we use the “apply” algorithin for OBDDs
(see Bryant 1986) with the operator “A” to compute the graph G’. This is an OBDD with the
same variable ordering as G and size O(|G|™).

Part (2): We again use the “apply” algorithm, but in a generalized version for multi-terminal
OBDDs with sink values in {0,...,m}. We apply the addition of integers as operation to sum
up m copies of the OBDD (. The resulting graph is an OBDD with the same variable ordering
as G and with sink values in {0,...,m}. Replace the sinks with values greater or equal to m/2
by the 1-sink and all others by the 0-sink. a

It is not clear if the error probability of (general) read-k-times BPs can be decreased without
increasing the number of tests of variables as done for OBDDs above.

3 Upper and Lower Bounds for Randomized OBDDs

We present two results on randomized OBDDs in this section. The first one is an example for an
exponential gap between the size of randomized OBDDs and non-deterministic read-once BPs.
Furthermore, we prove a lower bound result for randomized OBDDs with two-sided error.

We consider the function PERM, which is defined on an n X n-matrix X = (2;;)1<ij<n of
Boolean variables. Let PERM(X) = 1 if and only if X is a permutation matrix, i.e. if each row
and each column contains exactly one entry equal to 1.

Jukna (1989) and Krause, Meinel, and Waack (1988) have shown independently that non-
deterministic read-once BPs for PERM have exponential size. They also showed that PERM €
coNP-BP1. We extend this result by showing that PERM can be represented by randomized
OBDDs with small one-sided error.

Theorem 1:
(1) PERM € coRP,(,)-OBDD for all (n) € [0,1) with &(n)~" = O(poly(n)), but
(2) PERM ¢ NP-BP1.

Proof: It only remains to improve the upper bound. The basic construction principle is the
same as in the paper of Ablayev and Karpinski (1996a).

For the randomized computation of PERM, we use the following idea. Let ; = (@;1,..., i)
be the i-th row of X. Let |z| be the value of z interpreted as a binary representation. Then it
holds that

PERM(X)=1 & Z |z;] = 2" — 1 A all z; contain exactly one entry equal to 1.
=0

We choose the “row-wise” ordering @ = (21,1, 21,25+, &1y &n1,---,Lnn) Of the variables
for the randomized OBDD. Let p(7) be the ¢th prime number. We start by choosing a prime
number p at random from {p(1),...,p(M)}, where M is fixed below. This choice of p is done
by a tree at the top of the OBDD. After that, we compute the sum of all |2;| modulo p. In the
following, we describe the subgraph of the OBDD which will do this.

Construct a “sub-module” for a row z; and fixed p as follows. The module is an OBDD with
p sources and p + 1 sinks, p sinks labelled by 0,...,p — 1 and an “error” sink. We imagine
this graph to be divided into p “columns” which correspond to intermediate results 0,...,p— 1.
Starting at source j, we check z;1,%;2,...,%;, successively and look for the first “17. If z;
is the first variable which has the value 1, jump to column (j + 2k) mod p and check in this

column if all the remaining variables x; z41,...,%;,—1 of row x; have the value 0. If not, or if
no entry equal to 1 is found in row z;, jump to the “error” sink. For each source, we need O(n?)
nodes, hence O(n?p) nodes for a complete module.

Now form a sequence of the modules for all rows zq, ..., z, by identifying the sinks with values
0,...,p—1 of the ¢th module with the appropriate sources of the (¢4 1)-th module. The sinks of
the last module with values different from (2" — 1) mod p are substituted by the 0-sink, the sink
with value (2" — 1) mod p by the 1-sink. All “error” sinks are also substituted by the 0-sink.

The complete OBDD (including the tree for the choice of p) has size

O| M+ Z n3p
pE€{p(1),...0(M)}

Obviously, if PERM(X) = 1, we always reach the 1-sink for all p. The randomized OBDD can
make an error only if PERM(X') = 0 and the matrix X has exactly one entry equal to 1 in each
row. For such an input X, the OBDD computes the wrong output if the sum of all |z;| modulo
p is equal to 2™ — 1 for a prime p. Thus, we get for the error probability:

n—1 n—1
perr:Pr{leil =2" - 1modp}:Pr{p| Z|$Z| -2"+1 }7
=0 =0

where each x; has exactly one entry equal to 1. It holds that

n—1

ol —20 41

=0

< n_2n—17

hence, there are fewer than (n — 1)[logn| primes dividing this number. Choose M :=
e(n) 'nlogn, then per < (n). From number theory we know that p(M) = O(Mlog M),
hence, we obtain the following upper bound for the size of the randomized OBDD:

O(e(n)™*n" log® n).

Corollary 2: RP-BP1 # coRP-BP1.

Next, we discuss our lower bound results for randomized OBDDs with two-sided error. We
will use tools from communication complexity theory for the proof. For definitions and a thor-

ough introduction of communication complexity theory, see, e.g., the monographs of Hromkovic
(1997) or Kushilevitz and Nisan (1997).

Our proof technique is an extension of a well-known lower bound technique for deterministic
OBDDs, which appears, e.g., in the paper of Bollig, Sauerhoff, Sieling, and Wegener (1996) and
in Theorem 12.12 of the monograph of Kushilevitz and Nisan. The main idea is to “reduce”
a function which is known to be “hard” for one-way communication protocols to the function
considered for OBDDs. We describe the randomized variant of the technique in form of a
definition and a lemma.

Definition 3 (CC-OBDD Reduction): Let X,Y be arbitrary finite sets. Let a function
f: X xY — {0,1}, a function g: {0,1}" — {0, 1} defined on the variables {z,...,2,} and a
permutation 7w: {1,...,n} — {1,...,n} be given. Let 1 <k < n.

We call two functions
Q‘oﬁ,k: X — {071}L7 L:= {‘rﬂ(l)?"'?xﬂ(k)}? and
Q‘Qf,k: Y — {071}R7 R = {$7r(k+1)7"'7$7r(n)}7

a CC-OBDD reduction from f to g, if for all (z,y) € X x Y it holds that

f(z,y) = g(eip() Ul (y)).

Here, gof7k(w)Ugof7k(y) denotes the assignment to {z1,...,x,} obtained by assigning the variables
in L according to ¢4, (z) and the variables in R according to ¢?, (y).

Lemma 3: Let f, g, 7 and k be as in Definition 3 and let g‘oﬁ’k, gof,k be a CC-OBDD reduction
from f to g. Let G be a randomized OBDD with non-stochastic variables {x1,...,x,} ordered
according to 7, and lel G represent the function g with one-sided or two-sided error. Then there
is a randomized one-way communication protocol for f of length O(log|G|) with the same error
as G (also one-sided or two-sided).

Proof: We describe an appropriate communication protocol for the function f. Let player A
obtain the inputs in X and player B the inputs in Y. Furthermore, both players use a copy of
G and their respective functions c,of,k or g‘of’k. Let z,...,2 be the stochastic variables tested
before z,(;) in G.

To compute f for (z,y) € X x Y, player A first chooses random values for z,...,z; and then
evaluates GG for the partial assignment gofk(w). She sends the node v of G thus reached to player
B. In the same manner, player B chooses his stochastic variables Zig1y. .. 2p, follows the path
for the assignment goﬁ x(y) in G from v to a sink, and outputs the value of this sink.

This protocol has length log w, where w is the number of nodes of GG reached by assignments
to @r(1), -« Ty and z1,..., 2. It is easy to verify that it indeed computes f with the error
probability of G. O

We apply this technique to the function ISA (“indirect storage access”) from the OBDD literat-
ure. Breitbart, Hunt III, and Rosenkrantz (1995) have proved that this function has exponential
deterministic OBDD size.

Definition 4: The function ISA is defined on the n = 2P + p variables wq,...,z9p_1 and
Yo, .-, Yp—1. Let m := [2P/p]. To compute the value of the function, first interpret y as a
binary representation. Let ¢ be the obtained value. If ¢ > m, the value of ISA is zero. Other-
wise, evaluate the group (zp,.. -733(i+1)p—1) of the z-variables, let j be the value of this vector
interpreted as a binary representation. Then the value of ISA is defined to be z;.

Theorem 2: ISA ¢ BPP-OBDD.
Proof: Let G be a randomized OBDD for ISA with two-sided error ¢, which has stochastic

variables zy,...,2,, and let 7: {0,...,2? — 1} — {0,...,27 — 1} be the sub-ordering of the
z-variables with respect to the variable ordering of G.

Consider the situation where the first m — 1 of the z-variables, z,(),...,Zx(m—2), have been
tested. There is a group iyp, - . ., T(jg41)p—1 Of z-variables (with index i) which has none of its
variables tested under these first m — 1 ones.

Now choose an assignment @ to y which evaluates to ig (when interpreted as a binary repres-
entation). Apply the ordinary OBDD algorithm for the subsititution of variables by constants
to compute from G a randomized OBDD with the same error as G for the restriction ISA|y:a.
In the following, we only consider the graph thus computed (we again call it G). Note that G
does not contain any y-variables and that it is no larger than the original graph.

We now present a communication problem which can be reduced to the function computed by
G as described in Lemma 3. Let X := {0,1}M, Y := {1,...,M} and INDEX: X x Y — {0,1}
defined by INDEX(z,y) = z, (“output the bit of 2 addressed by y”).

We describe the mappings c,ofk and cpfk for the application of Lemma 3. Define a partition of the
a-variables by L := {z 0}, , Tr(m-2)} and R = {&r(n_1),. .., Trap-1)}. Choose k :=m —1
and also M := m — 1. The mapping gof,k is trivial, simply choose the identity. For gaf,k
choose assignments by,...,b,,_1 € {0, 1}2p_m+1 to R such that for b; the ith variable from L is

addressed, i.e. for an assignment ¢ = (¢1,...,¢,-1) € {0,1}™7! we have
ISA|y:a7x7r(0)=Cl7~~~7l'7r(m—2)=cm—1 (bi) = ci.
This can be done since no variable of group @i,p, ..., &(i541)p—1 has been tested in L. Now define

gof’k(i) i=b;forie{1,...,m—1}.

It is a well-known fact that the function INDEX is hard for one-way communication protocols
where the player with the “memory” has to start. Kremer, Nisan, and Ron (1994) proved that
every randomized one-way communication protocol for INDEX with error probability smaller
than 1/8 has length Q(n). From this, the claim follows by Lemma 3, using Lemina 2 to decrease
the error probability. a

It is easy to see that ISA € NP-OBDD (use a representation of ISA as a disjunctive form).
Hence, we also get:

Corollary 3: RP-OBDD ;Cé NP-OBDD.

By a different CC-OBDD reduction from INDEX we can also show that the well-known “hidden-
weighted-bit” function HWB (Bryant 1991) is not contained in BPP-OBDD. Another example
of a function which is hard for randomized OBDDs is the following extension of PERM.

Definition 5: The function XPERM is defined on a Boolean n X n-matrix X = (z;;)1<i j<n-
Let XPERM(X) = 1 if and only if each column and each row of X contains at most one entry
equal to one.

Using the known lower bound for the set-disjointness function from communication complexity
theory (Razborov 1992), we can show that XPERM ¢ BPP-OBDD.

4 A Lower Bound Technique for Randomized Read-ki-Times
Branching Programs

In the remainder of this paper, we consider randomized read-k-times branching programs. Our
goal for the next two sections is to prove an exponential lower bound for this model.

We start by describing a new proof technique for randomized read-k-times branching programs.
For this technique as well as for the actual proof of the lower bound in the next section, we will
apply some of the results of Borodin, Razborov, and Smolensky (1993), who have presented a
lower bound technique for non-deterministic read-k-times BPs.

Before we start, we need some further definitions. As Borodin, Razborov and Smolensky, we
first prove results for a generalized type of branching program, called s-way branching program,
which uses s-valued variables instead of Boolean ones. For the whole section, let 5 be a finite
set and s := | 9],

Definition 6: An s-way branching program on the variable set {z1,...,z,} is a directed acyclic
graph which has one source and two sinks, the latter labelled by the constants 0 and 1. Each
inner node is labelled by a variable z; and has exactly s outgoing edges labelled by “1” to “s”.

The semantics of an s-way BP is an obvious generalization of the semantics of 2-way BPs. Such
a branching program computes a function f: S™ — {0,1}, and the value for a given assignment
of variables is obtained by following a path from the source to a sink. At each inner node, follow
the edge which is labelled by the value of the variable belonging to that node.

We omit explicit definitions of read-k-times s-way BPs and randomized s-way BPs, since these
are analogous to the 2-way case. Also note that Lemma 1 holds in an analogous form for s-way
BPs. The following lemma connects randomized and deterministic s-way BPs.

Lemma and Definition 4: Let G be a randomized read-k-times s-way BP for f: 5" — {0, 1}
with error probabilty at most . Let p be an arbitrary probability distribution on 5™. Then
there is a deterministic read-k-times s-way BP G’ with |G’| < |G| which computes a function

[l 8™ — {0,1} with
Pr{f(a) = fa)} > 1.
We call G" a (u, ¢)-distributional read-k-times s-way BP for f.
This is an adaption of an analogous fact for the so-called (p,e¢)-distributional communication

complexity, which has been observed by Yao (1983). (The proof of this lemma is based on a
simple counting argument.)

By Lemma 4, we are able to make distributional BPs the focus of our attention. In the following,
we describe a lower bound technique for this model. The notion of rectangles used here is from
Borodin, Razborov, and Smolensky (1993).

Definition 7 ((k,p)-Rectangle): Let X be a set of variables, n := | X|. Let k be an integer
and 1 < p < n. Let sets Xyq,..., X, € X be given with

(1) |‘XZ| < [n/p—‘a fori=1,... kp;

(2) each variable from X appears in at most &k sets X;.

10

Furthermore, let R C S™ be given. If there are functions f;: " — {0, 1} depending only on the
variables from X; such that for the characteristic function fr: S™ — {0,1} of R (with fr(z) =1
iff 2 € R) it holds that

fR = /\ fia

1<e<kp
then we call R a (k,p)-rectangle in S™ (with respect to the sets X1,..., Xkp).

Notation: We will regard rectangles as sets or as characteristic functions, depending on what
is more convenient, and we will use the same name for the set as well as for its characteristic
function.

Lemma 5: Let G be a deterministic read-k-times s-way BP for a function f: S™ — {0,1}. Let
1 < p<mn. Then the following holds:

(1) The branching program G defines a partition of S™ into (k,p)-rectangles such that f as-
sumes a constant value within each of these rectangles.

(2) For the number r of these rectangles, it holds that
r < (skn|G)FP .

Proof: This connection between (k,p)-rectangles and read-k-times BPs is a modified version
of an analogous result of Borodin, Razborov, and Smolensky (1993). We additionally use
ideas of Okolnishnikova (1993) here. Since Borodin, Razborov and Smolensky work with non-
deterministic branching programs, they only obtain a cover of the 1-inputs of the function by
rectangles. We need a (disjoint) partition of S™ here.

Let X := {&1,...,2,} be set of all variables of G. The first step of the proof is to modify G
into an uniform read-k-times BP G’. A branching program is called uniform if it holds for each
node v that on all paths from the source to v the same set of variables is tested. We obtain a
uniform read-k-times BP G’ by inserting dummy tests of missing variables into ¢, and it is easy
to ensure that |G'| < skn|G]|.

Consider an arbitrary path P in G’ from the source to one of the sinks. We are going to partition
this path into [segments, where the ¢th segment is described by its first node w; and its last
node w!, and w; = w!_; fori =2,...,1.

For two nodes v and w in G define the set X (v, w) of all variables tested on paths between v and
w, including the variable of v and excluding the variable of w. Choose w; and w! inductively as
follows. The node wy is the source of G'. If w; is fixed, choose w; as the first node on P (starting
from w;) such that X (w;, w}) > n/p. Since G’ is uniform, we also obtain that for this choice of
w; and w! it holds that | X (w;, w!)| < [n/p], for i = 1,...,1. It is easy to prove that [< kp.
Now let I; be the set of the last nodes on the ith segments of all paths in G', ¢ = 1,...,kp. If a
path has less than kp segments, insert dummy segments at the end, consisting of the sink of the
path as its first and last node. The set Ly, contains the sinks of G'. Let L := Ly x ... X Lg,.
For a sequence of nodes v = (v1,...,v%) € L let R(v) be set of all € S such that the path
for z in G starting at the source runs through vq,. .., vx,. Note that this set may be empty. By
construction, the sets R(v), v € L, are (k, p)-rectangles with respect to sets Xq(v),..., Xgp(v),

11

where X;(v) := X(v;—1,v;) (1 = 1,...,kp, let vy be the source). They even form a partition of
the set of all inputs.

To prove the claim on the number of rectangles r, we only need to observe that r < |Lq|-...-|Lgy|,
and that |L;| < |G| for all 7. Taking into account that |G'| < skn|G| the upper bound follows.
a

We are now ready to state the theorem which summarizes our lower bound technique.

Theorem 3: Let G be a (p,e)-distributional read-k-times s-way BP for a function f: S™ —
{0,1}. If for every (k,p)-rectangle R belonging to a partition of S™, which is induced by G as
described in the lemma above, it holds that

(RO FTHO) > a-p(RA [TH(1)) = é(n),

where 6 is a real valued function of n, then

1 fa-p(fTT() - (4 a)-¢ 1/(kp)
Gl > — (-) |

Note that in the applications of this theorem, §(n) will be exponentially small in n.

Proof: The proof works in the same way as proofs of lower bounds on the (y, ¢)-distributional
communication complexity (see, e.g., Kushilevitz and Nisan (1997)).

We estimate the number of (k, p)-rectangles for which f computes the value 1. Let Ry,..., R,
be these rectangles. Then it holds that

since G has error probability at most €. On the other hand, by the assumption of the theorem a
rectangle R; which is not “very small” contains a “large” fraction of inputs for which f assumes
the value zero, and for these inputs G makes an error. Hence, also

e>u(| (Binf7H(0))

1<y
= Z p(R: N f71(0))
> Y (- u(Ren (1) - 6(n)
1<e<r
> a(u(f71 (1)) —e) = 6(n).

For the second line we have used the fact that the rectangles form a disjoint partition of the
inputs. Hence, we get the lower bound

) = ()
- o(n)

on the number of rectangles for which g computes the result one. We get the claimed lower
bound on |G| by the second part of Lemma 5. O

12

5 The Main Result

Now we are going to prove our main result, an exponential lower bound on the size of randomized
read-k-times BPs. We apply the technique from the last section.

We consider the function STP: Z% x Z% — {0, 1} (“Sylvester inner product”), n = 24, with
SIP(z,y)=1 & 2TAy=0,
where A = (a; j);<; j<2a is the Sylvester matrix of dimension 24 % 24 i.e.

(_1)<bin(i),bin(j)>

Gi41,541 = >

for 0 < 4,5 < 2% — 1, where bin(7) is the binary representation of i and < -, - > the inner product
in Z4. For the whole section, let X := {z1,...,2,} and Y := {y1,...,y,} be the sets of variables
on which SIP is defined.

Borodin, Razborov, and Smolensky (1993) have proved that this function has no polynomial
size non-deterministic read-k-times BP for & < clogn for appropriate ¢. Our main theorem
shows that SIP has no polynomial size (uniZgn,5)—distributional read-k-times 3-way BP, where
ullizgn is the uniform distribution on Z2". From this, we immediately get a lower on the size of
randomized read-k-times BPs.

Before we start with the proof, we state the facts which we use from the paper of Borodin,
Razborov and Smolensky. Furthermore, we present two lemmas which we will need later on.

5.1 Facts from the Paper of Borodin, Razborov and Smolensky

Borodin, Razborov and Smolensky show that a large number of (&, p)-rectangles is needed to
cover all 1-inputs of SIP. As a first step in their proof, they consider a restriction of the
(k,p)-rectangles and the function itself which reduces the original rectangles to much simpler
2-dimensional rectangles. We describe this step in the lemma below.

Lemma 6: Lel k be an integer, 1 < p<mn. Let X; CX,Y; CY,i=1,...,kp, and let R be a
(k,p)-rectangle in Z2" with respect to the sets X;UY;, i = 1,...,kp (especially, let X;UY; fulfill
the conditions of Definition 7).

Then there are sets Xo C X3 U ... U Xyp, Yo CY1 U...UYy, such that
R = R AN R,

where R', R": S™ — {0,1} are functions that only depend on the variables from Xq UY and
X UYy, resp., and | Xo x Yo| > 2kn?/(p - 4%).

Corollary 4: Let R be a (k,p)-rectangle as described above. Then there are sets Xog C X and
Yo C Y such that for each assignment a to Xq U Yy the restriction R,, which is obtained by
considering R as a funclion and substituting variables according to a, can be represented as
R, =T x U, for sets T C ZL, U C ZY, where t,u < n and t -u > 2kn?/(p - 4%).

13

Sets which can be written as a 2-dimensional cartesian product as R, above are also termed
rectangles in communication complexity theory. We call such sets 2-dimensional rectangles here
to distinguish them from (%, p)-rectangles.

The main part of the proof of Borodin, Razborov and Smolensky essentially is a generalization
of a well-known proof of a linear lower bound on the deterministic communication complexity
of the inner product in Z%. The key property of the function SIP which they use is that not
only full Sylvester matrices, but also their submatrices have “large” rank. To be more precise,
they have proved the following lemma.

Lemma 7: For an arbitrary matriz X let as(X) be the minimal rank of a submatriz of X with
al least s entries. Let A be the Sylvester matriz of dimension n = 2%, Then

() 2 S G — (1/2) T s)”

In our proof, we need a different approach for the main part. Borodin, Razborov and Smolensky
show that (k,p)-rectangles for which the function SIP computes the result 1 are exponentially
small. Following our technique from the last section, we prove the stronger fact that each (k, p)-
rectangle which is “not too small” contains a “large fraction” of 0-inputs for SIP. Essentially, our
proof will be a generalization of the technique used to prove a lower bound on the randomized
communication complexity of the inner product in Z7.

5.2 Preparations for the Proof

In the following, we state the most important building blocks of our proof in form of two
lemmas. One important step is to see that an arbitrary subfunction of SIP can be written as
the transformation of an appropriate bilinear form. This is described in the following lemma.

Lemma 8: Let a be an assignment to the variables from Xq U Yy, where Xog C X and Yo C Y.
Define t := | X\ Xol|, u:= |[Y\Yo|. Let R be an arbitrary 2-dimensional rectangle in Z% x 7Y%, i. e.
R=TxU withT CZ, and U C Z%.

Then there is a one-to-one function ¢: L4 x LY — ZE x Z4 and a bilinear form F: ZE x
Z5T — Zs defined by
T
F(z,y):=a" By,

where x € ZET, y € ZYT and B is a (1 + 1) x (u + 1)-matriz over Zs, such that the following
holds:

(1) SIP,(z,y) =1 < F(e(z,y)) =0 (mod 3), and SIP,(z,y) = 0 & F(p(z,y)) € Z3\{0};
(2) |[RNSIPTH(1)] = [o(R) N F~1(0)], and |[RNSIPFH(0)] = [o(R) N F~(Z3\{0})];
(3) rank(B) > ay.(A) (where A is the Sylvester matriz of dimension n X n and ay.,(A) as
defined in Lemma 7).
In these expressions, SIP, denotes the restrictions of SIP resulting from the substitution of

variables according to a.

14

Proof: As in the definition of SIP, let A be the Sylvester matrix of dimension n x n. Let A’ be
the ¢ X u-submatrix of A which is obtained by deleting the rows and columns of A corresponding
to Xo and Yp, resp. There exist v € Z%, w € ZY% and 7 € Z3 such that SIP,(z,y) = 1 if and only
if

wTA’y +aTv + 'wTy +7 =0 (mnod 3),

where z € Z¥', y € ZY'.

We can write
eTAy+ 2To+wly4+~ = ac’TBy'

where 2’ € Z?l and y' € Zg“ are defined by

, 1, if e = 1; , 1, if 1 = 1;
x; = o and y; := o
i1, ifie{2,...,t+1} yi—1, ifie{2,...,u+1};

and the matrix B = (b; j)1<i<t+1,1<j<ut1 is defined by

Obviously, rank(B) > rank(A’). Define the bilinear form F: ZLt x Z4T' — Z3 by
F(z,y) = 2" By,

and ¢: Z% x ZY — ZI < 24T by
o(z,y) = (2',y"), 2’ and y as above.

Then ¢, F' and B fulfill the conditions (1) to (3). (Statement (2) follows from the fact that ¢ is
one-to-one.) O

The second building block is a generalization of a lemma attributed to Lindsey (see, e.g., Chor
and Goldreich 1988). In its familiar form, this lemma states that in every submatrix of a
Hadamard matrix which is not too small the number of 1’s and (—1)’s is nearly balanced. (A
Hadamard matrix is an orthogonal matrix with entries equal to —1 or 1. Sylvester matrices,
defined by the inner product in Z% as seen above, are a special type of Hadamard matrices.)

For our generalization of Lindsey’s lemma, we consider a matrix defined by a bilinear form with
values in Z3. Consider the 3' x 3¥-matrix M = (m(=z, y))erE,yezg, defined by m(z,y) := 2T Ay,
where © € Z%, y € Z%, and A is an arbitrary ¢ X u-matrix over Zs. We show that in every
submatrix of a M which is not too small the number of entries 0, 1 and -1 is nearly balanced,
i.e. amounts to approximately one third of all entries.

15

This is done by the following indirect approach. For each pair {i,j}, 4,5 € Z3, i # j, we define
a separate 3! x 3% matrix M, ; by

1, ifz2TAy =4 (mod 3);
M j(z,y):i=4 -1, ifaTAy=j (mod 3);

0, otherwise;

where z € Z% and y € Z4. We show that the sum of 1’s and (—1)’s in submatrices of these M; ;
is small if the matrix A has large rank.

Lemma 9: Let A be an arbitrary 1 X u-matriz over Zs. Define the matrices M; ; as described
above. Furthermore, let R be an arbitrary 2-dimensional rectangle in Z5 x Z%, R = S x T with
S CZL T CZY. Letd; j(S,T) denote the sum of 1’s and (=1)’s of M; ; in this rectangle, i.e.

di,j(saT) = Z Z Afi,j($7y).
reSyeT
Then it holds that
(1) |dy_1(8,T)| < (2/+/3) - gttu . g~ rank(4)/2,

(2) |dy oS, T)| < 3t+ . 3= rank(4)/2,
(3) |d—1,0(S,T)| < 3gitu ., 3—rank(A)/2.

We defer the lengthy and technical proof of this lemma to the appendix.

5.3 The Proof of the Main Result

We are now ready to prove the following.

Theorem 4: Let G be a (unizgn,5)-distributi0nal 3-way read-k-times BP for SIP, where unizgn
is the uniform distribution on Z3" and ¢ < 1/9. Then

1= (0 (57

Proof: We apply Theorem 3 with p := 4k and p = unizgn. Consider a partition of Z2" into
(k,p)-rectangles induced by G as described in Lemma 5 from Section 4.

Let R be an arbitrary (k,p)-rectangle from this partition. The main work of the proof will be
to derive a relation between the number of 0-inputs and 1-inputs for SIP in R. This will have
the form

p(RNSIP™H0)) > a - w(RNSIP~(1)) = 6(n),
where a and §(n) are defined later on. The proof of this fact consists of three parts.

Part (1): Let R be a (k,p)-rectangle with respect to the sets X; UY;, i = 1,..., kp, obtained
from the partition of Z2" induced by G.

16

From Corollary 4, we get sets Xo C X and Yy C Y such that for each assignment a to Xy U Yy
the restriction Ra is a 2-dimensional rectangle in Z% x Z%, where t := | X\Xg|, u := |[Y\Yp].
We also know that this rectangle is “not too small”, it holds that ¢ -u > n?/(2-4%) =2 5. In
the following, we only consider the rectangle R, and the subfunction SIP, (resulting from the
substitution of variables according to a) for such an assignment a.

Part (2): While the restriction by @ has transformed the (k,p)-rectangle R into a simple 2-
dimensional rectangle, the function SIP, is too complicated to be used itself. This problem is

solved by Lemma 8. From this lemma, we obtain a one-to-one function ¢ and a bilinear form F
in Z?’l X Zg"'l such that

SIP,(z,y) =14 F(p(z,y)) =0 (mod 3).

The 2-dimensional rectangle R, is transformed into the 2-dimensional rectangle ¢(R,) in ZQ‘H X
Z4t1. Moreover, we know that for the matrix B of F it holds that rank(B) > a,(A) by
statement (3) of Lemma 8 (s as defined above). By Lemma 7, we get a lower bound on the rank

of B.

We have now managed to transform our original task into the problem to show that a 2-
dimensional rectangle for the bilinear form F which is not “too small” contains a “large fraction”
of inputs from F~1(0) as well as from F~'(Z3\{0}).

Part (3): At this point we apply our generalized form of Lindsey’s lemma. TLet R’ be an
arbitrary 2-dimensional rectangle in Z?l X Zg“. In Lemma 9, substitute the matrix B for A,
R’ for the rectangle and ¢t + 1, u 4+ 1 for ¢ and wu, resp. Then it follows that

[[R' 0 F7Y(1)| = |[R' 0 F7Y(=1)|| < (2/v/3) - 3tFut2 . gmrank(B)/2 =
[|R'n F~1(1)| — |[R' n FH(0)]| < gttet? . grank(B)/2 <3 and
HR’H F—l()| |RImF 0 H t+u+2 d—rank()/2 <b.

We conclude that
|R'N F~1(Z3\{0})| > 2-|R'n F~'(0)] — 2b.

To see this, let := |[R' N F~Y(0)], vy := |[R'n F7'(1)], z := |R"n FP~'(=1)|. Then y + z is

minimized under the constraints
|y—Z|§b, |y_$|§b7 |Z—$|§b,

ify=2z=ua—b. Hence, y+ z > 2z — 2b.

Now we apply these results to our original problem. Substituting R’ := ¢(R,) and applying
statement (2) from Lemma 8 we obtain

|R, N SIP;1(0)] > 2+ |R, N SIPY(1)| — 2b.
Applying p = uniZgn on both sides gives

(R, N SIPT(0)) > 2 - u(R, N SIPTY(1)) — 2b - 37174,

17

This inequality holds for all assignments a to XqU Yy, and hence, by the law of total probability,
it carries over to R and SIP. We have thus obtained the desired relationship between 0-inputs
and l-inputs in R,

p(RNSIP~H0)) > a - w(R N SIP~(1)) — 8(n),
with a := 2 and
o(n):=2b- 3=t=u — 19,/3 . 3~ rank(B)/2

The last information which we need in order to apply Theorem 3 is a lower bound for u(STP~1(1)).
As in the definition of SIP, let A be the Sylvester matrix of dimension n x n. It is easy to verify
that 27 Ay = ¢, ¢ € Zs, for approximately one third of all ,y € Z%. More precisely, we get

p(SIP~1(1)) = 1/3 — o(1).

Now we are ready to apply Theorem 3. As mentioned above, it holds that rank(B) > as(A),
where s = n?/(2-4%). By Lemma 7, we have

as(4) = & (k -n4k) '

Altogether, we obtain:

1 A 1/(4k2)
|G|z3; ((5_507(5)_&))
= (25

for e < 1/9. 0

Corollary 5: Let G be a randomized read-k-times 3-way BP for SIP with two-sided error at
most €, where ¢ € [0,1/2) is an arbitrary constant. Then there is a constant ¢ with

1= (0 (7).

Proof: For ¢ < 1/9, this follows immediately from Theorem 4 and Lemma 4. For a larger
€ < 1/2, ¢ constant, let a randomized read-k-times 3-way BP G with such a maximal error
probability be given. By applying the probability amplification technique described in Lemma 1

(in the version for s-way BPs) with ¢’ := 1/9, this BP is transformed into a read-(mk)-times
3-way BP G’. Tt holds that m = O(1) and |G'| = O(m?*G|) = O(|G]). From this, we get the
claimed lower bound with ¢ := 4™ by applying Theorem 4. a

Finally, we are going to use Theorem 4 to derive a lower bound for a Boolean variant of SIP
which is obtained by encoding the values from Zs by Boolean values.

First, define the incompletely specified function ¢g: {0,1}2 — Z3zU {L} (L = “undefined”) by

c0(0,0):=0, ¢(0,1):=1, ¢o(1,0):==1 and ¢o(1,1):= L.

18

Let c: {0,1}*" — Z2"U {L} be the incompletely specified coding function defined as follows.

For u; := (29,2}) and v; := (y?,y}), i = 1,...,n, let

(U, .oy tn, 01, .., 0) 1= (co(tr), ...y colun), co(v1), ..., colvn)),
if co(ui), co(v;) € Zg for all 7, and let
(Upy ey Uy U1y ey V) = L

if u; = L or v; = L for at least for one ¢ € {1,...,n}.

Now define SIP: {0, 1} — {0,1} by

SIP(c(z,y)), if c(z,y)€ B
0, if c(z,y)= L.

ﬁ_ls(x,y) = {

Furthermore, define the probability distribution x: {0,1}** — [0,1] by

37 if e(u,v) € 3™
() 1= i el 3
0, if e(u,v) = L.

Theorem 5: Let G be a (p,¢)-distributional read-k-times 2-way BP for ﬁﬁ, €< 1/9. Then

1= o (0 (1737)

Proof: Let xf,yf, for i € {1,...,n}, j € {0,1}, be the variables of G. We construct a read-

k-times 3-way BP G’ with variables z1,...,2, and yq,...,y, from G as follows. First consider
a node in G which is labelled by a variable 29 or y?. Replace the variable by z; or y;, resp.
Replace the 0-edge by two edges labelled by “0” and by “-1”, resp., and the 1-edge by an edge
labelled by “1”. Next, consider a node labelled by z! or y}. The variable is again replaced by
x1 or y;. Replace the 0-edge by two edges labelled by “0” and by “1”, resp., and the 1-edge by
an edge labelled by “-17.

We claim that G’ is a (unigzn,)-distributional read-(2k)-times 3-way BP for the function SIP,

where unizgn again is the uniform distribution on Z2". G’ obviously is of the same size as G.

Let ¢’ be the function computed by G’ and ¢ the function computed by G. Let ¢': Z2" —
¢ 1(Z2") be the one-to-one and onto mapping with ¢(¢/(z,y)) = (z,y). By the definition of SIP,

it holds that éﬁs(c’(:ﬂ, y)) = SIP(=,y) for all (z,y) € Z2". By the contruction of ', it follows
that g(c/(z,y)) = ¢'(z,y) for all (z,y) € Z2". Hence,

{(z,y) € Z3"| ¢'(,y) = SIP(z,9)}| = [{(z,y) € ZE" | 9(c'(z,y)) = SIP(c'(z,))}]
= [{(u,v) € c71(Z3") | g(u,v) = STP(u,v)}|.

Since u is zero outside ¢71(Z2"), we finally get

unizza{(2,y) € Z3" | g'(x,y) = SIP(2,9)} = p{(u,v) € {0,1}*" | g(u, v) = STP(u, v)}.

19

By Theorem 4 it follows that

-0 ()

and thus the claimed lower bound. O

Corollary 6: Let G be a randomized read-k-times 2-way BP for SIP with two-sided error at
most ¢, for arbitrary constant ¢ € [0,1/2). Then there is a constant ¢ with

e (0 (7).

Proof: Follows from Lemma 1 and Lemma 4. a

Acknowledgement

I would like to thank Ingo Wegener and Martin Dietzfelbinger for helpful discussions on the
subject of this paper.

Appendix

In this appendix, we supply the proof of Lemma 9 which we have omitted above. We split the
proof of the three statements in Lemma 9 into three separate lemmas here. The first statement
can be easily proved even for arbitrary fields Z,, p an odd prime, not only for Zs.

First, we state some general definitions. For the whole appendix, let p # 2 be a prime. Let
T1,...;T(p—1)/2 be the quadratic residues modulo p and 7q,...,7(,_1)/o the non-residues (we
consider 0 neither as a residue nor as a non-residue). Let

1, ifa € {7‘1,...,7‘(]9_1)/2};

(E> =40, ifa=0;
p

-1, ifac€ {51, RN i(p—l)/?};
the Legendre symbol modulo p. Furthermore, let A be an arbitrary ¢ X u-matrix over Z,,.

Lemma 9, Part (1): Define the p’ x p*-Matrix M = (m(z, y))er;,yeZg by m(z,y) := (%)

Let an arbitrary 2-dimensional rectangle be given by the sets S C Z;, T C Z,. Let d denote the
sum of ones and minus ones of M in this rectangle, i.e.

d:= Z Z m(z,y).

ze€SyeT
Then we have

|d| < (p _ 1)pt+up—(rank(A)+1)/2-

20

Proof: In the following, we consider M as a real-valued matrix with entries 0, 1 and —1. If we

do not state something different explicitly, all calculations are done in real-valued vector spaces.

Furthermore, all congruences “=” are modulo p.

We consider the matrix M = (M(2,y))zyery, M := MTM (calculated in R). Tt holds that
m(z,y) = m(z)Tm(y), where m(z) is the column of M with number z € Z,. Notice that M is

symmetric. In the following, our main goal is to calculate the maximal eigenvalue of M. The
whole proof is divided into three steps.

Step 1: We first calculate the entries of M. Let @,y € Z;. We claim that

(9) (p—1)p't, if Ay = aAz, Az, Ay £ 0, a € Z,\{0};

0, otherwise.

Proof of the claim: Obviously, m(z)'m(y) = 0 if Az = 0 or Ay = 0. Therefore, let Az # 0,

Ay £ 0. We have
z A.L) (TAy)

- Zl + Y (=4 Z (-1 > (1)

(az,bz)=(1,1) (az,bz)=(-1,1) (az,bz) -) (az,bz)z(—l,—l)

m(z)" -

where a, = (%), b, = (%) and the summation is done over all z € Z; which fulfill the

given restrictions.

First of all, we count the number of z € Z! with (a.,b,) = (1,1). To do this, we apply linear
algebra in Z!. It holds that

TA TA
(sz)zl/\(zpy>:1 & Fij:2TAv=r AT Ay=vy. (2)

For fixed ¢ and j we are looking for the number of solutions for the system of linear equations

a1+ ...t azy =1y
ANbizi4...+ bz =y

in the variables z,..., 2z, where a := Az, a = (a;)1<i<s, and b := Ay, b = (b;)i<i<s-

t—2

If Az and Ay are linearly independent in Z;, this system has exactly p*~* solutions. Hence,

there are (%)21)15_2 vectors z € Z! which fulfill (2).

If Az and Ay are linearly dependent, Ay = aAxz for an a # 0, then this system has either no
solution or exactly p’~! solutions. The latter is the case if and only if

T, = ar;.

If (9) =1, then for each ¢ € {1,...,(p — 1)/2} there is exactly one j with r; = ar;, and hence
the total number of vectors fulfilling (2) is (55~ Dypt=1 I (%) = —1, then r; = ar; is always false

and the total number of z-vectors is 0.

21

By an analogous argumentation, we get the same number of z-vectors with (a,,b,) = (=1, —1).

It remains to calculate the number of z € Z with (a.,b.) = (1,—1) (analogously for (a.,b.) =
(=1,1)). Again, we count the solutions of linear equations in Z;. Here we are looking for
solutions for the following system:

a1+ ...t aze =1y

A b12’1+...+bt2t

Ti,

where the a; and b; are defined as above. If Az and Ay are linearly independent, the number of
solutions for each 7, j is again p'~2. If Ay = aAz, a £ 0, it is required that 7; = ar; for solutions
to exist. Hence, we get a total number of (%)pt_l vectors z € Z! with (a,,b,) = (1,-1), if

(%) = —1, and 0 solutions, otherwise.

By substituting our results into (1) the claim follows.]

Step 2: We calculate the maximal eigenvalue of M = MTM. We claim that all columns 7(z)
of M, where z € Zj, already are eigenvectors of M. To see this, we compute the inner product
of two arbitrary columns with numbers z,y € Z;. We claim that

<g> (p — 1)3pu—rank(A) p2(t=1) * if Ay = a Az, Az, Ay £ 0, a €

(@) ()= § Z,\{0};

0, otherwise.
Proof of the claim: Let Az, Ay # 0. It holds that

m(x) m(y) = Y m(z,)iz, y).

2€LE
We apply our first claim and get:

(@) (5_5) (p— 1)2p2(t_1), if Az = Bl Az, Az = 52 Ay, for

m(z,a)i(zy) =4 1520, Az, Ay £ 0;

0, otherwise.

We consider the first case, let Az = BlAz, Az = 32Ay, BL,3%2 # 0. Then Ay = B1(B2) Az,
and Az and Ay are linearly dependent. Therefore, there is an a #Z 0 with Ay = aAx, and
BL(B2)™! = a for all 2. Especially, it holds that

())-()(E) (223

P P P P P p

for all z € Z;;. How many z-vectors are there for which the first case applies? Their number is
obviously equal to the number of solutions of

Az = gl Az,

for 31 # 0. There are p*~"k(4) solutions for fixed 5!, and p — 1 values 8! # 0. Hence, the total
number of z-vectors for which the first case applies is (p — 1)p¥~r22k(4) Putting all the results
together, we get the claimed value for m(z)Tm(y). O

22

From the above claim it follows that
AM . ﬁz(aj) = (p _ 1)2pt+u—rank(A)—1 . ﬁ"&(m),

for € Z% with Az # 0 (to see this, compare the entries with index z, z € Zj, on both sides).

Hence, 7(z) is an eigenvector for the eigenvalue X := (p— 1)2pitu-rank(4)=1 of A1 Furthermore,
0 and A are all the eigenvalues of M, since all columns of M are eigenvectors for these eigenvalues.
Therefore, A is the maximal eigenvalue of M = MT M.

Step 3: Now we are ready to estimate the sum of 1’s and (—1)’s in the given rectangle of the
matrix M. It is a well-known fact from linear algebra that

max{zT MTMz | 2 € R¥",||z|]y < 1} =)\,
where || - ||2 denotes the Euclidean norm of real-valued vectors. On the other hand,

u 2 u
(max{[|[Mzll2 | = € R, [|o]|2 < 1})" = max{[|Mz[3 | « € R”", [Jz[|l2 < 1}
= max{e’ M" Mz |z € R"", ||z < 1}.

Hence,
max{[|Malls |« € R, [Je]l2 < 1} = VA = (p — 1)pliHermnk=0/2,

Let 15 and 17 be the characteristic vectors of S and T, resp., then we get by the inequality of
Cauchy-Schwartz and the trivial bounds |S| < p?, |T| < p*:

jd = [1s - M - 17] < [[1s]l2 - |M - 17l2
< p(t+u)/2 . (p _ 1)p(t+u—rank(A)—1)/2 — (p _ 1) t+up—(rank(A)+1)/2.

For the next part of Lemma 9, we only consider the case p = 3.

Lemma 9, Part (2): Define the 3! x 3“-Matrix M = (m(z, Y))weztyezs by

1, if 2T Ay = 1;
m(z,y) =< -1, if 2T Ay = 0;

0, otherwise.

Let S, T as in part (1) of Lemma 9. Let d be the sum of 1’s and (—1)’s of M in the rectangle
S x T. Then it holds that

|d| < gitu . 3—rank(A)/2.

Proof: Along the same lines as for part (1). The first step can again be easily done for general
p, we substitute p = 3 later on to simplify the calculations.

23

Step 1: Again, let m(z) be the column with number z € Z; of M. Then claim that

(32;]9)2])15—2, if Az and Ay are linearly independent in Z;

(BEp'~!, i Ay = ady, As, Ay 20, (2) = 1;
m(z)m(y) = { p, if Ay = ady, Az, Ay £ 0, <%) = -1

(32;p)pt_17 lf either A.L =0 or Ay = 0’

P if Az = Ay = 0.

Proof of the claim: We start with the calculation of the number of 2 € Z with m(z,z) =1
and m(z,y) = 1. We see that we have done this already in the proof of part (1) of Lemma 9,

(%)2 -p'=% if Az and Ay are linearly independent;
Z 1 = (%)-pt_l, if Ay = aAx, Az, Ay £ 0, (%) =1;

(az,b2)=(1,1) 0, otherwise.
Next, we compute the number of z € Z! with m(z,2) = —1 and m(z,y) = —1. We again apply
linear algebra in Z,-vector spaces to do this. The two given conditions are equivalent to

ZTAz =0 A zTAy =0,

t—rank(Az,Ay)

and this system of linear equations in the variables z1,..., z; has exactly p solutions.

More explicitly, we have
pt=2, if Az and Ay are linearly independent;

Z 1 =<9, if Az = Ay = 0;

(az,b2)=(-1,-1) p'~1, otherwise.
Finally, we need the number of z € Z] with m(z,2) = 1 and m(z,y) = —1 (analogously for
m(z,z) = —1 and m(z,2) = 1). The condition m(z,z) = 1 is equivalent to

Jie{l,....(p-1)/2}:2TAz=r; A TAy=0.

Let us consider the number of solutions for fixed 7. If Az and Ay are linearly independent, there
are p'~2 solutions. If Az = 0, there are no solutions (since r; # 0); and if Ay = 0 and Az # 0,
we have exactly p'~! solutions. Finally, for Az, Ay # 0 and Az, Ay linearly dependent, the
number of solutions is again 0 (r; # 0). Hence,

2 ’
Yool =5 ph, i Az £0, Ay =0;

(az,bz)=(1,-1) 0, otherwise.

(221) . p*=2, if Az and Ay are linearly independent;
i—
4

24

By summing up our results, we get

m(z)" - m(y)
DR D DR LD DR LD DR
(az2,0:)=(1,1) (azb:)=(-1,1) (az,b2)=(1,—1) (az,b2)=(~1,~1)
(B55)2p 2 4 pt=2 — (p— 1)p'™2, if Az and Ay are linearly independent;
(ELypt=1 4 pt, if Ay = ady, Az, Ay£0, (%) =1;
= pt1, if Ay = aAy, Az, Ay £ 0, % -1
pt = (%)Pt_la if either Az = 0 or Ay = 0;
', if Az = Ay = 0.

Now let p = 3. All the following congruences are modulo 3. By the above claim, we get

2-371 if Ay = aAy, Az, Ay £ 0, a = 1;

T B 31, if Ay =aAy, Az, Ay #Z0, a = —1;
m(@) miy) =4 5 if Az = Ay = 0
0, otherwise.

Step 2: As in the proof of part (1) of Lemma 9, we compute the largest eigenvalue of M,
where M = MTM, i(z,y) = m(z)Tm(y). This is a little bit more complicated here, since the
columns of M are no longer eigenvectors. But by the first claim, we will obtain that this matrix
has a simple block structure.

The matrix M has only entries 0, a := 23", b:= 3! and 3. Let

ker(A) := {2z € Z5 | Az =0} and
im(A):={y€Z.| 3z czy: Az =y}
Obviously, m(z,y) = 3!, if 2,y € ker(A) and m(z,y) = 0, if = € ker(A), but y ¢ ker(A) or

vice versa. Next, we consider the vectors z,y ¢ ker(A). For v € im(A)\{0} define the following
subspaces of Zj:

Ut(v):={z € Zy| Az =v} and U (v):={z € Z}| Az = —v}.

These sets are either disjoint or equal for different ». There are %(3“‘“1‘(‘4) — 1) =: r vectors
v1,..., 0, such that the sets U*(v;), U~ (v;) form a partition of im(A)\{0}.

We have shown above that for v € im(A)\{0} it holds that

0 a.yeU*(v)
m(z,y)=<b, x€UT(v)and y € U™ (v) or vice versa;
0, ze€(Ut(v)UU(v))and y & (Ut (v)U U~ (v)) or vice versa.

25

It holds that | ker(A)| = 3“~™K4) =: k and also |UT(v)| = |U~(v)| = k for all » € im(A)\{0}.
Let P be a p* x p*-permutation matrix such that after application of the respective permutation
the order of vectors of Z% is consistent with the following order of subspaces:

ker(A), Ut (vy), U (v1), Ut (v2), U™ (v2),...,UT(v,), U (v,).

(The order of the vectors within each of these subspaces does not matter.) By the considerations
above, we obtain that M’ := P~1M P is a block diagonal matrix of the form

M' = diag(By, B,...,B,),

where the block By is a k x k-matrix with all entries equal to 3! and the blocks B; with ¢ > 1
are (2k) x (2k)-matrices of the form

a...a|b...b
a...a|lb...b

Bi = b...bla...a |’
b...bla...a

each of the four constant submatrices has dimension k£ X k.

The matrix By has the eigenvalues 0 and k - 3t = 3vtt-—rank(4) "and the matrices B;, 1 > 1, have
the eigenvalues k - (a — b) = gtTvrank(A)—1 1. (¢ 4 p) = gt+u—rank(d) and if k > 2, also 0. It
follows that M altogether has the eigenvalues 0 (if rank(A) < u — 1), 3¢, gttu-rank(A)=1 559
gitu—rank(4) “und thus 3°t*~2k(4) i the maximal eigenvalue.

Step 3: This step is analogous to the proof of part (1) of Lemma 9. a

Lemma 9, Part (3): Again, p = 3. Define the 3° x 3%-Matrix M = (m(2,y))sezt,yezs bY

1, if eTAy = —1;
m(z,y):=< -1, if 2T Ay =0;

0, otherwise.

Let S, T be as above. Let d be the sum of 1’s and (—1)’s of M in the rectangle S x T. Then it
holds that

|d| < gttu . 3—rank(A)/2.

Proof: Analogous to the proof of part (2) of Lemma 9 due to the “duality” of the values -1
and 1. O

26

References

Ablayev, F. (1996). Randomization and nondeterminism are incomparable for polynomial
ordered binary decision diagrams. Accepted at ICALP ’97.

Ablayev, F. and M. Karpinski (1996a). On the power of randomized branching programs. In
Proc. of ICALP’96, LNCS 1099, 348 — 356. Springer-Verlag.

Ablayev, F. and M. Karpinski (1996b, December). On the power of randomized ordered branch-
ing programs. Manuscript.

Ajtai, M. and M. Ben-Or (1984). A theorem on probabilistic constant depth computations. In
Proc. of the 16th Ann. ACM Symp. on Theory of Computing, 471 — 474.

Bollig, B., M. Sauerhoff, D. Sieling, and I. Wegener (1996). Hierarchy theorems for kOBDDs
and kIBDDs. To appear in Theoretical Computer Science.

Borodin, A., A. A. Razborov, and R. Smolensky (1993). On lower bounds for read-k-times-
branching programs. Computational Complezxity 3, 1-18.

Breitbart, Y., H. Hunt III, and D. Rosenkrantz (1995). On the size of binary decision diagrams
representing Boolean functions. Theoretical Computer Science 145, 45 — 69.

Bryant, R. E. (1986). Graph-based algorithms for Boolean function manipulation. IEFE Trans.
Computers C-35(8), 677-691.

Bryant, R. E. (1991). On the complexity of VLSI implementations and graph representations
of Boolean functions with application to integer multiplication. IFEF Trans. Computers C-
40(2), 205-213.

Bryant, R. E. (1992). Symbolic Boolean manipulation with ordered binary-decision diagrams.
ACM Computing Surveys 24(3), 293-318.

Chor, B. and O. Goldreich (1988). Unbiased bits from sources of weak randomness and probab-
ilistic communication complexity. STAM J. Comput. 17(2), 230 — 261.

Gill, J. (1972). Probabilistic Turing Machines and Complezity of Computations. Ph. D. disser-
tation, U. C. Berkeley.

Hosaka, K., Y. Takenaga, and S. Yajima (1994). Size of ordered binary decision diagrams repres-
enting threshold functions. In Proc. of the 5th Int. Symp. on Algorithms and Computation,
LNCS 834, 584 — 592. Springer-Verlag.

Hromkovi¢, J. (1997). Communication Complezity and Parallel Computing. Springer-Verlag.

Jukna, S. P. (1989). On the effect of null-chains on the complexity of contact schemes. In Proc.
of Fundamentals of Computation Theory, LNCS 380, 246-256. Springer-Verlag.

Jukna, S. P. (1995). A note on read-k-times branching programs. Theoretical Informatics and
Applications 29(1), 75 — 83.

Krause, M. (1991). Lower bounds for depth-restricted branching programs. Information and
Computation 91(1), 1-14.

Krause, M., C. Meinel, and S. Waack (1988). Separating the eraser turing machine classes L,
NL., co-NL, and P.. In Proc. of MFCS, LNCS' 32}, 405-413. Springer- Verlag.

Kremer, I., N. Nisan, and D. Ron (1994, November). On randomized one-round communication
complexity. Manuscript.

27

Kushilevitz, E. and N. Nisan (1997). Communication Complexity. Cambridge University Press.

Meinel, C. (1988). Modified Branching Programms and Their Computational Power. Habilita-
tionsschrift, Humboldt-Universitdt Berlin.

Okolnishnikova, E. A. (1993). On lower bounds for branching programs. Siberian Advances in
Mathematics 3(1), 152 — 166.

Razborov, A. A. (1991). Lower bounds for deterministic and nondeterministic branching pro-
grams. In Proc. of Fundamentals of Computation Theory, LNCS 529, 47-60. Springer- Verlag.

Razborov, A. A. (1992). On the distributional complexity of disjointness. Theoretical Computer
Science 106, 385 — 390.

Simon, J. and M. Szegedy (1993). A new lower bound theorem for read-only-once branching
programs and its applications. In J.-J. Cai (Ed.), Advances in Computational Complezity
Theory, Volume 13 of DIMACS Series tn Discrete Mathematics and Theoretical Computer
Science. American Mathematical Society.

Yao, A. C. (1983). Lower bounds by probabilistic arguments. In Proc. of the IEEE Symp. on
Foundations of Computer Science, Volume 27, 420 — 428,

28

