Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R97- 020 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

A Sample of Samplers:
A Computational Perspective on Sampling

Oded Goldreich
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.
Email: ocded@wisdom.weizmann.ac.il

May 15, 1997

Abstract

We consider the problem of estimating the average of a huge set of values. That is, given
oracle access to an arbitrary function f : {0, 1}" ~ [0, 1], we need to estimate 27" er{o,l}n f(z)
upto an additive error of €. We are allowed to employ a randomized algorithm which may err
with probability at most §.

We survey known algorithms for this problem and focus on the ideas underlying their con-
struction. In particular, we present an algorithm which makes O(¢=2-log(1/6§)) queries and uses
n+0(log(1/€))+0(log(1/6)) coin tosses, both complexities being very close to the corresponding
lower bounds.

Keywords: Sampling, randomness complexity, saving randomness, pairwise independent random
variables, Expander graphs, random walks on graphs, lower bounds.

1 Introduction

In many settings repeated sampling is used to estimate the average value of a huge set of values.
Namely, there is a value function v defined over a huge space, say v :{0,1}" — [0, 1], and one
wishes to approximate v def o > sefoyn V(@) without having to inspect the value of v on the entire
domain. We comment that it is essential to have the range of v be bounded (or else no reasonable
approximation may be possible). Our convention of having [0, 1] be the range of v is adopted for
simplicity, and the problem for other (predetermined) ranges can be treated analogously.

1.1 Formal Setting

Our notion of approximation depends on two parameters: accuracy (denoted €) and error probability
(denoted §). We wish to have an algorithm which with probability at least 1 — ¢, gets within € of
the correct value. This leads to the following definition.

Definition 1.1 (sampler): A sampler is a randomized algorithm that on input parameters n (length),
¢ (accuracy) and § (error), and oracle access to any function v:{0,1}"—[0,1], outputs, with prob-

ability at least 1 — &, a value that is at most € away from U def = > zefoyn V(7). Namely,
Pr(|sampler”(n,e,6) — 7| > €) < 6
where the probability is taken over the internal coin tosses of the sampler.

We are interested in “the complexity of sampling” quantified as a function of the parameters n, €
and 6. Specifically, we will consider three complexity measures

1. Sample Complexity: the number of oracle queries made by the sampler.
2. Randomness Complexity: the number of (unbiased) coin tosses performed by the sampler.

3. Computational Complexity: the running-time of the sampler. We say that a sample is efficient
if its running-time is polynomial in the total length of its queries (i.e., polynomial in both its
sample complexity and in n).

We will focus on efficient samplers. Furthermore, we will focus on efficient samplers which have
optimal (upto a constant factor) sample complexity, and will be interested in having the randomness
complexity be as low as possible.

1.2 Overview

The straightforward method (or the naive sampler) consists of uniformly and independently selecting
sufficiently many sample points (queries), and outputting the average value of the function on these
points. Using Chernoff Bound one easily determines that O(Mgé_/ﬁl) sample points suffice. The
naive sampler is optimal (upto a constant factor) in its sample complexity, but is quite wasteful in
randomness. In Section 2, we discuss the naive sampler and present lower (and upper) bounds on
the sample and randomness complexities of samplers. These will guide our quest for improvements.

Pairwise-independent sampling yields a great saving in the randomness complexity. In Sec-
tion 3 we present the Pairwise-Independent Sampler, and discuss its advantages and disadvantages.
Specifically, for constant § > 0, the Pairwise-Independent Sampler is optimal upto a constant factor

in both its sample and randomness complexities. However, for small 6 (i.e., § = o(1)), it is wasteful
in sample complexity.

A new idea is required for going further, and a relevant tool — random walks on expander graphs
(see Appendix B) - is needed too. In Section 4, we combine the Pairwise-Independent Sampler with
the Expander Random Walk Technique to obtain a new sampler. Loosely speaking, the new sampler

uses a random walk on an expander to generate a sequence of ¢ def O(log(1/6)) (related) random
pads for £ invocations of the Pairwise-Independent Sampler. Each of these invocations returns an
e-close approximation with probability at least 0.99. The expander walk technique yields that, with
probability at least 1 —exp(—{) = 1—4§, most of these £ invocations return an e-close approximation.
Thus, the median of these £ estimates is an (¢, §)-approximation to the correct value. The resulting
sampler, called the Median-of-Averages Sampler, has sample complexity O(log(E#) and randomness
complexity 2n 4+ O(log(1/9)).

In Section 5, we present an alternative sampler which improves over the pairwise-independent
sampler. Maintaining the sample complexity of the latter (i.e., O(1/8¢?)), the new sampler has
randomness complexity n + O(log(1/d¢)) (rather than 2n). Combining this new sampler with
the Expander Random Walk Technique, we obtain sample complexity O(logi#) and randomness
complexity n + O(log(1/6)) + O(log(1/¢)). Better bounds are obtained for the case of “Boolean
samplers” (i.e., algorithms which must only well-approximate Boolean functions). In addition, in
Section 5 we present two general techniques for refining samplers.

We conclude with some open problems. In particular, we discuss the notion of “oblivious” (or
“averaging”) samplers.

The Hitting Problem is considered in Appendix C. Here, given an oracle to a function having
at least an € fraction of 1’s, one is required to find an input which evaluates to 1. Clearly, each
sampler can be used for this purpose, but thisis an over-kill. Nevertheless, all results and techniques
for samplers (presented in this survey) have simpler analogies for the hitting problem. Thus,
Appendix C can be read as a warm-up towards the rest of the survey.

2 The Information Theoretic Perspective

The Naive Sampler, presented below, corresponds to the information theoretical (or statistician)
perspective of the problem. We augment it by a lower bound on the sampling complexity of
samplers which is in the spirit of these areas. We conclude with lower and upper bounds on the
randomness complexity of samplers: The latter lower bound is information theoretic in nature but
represents a concern which is more common in computer science.

2.1 The Naive Sampler

The straightforward sampling method consists of randomly selecting a small sample set S and
outputting |1?| Y sesV(x) as an estimate to . More accurately, we select m independently and

uniformly distributed strings in {0,1}", denoted sy, ..., 8, and output = 5°;_; v(s;) as our estimate.
Setting m = %ﬁﬁl, we refer to this procedure as to the Naive Sampler.

To analyze the performance of the Naive Sampler, we use the Chernoff Bound. Specifically, we

~

define m independent random variables, denoted (3, ..., (;n, such that (; def v(s;), where the s;’s are

independently and uniformly distributed in {0,1}”. By Chernoff Bound:
R
ol 2 ;

where Eq. (2) is due to m = (1 + In(1/68))/(2€%). Observing that L 5°7 (; represents the esti-
mate output by the Naive Sampler, we have established that the Naive Sampler indeed satisfies
Definition 1.1 (i.e., is indeed a sampler). We now consider the complexity of the Naive Sampler

>e) < 2exp(—2€2m) (1)
< 6 (2)

o Sample Complexity: m %' M (l 9(1/5))

e Randomness Complexity: m -n = (109(1/5) n).
o Computational Complexity: indeed efficient.

In light of Theorem 2.1 (below), the sample complexity of the Naive Sampler is optimal upto a
constant factor. However, as we will shortly see, it is extremely wasteful in its usage of randomness.
In fact, the rest of this survey is devoted to presents ways for redeeming the latter aspect.

2.2 A Sample Complexity Lower Bound

We first assert that the Naive Sampler is quite good as far as sample complexity is concerned. The
following theorem is analogous to many results known in statistics, though we are not aware of a
prior reference where it can be found.

Theorem 2.1 [10]: Any sampler has sample complezily bounded below by

min{ o(n—14)/2 111(1/0(5))}
’ 4¢?

provided € < % and 6 < %.

Note that a (constant factor) gap remains between the lower bound asserted here and the upper

bound established by the Naive Sampler. We conjecture that the lower bound can be improved.

Motivated by the lower bound, we say that a sampler is sample-optimal if its sample complexity is

O(log 1/6)

€2

2.3 Randomness Complexity Lower and Upper Bounds

We first assert that the Naive Sampler is quite bad as far as randomness complexity is concerned.
First evidence towards our claim is provided by a non-explicit (and so inefficient) sampler:

Theorem 2.2 [10]: There exists a (non-efficient) sampler with sample complexity %zlﬁl and
randomness complezily n 4+ 21og,(2/6) + log, log,(1/¢€).

The proof is by a probabilistic argument which, given the Naive Sampler, asserts the existence of
a relatively small set of possible coin tosses under which this sampler behaves almost as under all
possible coin tosses (with respect to any possible function v). Actually, the randomness bound can
be improved to n+log,(1/6)—log, log,(1/6) while using a constant factor larger sample complexity
and more sophisticated techniques [27]. More generally,

Theorem 2.3 [27]: For every function s : [0,1]? — R such that s(e,8) > 2log§72(1/5), there exists a
(non-efficient) sampler with sample complexity s(e,) and randomness complewity

n +logy(1/8) — logy s(€, 6) + 2log,(4/¢)
This gets us very close to the following lower bound

Theorem 2.4 [10]: Let s : N x [0,1]> = R. Any sampler which has sample complezity bounded
above by s(n,€,0), has randomness complezity bounded below by

n + logy(1/6) — logy s(n, €, 8) — logy(1 — 2¢)™" — 2
provided ¢,6 < 0.5 and s(n,e,8) < 2771,

The dependency of the lower bound on the sample complexity should not come as a surprise.
After all, there exist a deterministic sampler which just queries the function on the entire domain.
Furthermore, the upper bound of Theorem 2.3 does express a similar trade-off between randomness
complexity and sample complexity. Similarly, one should not be surprised at the effect of 1 — 2¢ on
the bound: For example, when € = 0.5, a sampler may merely output v = % as its estimate and be
within € of the average of any function v : {0,1}" — [0, 1].

Using Theorem 2.4, we obtain a lower bound on the randomness complexity of any sample-
optimal sampler:

Corollary 2.5 [10]: Any sampler which has sample complexity O(M‘i%ﬁl)} has randomness com-
plezity bounded below by

n+ (1—0(1))-logy(1/6) — 2logy(1/e€)
provided ¢,6 < 0.4 and Mgﬁ%—/&l = o(2").

The exact bound is n + log,(1/6) — 2log,(1/€) — logylog,(1/6) — O(1).

3 The Pairwise-Independent Sampler

To motivate the Pairwise-Independent Sampler, let us confront two well-known central limit the-
orems: Chernoff Bound which refers to totally independent random variables and Chebishev’s In-
equality which refers to pairwise-independent random variables

Chernoff Bound: Let (3,...,(, be totally independent random variables, each ranging in [0, 1]
and having expected value u. Then,

1 m
PT(M—EZQ
=1

> e) < 2exp (—2€2m)

Chebishev’s Inequality: Let (4, ..., (, be pairwise-independent random variables, each ranging
in [0, 1] and having expected value p. Then,

1 & 1
PT(H_EZQ >€) = 4e¢2m
=1

Our conclusion is that these two bounds essentially agree when m = O(1/€*). That is, in both

cases ©(1/¢?) identical random variables are necessary and sufficient to guarantee, with constant
probability, a concentration within ¢ around the expected value. Thus, if this is what we want
then there is no point in using the more sophisticated Chernoff Bound which requires more of the
random variables.

In the context of sampling, our conclusion is that for achieving an approximation to within e
accuracy with constant error probability, using O(1/¢?) pairwise-independent random sample points
is as good as using O(1/€?) totally independent random sample points. Furthermore, in the first
case we may be save a lot in terms of randomness.

The Pairwise-Independent Sampler [13]: On input parameters n, € and §, set m def 451—25

and generate a sequence of m pairwise-independently and uniformly distributed strings in {0, 1}",
denoted sy, ..., s,. Using the oracle access to v, output % > ;=1 v(si) as the estimate to v. Using
Chebishev’s Inequality, one can easily see that the Pairwise-Independent Sampler indeed satisfies
Definition 1.1 (i.e., is indeed a sampler).

There are two differences between the Naive Sampler and the Pairwise-Independent Sampler.
Whereas the former uses independently selected sample points, the latter uses a sequence of pairwise
independent sample points. As we’ll see below, this allows the latter sampler to use much less
randomness. On the other hand, the Naive Sampler uses 0(%#1) samples (which is optimal
upto a constant factor), whereas the Pairwise-Independent Sampler uses O(E%—S) samples. However,
for constant §, both samplers use essentially the same number of sample points. Thus, for constant
4, the Pairwise-Independent Sampler offers a saving in randommness while being sample-optimal.

Generating a Pairwise-Independent sequence: Whereas generating m totally independent
random points in {0,1}" requires m - n unbiased coin flips, one can generate m < 2" pairwise-
independent random points using only O(n) unbiased coin flips. We present two well-known ways
of doing this.

1. Linear functions over finite fields: We associate {0,1}" with the finite field F’ def GF(2™). Let

ai, ...,y be m < |F| distinct elements of F. To generate a (pairwise-independent) sequence
of length m, we uniformly and independently selects s,7 € F, and let the i*" element in the
sequence be e; e tags (where the arithmetic is that of F'). The analysis of this construction
“reduces” the stochastic independence of e; and e; to the linear independence of the vectors
(1, a;)and (1, a;): For every ¢ # j and every a,b € F, we have

(3 (1) =(5)
()00 ()

1

[F?

Pr,s(e; =a A e; =b)

Only 2n random coins are required in this construction, but the drawback is that we need a
representation of the field F' (i.e., an irreducible polynomial of degree n over GF(2)) which is
not easy to find.!

2. Toeplitz matrices: To avoid problems with non-trivial representation, one may use the following
construction (which is Levin’s favorite). We associate {0,1}" with the n-dimensional vector
space over GF(2). A Toeplitz matrix is a matrix with all diagonals being homogeneous; that
is, T = (t; ;) is a Toeplitz matrix if ¢; ; = {;41 j4+1, for all ¢, j. Note that a Toeplitz matrix is
determined by its first row and first column (i.e., the values of ¢; ;’s and ¢;1’s). To generate
a (pairwise-independent) sequence of length m, we uniformly and independently select an
n-by-n Toeplitz matrix, 7, and an n-dimensional vector u. We let the i*" element in the
sequence be e; def Tv; + u, where vq,..., v, be m < 2" distinct vectors in this vector space
(and the arithmetic is that of the vector space). The analysis of this construction is given in
Appendix A. Here, we merely note that 3n — 1 random coins suffice for this construction,

Plugging-in either of the above constructions, we obtain the following complexities for the Pairwise-
Independent Sampler

e Sample Complexity: ﬁ.

e Randomness Complexity: 2n or 3n — 1, depending on which of the constructions is used.

e Computational Complexity: indeed efficient.

We stress again that for constant §, the sample and randomness complexities match the lower
bounds upto a constant factor. However, as ¢ decreases, the sample complexity of the Pairwise-
Independent Sampler increases faster than the corresponding complexity of the Naive Sampler.
Redeeming this state of affairs is our next goal.

4 The combined Median-of-Averages Sampler

Our goal here is to decrease the sample complexity of the Pairwise-Independent Sampler while
essentially maintaining its randomness complexity. To motivate the new construction we first
consider an oversimplified version of it.

Median-of-Averages Sampler (oversimplified): On input parameters n, € and §, set m def

@(}2) and ¢ % O(log(1/6)), generate £ independent m-element sequences, each being a sequence
of m pairwise-independently and uniformly distributed strings in {0,1}". Denote the sample points

in the i*h sequence by si,...,s%.. Using the oracle access to v, compute 7* def %Z}n:l 1/(.33-), for
i = 1,...,0, and output the median value among these #*’s. Using Chebishev’s Inequality (as in

previous section), we have for each i

Pr(|7' — 7| > €) < 0.1

! The situation is no better if we wish to work with a large field of prime cardinality: we need to find such a prime.

and so

. Y, Loy . .
Pr (I{i L7t = > €} > 5) > (]) 0.1/ .0.9°7

<

i=t/2
< 2L.0.1Y?
)

where the last inequality is due to the choice of £. Thus, the oversimplified version described above
is indeed a sampler and has the following complexities

e Sample Complexity: £ -m = O(Mg;ﬁl).
e Randomness Complexity: {-O(n) = O(n -log(1/9)).
e Computational Complexity: indeed efficient.

Thus, the sample complexity is optimal (upto a constant factor), but the randomness complexity
is higher than what we aim for. To reduce the randomness complexity, we use the same approach
as above, but take dependent sequences rather than independent ones. The dependency we use is
such which essentially preserves the probabilistic behavior of independent choices. Specifically, we
use random walks on expander graphs (cf., Appendix B) to generate a sequence of ¢ “seeds” each
of length O(n). Each seed is used to generate a sequence of m pairwise independent elements in
{0,1}", as above. More generally,

Theorem 4.1 (general median-composition [7]): Suppose we are given an efficient sampler of
sample complexity s(n,e€,6) and randomness complexity r(n,€,6). Then,

1. there exists an efficient sampler with sample complexity O(s(n,¢€,0.03) - log(1/6)) and ran-
domness complezity r(n,¢,0.03) + O(log(1/6)).

2. for any ¢ > 4, there exists an o > 0 and an efficient sampler with sample complexity
O(s(n,e,a)-log(1/6)) and randomness complezity r(n,€,a) + ¢ -log,(1/86).

Proof: For Item 1, let r def r(n,€,0.03). We use an explicit construction of expander graphs with

vertex set {0,1}", degree d and second eigenvalue A so that A\/d < 0.1. We consider a random walk
of (edge) length £ —1 = O(log(1/6)) on this expander, and use each of the ¢ vertices along the path
as random coins for the given sampler. Thus, we obtain ¢ estimates to ¥ and output the median
value as the estimate of the new sampler. To analyze the performance of the resulting sampler, we
let W denote the set of coin tosses (for the basic sampler) which make the basic sampler output an
estimate which is e-far from the correct value (i.e., 7). By the hypothesis, “24:' < 0.03, and using
Theorem B.3, the probability that at least £/2 vertices of the path reside in W is bounded above

by

. . Ly ,
Z () -(0.03-|—O.12)J/2 = Z () .0.29

j=ty2 \J i=t/2
< 2t.p.22
)

Note that we have used £-s(n,¢,0.03) samples and r 4+ (£ —1)-log,d = r+ O(log(1/¢)) coin tosses.
Item 1 follows.

Item 2 is proven following the same argument but using Ramanujan Graphs and slightly more
care. Specifically, we use Ramanujan graphs (i.e., expanders with A < 2v/d — 1) with vertex set
we obtain an efficient sampler which uses £ - s(n,¢,a) samples and r + (£ — 1) -logyd = r + (4 +

m) -logy(1/6) coin tosses. Selecting a sufficiently large (constant) d and setting o = 4/d,

Ttem 2 follows.

{0,1}", where r def r(n,e,a) and a = (%)2. Repeating the above argument, with £ — 1 =

Combining the Pairwise-Independent Sampler with Theorem 4.1, we get

Corollary 4.2 (The Median-of-Averages Sampler [7]): There exists an efficient sampler with
e Sample Complexity: 0(%#1).
e Randomness Complexity: O(n + log(1/4)).

Furthermore, we can obtain randomness complexity 2n + (4 + 3) - logy(1/6)), for every 5 > 0.

In the next section, we further reduce the randomness complexity of samplers to n + O(log(1/¢) +
log(1/6)), while maintaining the sample complexity (up-to a multiplicative constant).

5 The Expander Sampler and two Generic Techniques

The main result of this section is

Theorem 5.1 [7, 17]: There exists an efficient sampler which has
e Sample Complexity: O(logiﬁ).
e Randomness Complexity: n 4 log,(1/€¢) + O(log(1/9)).

The theorem is proven by applying Theorem 4.1 to a new eflicient sampler which makes 0(6%)
oracle queries and tosses n + log,(1/¢) coins. We start by presenting a sampler for the special case
of Boolean functions.

Definition 5.2 (Boolean sampler): A Boolean sampler is a randomized algorithm that on input
parameters n, € and 6, and oracle access to any Boolean function v:{0,1}"+—{0,1}, outputs, with

probability at least 1 — 8, a value that is at most € away from v def 2% Eme{oﬂl}n v(z). Namely,
Pr(|sampler”(n,e,6) — 7| > €) < 6
where the probability is taken over the internal coin tosses of the sampler.

That is, unlike (general) samplers, a Boolean Sampler is required to work well only when given
access to a Boolean function. The rest of this section is organized as follows:

Subsection 5.1: The Expander Sampler — a Boolean sampler using Ramanujan Graphs.
Subsection 5.2: From Boolean samplers to general ones.

Subsection 5.3: The Expander Sampler, revisited. Here we use an arbitrary expander and a
generic composition of samplers to derive an alternative construction.

See Appendix B for relevant background on expander graphs. Theorem 5.1 is proven by combining
the ideas of Subsections 5.1 and 5.2. An alternative proof of a somewhat weaker result is obtained
by combining the ideas of Subsections 5.1 through 5.3.

5.1 A Sampler for the Boolean Case

We start by presenting a sampler for the special case of Boolean functions. Qur sampling procedure
is exactly the one suggested by Karp, Pippinger and Sipser for hitting a witness set [20] (cf.,
Appendix C), yet the analysis is somewhat more involved. Furthermore, to get an algorithm which
samples the universe only on O(1/8¢?) points, it is crucial to use a Ramanujan graph in role of the
expander in the Karp-Pippinger-Sipser method.

The sampler [17]. We use an expander of degree d = 4/8¢? second eigenvalue bounded by A and
associate the vertex set of the expander with {0,1}". The sampler consists of uniformly selecting
a vertex, v, (of the expander) and averaging over the values assigned (by v) to all the neighbors of
v; namely, the algorithm outputs the estimate

v 1 Z v(u)
u€N (v)
where NV(v) denotes the set of neighbors of vertex v. The algorithm has
e Sample Complexity: O(%).
e Randomness Complexity: n.

o Computational Complexity: indeed efficient.
Lemma 5.3 [17]: The above algorithm constitutes an efficient Boolean sampler.

Proof: We denote by B the set of bad choices for the algorithm; namely, the set of vertices that
once selected by the algorithm yield a wrong estimate. That is, v € B if

- Z viu)—v

u€N (v)

> €

Denote by B’ the subset of v € B for which

It follows that each v € B’ has ed too many neighbors in the set A def s v(u) =1 ; namely,
g

[{ueN(v):ue A} > (p(A)+¢€)-d (4)
where p(A) def % and N % on, Using the Expander Mixing Lemma (Lemma B.1) ones gets that
Bl - (p(A) + e)d
cop(my = [PLEDEIT) pa)

‘|B'><A nel [4] |B]
N |E| VIV

< E p(A)-p(B')

Thus,

o)< (2) o) (5)

Using A < 2\/& and d = 5 , we get p(B') < §-p(A). Using a similar argument, we can show that
p(B\ B') <6-(1—p(A)). Thus, p(B) < 6 and the claim follows. W

Comment 5.4 [17]: Observe that if we were to use an arbitrary d-regular graph with second eigen-
value A then the above proof would hold provided that

%sx/ﬁ (6)

This would have yield an efficient Boolean sampler with sample complexity d and randomness
complexity n.

5.2 From Boolean Samplers to General Samplers

The following generic transformation was suggested to us by Luca Trevisan.

Theorem 5.5 (Boolean samplers imply general ones): Suppose we are given an efficient Boolean
sampler of sample complezity s(n,€,§) and randomness complexity r(n,e,8). Then, there exists
an efficient sampler with sample complexity s(n + logy(1/€),€/2,6) and randomness complexity

r(n +logy(1/€),€/2,6).

Proof: As a mental experiment, given an arbitrary function v:{0,1}" [0, 1], we define a Boolean
function p:{0,1}"*t*—{0,1}, where ¢ def log,(1/€), as follows: For i = 1,...,e7 %, p(x,1) 4f 1 if and
only if v(z) > (¢ — 0.5) - €. Then, |v(z)—¢- Zzlfl p(w, 1) < ¢/2. Thus, if we were to sample g and
obtain an €/2-approximation of i then we get an e-approximation of v. The point is that, although
we don’t have actual access to p we can emulate its answers given an oracle to v.

Given a Boolean sampler, B, we construct a general sampler, A, as follows. On input n,e¢,d
and access to an arbitrary v as above, algorithm A sets n’ = n+/{, ¢ = ¢/2, and ¢ = §, and invoke
B on input n', ¢, §'. When B makes a query (z,7) € {0,1}" x {0,1}*, algorithm A queries for v(z)
and returns 1 if and only if v(z) > (¢ — 0.5) - . When B halts with output v, A does the same. The
theorem follows. [

As a corollary to the above, we get

Corollary 5.6 There exists an efficient sampler which has
e Sample Complexity: O(%)

e Randomness Complexity: n + log,(1/¢).

Theorem 5.1 follows by combining Corollary 5.6 with Theorem 4.1.

10

5.3 The Expander Sampler, Revisited

Using an arbitrary expander graph (with d = poly(1/€d) and % < Vé€e?) and invoking Comment 5.4,
we have an efficient Boolean sampler with sample complexity poly(1/ed) and randomness complexity
n. Using Theorem 5.5, we get

Corollary 5.7 There exists an efficient sampler with sample complexity poly(1/ed) and random-
ness complexity n 4 log,(1/¢).

To derive (a weaker form of) Theorem 5.1 via the above sampler, we first need to reduce its sample
complexity. This is done via the following general transformation. We say that a sampler is of the
averaging type if its output is the average value obtained on its queries, which in turn are determined
as a function of its own coin tosses (independently of the answers obtained on previous queries).

Theorem 5.8 (composing sampler): Suppose we are given two efficient samplers so that the it
sampler has sample complezity s;(n,€,8) and randomness complexity ri(n,€,8). Further suppose
that the first sampler is of the averaging type. Then, there exists an efficient sampler with sample
complexity sy(logy s1(n,€/2,6/2),€/2,8/2) and randomness complezxity r1(n, €/2,6/2)+ry(log, s1(n,€/2,8/2), ¢/

Proof: We compose the two samplers as follows. Setting m def s1(n,€/2,6/2), we invoke the first
sampler and determine the m queries it would have asked (given a particular choice of its coins).2
We then use the second sampler to sample these m queries (invoking it with parameters log, m, €/2
and ¢/2). That is, we let the second sampler make virtual queries into the domain [m] def {1,...,m}
and answer a query i € [m] by the value of the function at the ith query specified by the first
sampler: Given access to a function v : {0,1}" — [0,1], and determining a sequence r of coins
for the first sampler, we consider the function v, : [m] — [0,1] defined by letting v,.(i) = v(g,;)
where ¢, ; is the ith query made by the first sampler on coins r. We run the second sampler
providing it virtual access to the function v, in the obvious manner, and output its output. Thus,
the complexities are as claimed and the combined sampler errs if either |7 — L3 (g, ;)| > £
or |3 v(g;) — 7| > €/2, where 7, is the estimate output by the second sampler when given
virtual access to v,. Observing that the first event means that the first sampler errs (here we use
the hypothesis that this sampler is averaging) and that the second event means that the second

sampler errs (here we use Y ", v(¢,;) = vy), we are done. W

Note that the sampler used to establish Corollary 5.7 is of the averaging type. Combining this
sample with the Pairwise-Independent Sampler, via Theorem 5.8, we obtain

Corollary 5.9 There exists an efficient sampler which has
o Sample Complexity: O(37).
e Randomness Complexity: n + O(log(1/¢€)) + O(log(1/4)).

A weaker form of Theorem 5.1 (i.e., with an O(log(1/¢€) additive term rather than a log,(1/¢) term)
follows by combining Corollary 5.9 with Theorem 4.1.

2 Here we use the hypothesis that the first sampler is non-adaptive; that is, its queries are determined by its coin
tosses (independently of the answers obtained on previous queries).

11

‘ ‘ sample complexity ‘ randomness complexity ‘ pointer ‘

lower bound Q(Mgeéﬁl) Thm. 2.1
lower bound | for 0(%#1) n+ (1—o0(1))- logy(1/6) — 2logy(1/€) | Cor. 2.5

upper bound O(loggﬁ) n + log,y(1/6) Thm. 2.3
algorithm O(M‘%E;ﬁ)) n+ O(log(1/6)) + logy(1/€) Thm. 5.1
algorithm poly(n, e log(1/6)) | (1 +) - (n+log(1/8)), Yo > 0 Thm. 6.1

Figure 1: Summary of results.

lower bound (even for Boolean) | n + logy(1/68) — 2logy(1/€) — logy logy(1/6) — O(1)
upper bound n + log,(1/6) — log, log,(1/6)

efficient samplers n+ (44 @) -logy(1/68) + logy(1/€), for any o > 0
efficient Boolean samplers n+ (44 a)-logy(1/6), for any a > 0

Figure 2: The randomness complexity of samplers which make @(bggﬁ) queries.

6 Conclusions and Open Problems

The main results are summarized in Figure 1. The first tow tabulates Q(e"2log(1/6)) as a lower
bound on sample complexity and the subsequent three rows refer to sample-optimal samplers (i.e.,
samplers of sample complexity O(e ?log(1/6))). The last row refers to a sampler (cf., Thm. 6.1
below) which, for § < 2-7/9(1) has randomness complexity closer to the lower bound. However,
this sampler is not sample-optimal.

The randomness complexity of sample-optimal samplers: A closer look at the randomness
complexity of sample-optimal samplers is provided in Figure 2. The first two rows tabulate lower
and upper bounds which are 2log,(1/¢) — O(1) apart. Our conjecture is that the lower bound can
be improved to match the upper bound. The efficient samplers use at least n + 4log,(1/6) coins,
where one factor of 2 is due to the use of expanders and the other to the “median-of-averages
paradigm”. As long as we stick to using expanders in the Median-of- Averages Sampler, there is no
hope to reduce the first factor which is due to the relation between the expander degree and its
second eigenvalue. Actually, achieving a factor of 4 rather than a bigger factor is due to the use of
Ramanujan Graphs (which have the best possible such relation).

Boolean Samplers vs general ones: Another fact presented in Figure 2 is that we can currently
do better if we are guaranteed that the oracle function is Boolean (rather than mapping to the
interval [0, 1]). We stress that the lower bound holds also with respect to samplers which need only
to work for Boolean functions.

Adaptive vs non-adaptive: All known samplers are non-adaptive; that it, they determine the
sample points (queries) as a function of their coin tosses. More general, adaptive samplers may
determine the next query depending on the value of the function on previous queries. Intuitively,
adaptivity should not help the sampler. Indeed, all lower bound refer also to adaptive samplers
and so, in conjunction with the upper bound which only utilize non-adaptive samplers, indicate
that the difference between adaptive samplers and non-adaptive ones can not be significant. Yet,
it would be nice to have a direct and more tight proof of the above intuition.

12

Averaging (or Oblivious) Samplers: A special type of non-adaptive samplers are ones which
output the average value of the function over their sample points. Such samplers were first de-
fined in [9] and called “oblivious”. We prefer the term averaging. Averaging samplers have some
applications not offered by arbitrary non-adaptive samplers (cf., [9] and [25]). More importantly,
averaging samplers are very appealing since averaging over a sample seem the natural thing to do.
Furthermore, as pointed out in [27], averaging samplers are related to dispersers and to random-
ness extractors. Note that the Naive Sampler, the Pairwise-Independent Sampler and the Expander
Sampler are all averaging samplers, although they do differ in the way they generate their sam-
ple. However, the Median-of-Averages Sampler, as its name indicates, is not an averaging sampler.
Thus, to obtain an averaging sampler having relatively low sample and randomness complexities,
an alternative approach is required. The best known result in this direction is:

Theorem 6.1 [27]: For every a > 0, there exists an efficient averaging sampler with sample
complexily poly(n, e, log(1/6)) and randomness complezity (14 a) - (n + log(1/6)).

We stress that this sampler is not sample-optimal (and that the polynomial in €71 is of quite high
degree). It would be interesting to obtain a sample-optimal averaging sampler of low randomness
complexity, say, one which uses O(n + log(1/6)) coins.

Sampling with weak sources: So far, our discussion presupposed that a randomized algorithm
has at its disposal a uniformly selected string of certain length (which may be considered the
outcome of its internal coin tosses). A question which has received a lot of attention in the last
decade is whether randomized algorithms can be transformed into robust counterparts which may
work given “weak random sources” (cf., e.g., [26]). Following [12], we call a random variable
X a (¢, m)-source if its support is a subset of {0,1}* and no string in its support is assigned
probability mass greater than 27", That is, m is a lower bound on the min-entropy of X defined
as min, g o11¢{— logy(Prob(X = a))}. A recent result [6] states that any BPP-algorithm can be
converted to work with very weak sources. Specifically, for any v > 0, there exists a robust
BPP-algorithm working with any (¢, {”)-source, where { is polynomial in the input length. More
generally,

Theorem 6.2 [6]: For everyy > 0 and §, there exists a polynomial p and a deterministic algorithm
which for any n, e and any (p(n/e), p(n/e)?)-source X, given input (n, e, X) and access to any oracle

v:{0,1}" — [0,1], runs in time poly(n/¢) and outputs a value v so that

Pr(|l7 — 7| > €) < 9—n'

Acknowledgments

I would like to thank Noga Alon, Nabil Kahale and Luca Trevisan for useful discussions.

Dedication

The idea of writing this survey has first occurred to me when running across a young brilliant
researcher, who works in very related areas, that was unaware of the Median-of-Averages Sampler.
It has then occurred to me that many of the results presented above have appeared in papers devoted
to other (more specific) subjects and have thus escaped the attention of a wider community which

13

might have cared to know about them. Thus, I've decided to try to redeem the situation and it
seems fair to dedicate my attempt to this young and brilliant researcher:

Forasmuch as many have taken in hand to set forth in order a declaration of those
things which are most surely believed among us; Even as they delivered them unto us,
who from the beginning were eyewitnesses, and ministers of the word; It seems good
to me also, having had perfect understanding of all things from the very first, to write
unto thee in order, most excellent Theophilus; That thou mightest know the certainty
of those things, wherein thou hast been instructed.

Luke, 1:1-4, c. A.D. 60.

14

References

[1]

[2]

[3]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Ajtai, J. Komlos, E. Szemerédi, “Deterministic Simulation in LogSpace”, Proc. 19th
STOC, 1987, pp. 132-140.

N. Alon, “Eigenvalues, Geometric Expanders, Sorting in Rounds and Ramsey Theory”,
Combinatorica, 6 (1986), pp. 231-243.

N. Alon, J. Bruck, J. Naor, M. Naor and R. Roth, “Construction of Asymptotically Good,
Low-Rate Error-Correcting Codes through Pseudo-Random Graphs”, IEEFE Transactions
on Information Theory 38 (1992), pp. 509-516.

N. Alon and V.D. Milman, “Aq, Isoperimetric Inequalities for Graphs and Superconcentra-
tors”, J. Combinatorial Theory, Ser. B 38 (1985), pp. 73-88.

N. Alon and J.H. Spencer, The Probabilistic Method, John Wiley & Sons, Inc., 1992.

A.E. Andreev, A.E.F. Clementi, J.D.P. Rolin and L. Trevisan, “Weak Random Sources,
Hitting Sets, and BPP Simulation”, manuscript, February 1997.

M. Bellare, O. Goldreich, and S. Goldwasser “Randomness in Interactive Proofs”, Compu-
tational Complexity, Vol. 4, No. 4 (1993), pp. 319-354. Extended abstract in 31st FOCS,
1990, pp. 318-326.

M. Bellare, O. Goldreich, and S. Goldwasser. Addendum to [7], available from
http://theory.lcs.mit.edu/ oded/papers.html, May 1997.

M. Bellare, and J. Rompel, “Randomness-efficient oblivious sampling”, 35th FOCS, 1994.

R. Canetti, G. Even and O. Goldreich, “Lower Bounds for Sampling Algorithms for Esti-
mating the Average”, IPL, Vol. 53, pp. 17-25, 1995.

L. Carter and M. Wegman, “Universal Classes of Hash Functions”, J. Computer and System
Sciences, Vol. 18, pp. 143-154 (1979).

B. Chor and O. Goldreich, “Unbiased Bits from Sources of Weak Randomness and Prob-
abilistic Communication Complexity”, SIAM J. Comput., Vol. 17, No. 2, April 1988, pp.
230-261.

B. Chor and O. Goldreich, “On the Power of Two—Point Based Sampling,” Jour. of Com-
plexity, Vol 5, 1989, pp. 96-106.

A. Cohen and A. Wigderson, “Dispensers, Deterministic Amplification, and Weak Random
Sources”, 30th FOCS, 1989, pp. 14-19.

O. Gaber and 7. Galil, “Explicit Constructions of Linear Size Superconcentrators”, JCSS,
22 (1981), pp. 407-420.

O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman, “Security
Preserving Amplification of Hardness”, 31st FOCS, pp. 318-326, 1990.

0. Goldreich and A. Wigderson, “Tiny Families of Functions with Random Properties:

A Quality—Size Trade—off for Hashing”, to appear in Journal of Random structures and
Algorithms. Preliminary version in 26th STOC, pp. 574-583, 1994.

15

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

R. Impagliazzo and D. Zuckerman, “How to Recycle Random Bits”, 30th FOCS, 1989, pp.
248-253.

N. Kahale, “Figenvalues and Expansion of Regular Graphs”, Journal of the ACM,
42(5):1091-1106, September 1995.

R.M. Karp, N. Pippinger and M. Sipser, “A Time-Randomness Tradeoff”, AMS Conference
on Probabilistic Computational Complezity, Durham, New Hampshire (1985).

A. Lubotzky, R. Phillips, P. Sarnak, “Explicit Expanders and the Ramanujan Conjectures”,
Proc. 18th STOC, 1986, pp. 240-246.

G.A. Margulis, “Explicit Construction of Concentrators”, Prob. Per. Infor. 9 (4) (1973),
71-80. (In Russian, English translation in Problems of Infor. Trans. (1975), 325-332.)

N. Nisan, “Extracting randomness: how and why (a survey)”. Proceedings of the 11th Annual
IFEFE conference on Computational Complezity (formerly known as Structures), IEEE 1996.

M. Sipser, “Expanders, Randomness or Time vs Space”, Structure in Complexity Theory
(proceedings), 1986.

L. Trevisan, “When Hamming meets Euclid: The Approximability of Geometric TSP and
MST?”, 29th STOC, pp. 21-29, 1997.

U. Vazirani and V. Vazirani, “Random Polynomial Time Equal to Semi-Random Polynomial
Time”, Proc. 26th FOCS, pp. 417-428, 1985.

D. Zuckerman, “Randomness-Optimal Sampling, Extractors, and Constructive Leader Elec-
tion”, 28th STOC, 1996, pp. 286-295.

16

Appendix A: Analyzing the Toeplitz Matrix Construction

For every i # j and a,b € GF(2)", we have

Prr., (Zi‘ ¢) = Prry(e; =ale;Be;=a@b) -Prr,(e;Dej=adb)
= Prry(Tvi+u=0a|Tw=c) Pry(Tw = c)
where w = v; § v; # 0" and ¢ = a @ b. Clearly, for any ¢ € GF(2)" and any 71"

PI‘T7u(T?)z' +u= a|Tw = C) = PI‘U(T/DZ' +u = a)
= 927"

It is thus left to show that, for any w # 0", when T is a uniformly chosen Toeplitz matrix, the vector
Tw is uniformly distributed over GF(2)". It may help to consider first the distribution of Mw,
where M is a uniformly distributed n-by-n matrix. In this case Mw is merely the sum of several
(not zero) uniformly and independently chosen column vectors, and so is uniformly distributed over
GF(2)". The argument regarding a uniformly chosen Toeplitz matrix is slightly more involved.

Let f be the first non-zero entry of w = (wy,...,w,) # 0" (i.e,, wy = -+ = wy_; = 0 and
wy = 1). We make the mental experiment of selecting 7' = (¢; ;), by uniformly selecting elements
determining 7" as follows. First we uniformly and independently select ¢ ,,...,%1 . Next, we

select 3 f, ..., 1y ¢ (here it is important to select ¢; s before ¢;41 ¢). Finally, we select ¢, s_1,...,%51.
Clearly, this determines a uniformly chosen Toeplitz matrix, denoted T. We conclude by showing
that each of the bits of Tw is uniformly distributed given the previous bits. To prove the claim
for the 7 bit of Tw, consider the time by which iy -eestify -y tj—1,f were determined. Note that
these determine the first j — 1 bits of Tw. The key observation is that the value of the j*® bit of
Tw is a linear combination of the above determined values XORed with the still undetermined ¢; 5.
(Here we use the hypothesis that wy = -+ = ws_y = 0 and wy = 1.) Thus, uniformly selecting ¢; ¢
makes the 7 bit of Tw be uniformly distributed given the past.

Appendix B: Expanders and Random Walks

B.1 Expanders

An (N,d, \)-expander is a d-regular graph with N vertices so that the absolute value of all eigenval-
ues (except the biggest one) of its adjacency matrix is bounded by A. A (d, A)-family is an infinite
sequence of graphs so that the n'™ graph is a (2™, d, X)-expander. We say that such a family is ef-
ficiently constructible if there exists a log-space algorithm which given a vertex, v, in the expander
and an index ¢ € [d] def {1,...,d}, returns the i*P neighbor of v. We first recall that for d = 16 and
some A < 16, efficiently constructible (16, A)-families do exist (cf., [15])>.

In our applications we use (parameterized) expanders satisfying % < a and d = poly(1/a),
where a is an application-specific parameter. Such (parameterized) expanders are also efficiently
constructible. For example, we may obtain them by taking paths of length O(log(1/a) on an
expander as above. Specifically, given a parameter @ > 0, we obtain an efficiently constructible

®The are minor technicalities which can be easily fixed. Firstly, the Gaber—Galil expanders are defined (only) for
graph sizes which are perfect squares [15]. This suffices for even n’s. For odd n’s, we may use a trivial modification,
such as taking two copies of the graph of size 277! and connecting each pair of corresponding vertices. Finally, we
add multiple edges so that the degree becomes 16, rather than being 14 for even n’s and 15 for odd n’s.

17

(D, A)-family satisfying % < a and D = poly(1l/a) as follows. We start with a constructible
(16, A)-family, set k def logyg/\(1/a) = O(log 1/a) and consider the paths of length & in each graph.

This yields a constructible (16, \¥)-family, and both % < a and 16* = poly(1/a) indeed hold.

Comment: To obtain the best constants in Sections 4 and 5, we use efficiently constructible
Ramanujan Graphs [21]. Specifically, using Ramanujan Graphs is essential for our proof of the
second item of Theorem 4.1 as well as of Lemma 5.3. Ramanujan Graphs satisfy A < 2v/d and so,
setting d = 4/a?, we obtain % < «, where « is an application-specific parameter. Here some minor
technicalities arise as these graphs are given only for certain degrees and certain sizes. Specifically,
they can be efficiently constructed for % - q" - (¢** — 1) vertices, where ¢ = d — 1 = 1 mod 4 and
d — 1 is a quadratic residue modulo ¢ (cf., [3, Sec. IT]). This technical difficulties may be resolved

in two ways:

1. Fixing d and ¢, N, we may find a ¢ satisfying the above conditions with % ¢ (¢?F-1) €
[(1—¢€)- N, N],in time polynomial in 1/e. This defines a Ramanujan Graph which is adequate
for all our applications (since it biases the desired sample in [N] only by an additive € term).

2. Fixing d and ¢, N, we may find a ¢ satisfying the above conditions with % q* - (q% -1)e€
[N,2N],in time polynomial in log N. We may easily modify our applications so that whenever
we obtain a vertex not in [N] we just ignore it. One can easily verify that the analysis of
these applications remain valid.

B.2 The Expander Mixing Lemma

The following lemma asserts that expander graphs have the property that the fraction of edges
between two large sets of vertices approximately equals the product of the densities of these sets.
This property is called mizing.

Lemma B.1 (Expander Mixing Lemma): Let G = (V, E) be an expander graph of degree d and A
be an upper bound on the absolute value of all eigenvalues, save the biggest one, of the adjacency
matriz of the graph. Then for every two subsets, A, B C 'V, it holds

((AxB)nE| _|A] [Bl] _ AVIAl-[B]

A
B W VIS T av] Cd

The lemma (and a proof) appears as Corollary 2.5 in [5, Chap. 9].

B.3 Random walks on Expanders

A fundamental discovery of Ajtai, Komlos, and Szemerédi [1] is that random walks on expander
graphs provide a good approximation to repeated independent attempts to hit any arbitrary fixed
subset of sufficient density (within the vertex set). The importance of this discovery stems from
the fact that a random walk on an expander can be generated using much fewer random coins than
required for generating independent samples in the vertex set. Precise formulations of the above
discovery were given in [1, 14, 16] culminating in Kahale’s optimal analysis [19, Sec. 6].

18

Theorem B.2 (Expander Random Walk Theorem [19, Cor. 6.1]): Let G = (V, E) be an expander
graph of degree d and A be an upper bound on the absolute value of all eigenvalues, save the biggest

one, of the adjacency matriz of the graph. Let W be a subset of V and p def |W|/|V|. Then the
fraction of random walks (in G) of (edge) length { which stay within W is at most

p-(p+(1—p)-%>£

A more general bound (which is weaker for the above special case) was pointed out to us by Nabil
Kahale (personal communication, April 1997):

Theorem B.3 (Expander Random Walk Theorem — general case): Let G = (V, E), d and X be as
above. Let Wy, Wy, ..., W, be subsets of V with densilies pq, ..., ps, respectively. Then the fraction
of random walks (in G') of (edge) length { which intersect Wy x Wy X --- X W, is al most

mﬁ - (3)

The above improves over a previous bound of [7] (see [8]). Comments regarding the proofs of both
theorems follow.

Comments on the proof of Theorems B.2 and B.3

Let A be a matrix representing the random walk on G (i.e., A is the adjacency matrix of G divided

by the degree, d). Let A denote the absolute value of the second largest eigenvalue of A (i.e.,

X% \/d) and n = |V].

Let ||z|| denote the Euclidean norm of 2 € R"™. For any stochastic matrix M, we let ||[M|| denote
the norm of M; that is the maximum of ||Mz|| taken over all normal vectors z (i.e., z € R"™ with
||lz|| = 1). The following technical lemma is the key ingredient in both proofs.

Lemma B.4 ([19, Lem. 3.2] restated): Let M be a symmelric stochastic matriz and let § denote
the absolute value of the second largest eigenvalue of M. Lel P be a 0-1 malriz which has 1’s only
on the diagonal and let p be the fraction of 1’s on the diagonal. Then ||PMP| < p+(1—-p)-6.

Proof of Theorem B.2: Let u € R™ be the vector representing the uniform distribution (i.e.,
u=(n"",..,n7")). Let P be a0-1 matrix so that the only 1-entries are in entries (i,7) with i € W.
Thus, the probability that a random walk of length ¢ stays within W is the sum of the entries of
the vector

z ¥ (PA) Pu (7)
In other words, denoting by ||z||; the L; norm of z, we are interested in an upper bound on [|z|,.
Since z has at most pn non-zero entries (i.e., = Pz’ for some z'), we have ||z||; < \/pn - ||z]|.

Invoking Lemma B.4 we get

llelly, < pr-|[(PA) Pull
< pu-||[PAP|" - || Pu|
I\
< Vpn-(p+(1=p)-A) -y/p/n

and the theorem follows. [}

19

Proof of Theorem B.3: Using the same argument, we need to upper bound the L; norm of z
given by

e ¥ pA. . P AP (8)
We observe that || P; A|| = /|| P;A2P;|| and use Lemma B.4 to obtain ||P;A%2P;|| < p;+ (1 —p;)- A%

Thus, we have

lzll, < pem-||PeA--- PLAPyu|
< (H 1P All) || Pou|
< pem - (H \/p] —pi) - 5\2) . \/po/'n
and the theorem follows. [}

Appendix C: The Hitting problem

The hitting problem is a one-sided version of the Boolean sampling problem. Given parameters n
(length), € (density) and 6 (error), and oracle access to any function ¢ : {0,1}" — {0,1} so that
|{z : o(z)=1}| > €2, the task is to find a string which is mapped to 1. That is

Definition C.1 (hitter): A hitter is a randomized algorithm that on input parameters n, € and 6,
and oracle access to any function o:{0,1}"—{0,1}, so that |{z : f(z)=1}| > €2", satisfies

Pr[o(hitter’(n,e,6))=1] > 1 -6
All results and techniques regarding sampling presented above, have simpler analogies with respect
to the hitting problem. In fact this appendix may be read as a warm-up towards the entire paper.
C.1 The Information Theoretic Perspective

Analogously to the Naive Sampler, we have the Naive Hitter which independently selects m def ﬂlﬁ—ml
uniformly distributed sample points and queries the oracle on each. Clearly, the probability that
the hitter fails to sample a point of value 1 is bounded above by (1 — €)™ = §. The complexities of
this hitter are as follows

e Sample Complexity: m def In(1/5 @(109 1/6)).

e Randomness Complexity: m -n = (M n).
e Computational Complexity: indeed efficient.

It is easy to prove that the Naive Hitter is sample-optimal. That is,

Theorem C.2 Any hitter has sample complexity bounded below by

i {20, 2041200}

2¢

provided € < %.

20

Proof Sketch: Let A be a hitter with sample complexity m = m(n,¢,8) and let o be a function
selected at random by setting its value independently on each argument so that Pr(o(z)=1) = 1.5¢.
Then,

Pr,[0(A%(n,€,6))# 1] = (1 —1.5¢)™

where the probability is taken over the choice of o and the internal coin tosses of A. On the other
hand, using a Multiplicative Chernoff Bound:

Pr,[|[{z : o(z)=1}| < €2"] = 2 exp(—Q(e2"))

We may assume that Q(e2") > logy(1/6) and so the probability that o has at least e fraction of 1’s
and yet algorithm A fails to hit a 1-entry is at least (1 — 1.5¢)™ — § (which should be at most §).

It follows that m > 1111(1?—/12.2) > ln(}2/625)_ N

Theorem C.3 Let s: N x[0,1]2 — R. Any hitler which has sample complexity bounded above by
s(n,€,0), has randomness complezity bounded below by

r>n —log, s(n, e)+ logy((1—¢€)/6)

Proof Sketch: Let A be a hitter with sample complexity s = s(n, €, 8), and randomness complexity
r = r(n,€,6). Consider any subset of §2” possible sequence of coin tosses for A and all 62" - s points
queries at any of these coin-sequences. We argue that 62" -s > (1 — €)2", or else we may have a
function o be 0 on each of these points and 1 otherwise (contradicting the requirement that this
function be “hit” with probability at least 1 — §). Thus, r > n + log,(1 — €) — log, s + log,(1/9)
|

C.2 The Pairwise-Independent Hitter

Using a pairwise-independent sequence of uniformly distributed sample points rather than totally
independent ones, we obtain the pairwise-independent hitter. Here we set m def 15_;. In our analysis,
we consider only ¢’s with e-fraction of 1-values. Letting (; represent the o-value of the i sample

point and using Chebishev’s Inequality we have
me — E Gl > em)

Pr (i@ :0) < Pr(
=1 =1

m-e(1l—¢)
(em)?

= ¢

Recalling that we can generate upto 2" pairwise-independent samples using 2n coins the pairwise-
independent hitter achieves

e Sample Complexity: é (reasonable for constant §).
e Randomness Complexity: 2n

e Computational Complexity: indeed efficient.

21

C.3 The combined Hitter

Our goal here is to decrease the sample complexity of the Pairwise-Independent Hitter while essen-
tially maintaining its randomness complexity. To motivate the new construction we first consider
an oversimplified version of it.

Combined Hitter (oversimplified): On input parameters n, € and 4, set m def % and ¢ %
log,(1/6), generate ¢ independent m-element sequences, each being a sequence of m pairwise-
independently and uniformly distributed strings in {0,1}". Denote the sample points in the 7*h
sequence by si,...,s° . We merely try all these £ - m samples as hitting points. Clearly, for each
v=1,...,¢,

and so the probability that none of these s; “hits o” is at most 0.5 = §. Thus, the oversimplified
version described above is indeed a hitter and has the following complexities

e Sample Complexity: £-m = O(ﬂﬁlﬁl).
e Randomness Complexity: ¢ -O(n) = O(n -log(1/9)).
o Computational Complexity: indeed efficient.

Thus, the sample complexity is optimal (upto a constant factor), but the randomness complexity
is higher than what we aim for. To reduce the randomness complexity, we use the same approach
as above, but take dependent sequences rather than independent ones. The dependency we use is
such which essentially preserves the probabilistic behavior of independent choices. Specifically, we
use random walks on expander graphs (cf., Appendix B) to generate a sequence of £ “seeds” each
of length O(n). Each seed is used to generate a sequence of m pairwise independent elements in
{0,1}", as above. Thus, we obtain

Corollary C.4 (The Combined Hitter): There exists an efficient hitter with

e Sample Complexity: O(M).

e Randomness Complexity: 2n + O(log(1/4)).

Furthermore, we can obtain randomness complexity 2n + ¢ -log,(1/8)), for any ¢ > 2.

Proof Sketch: We use an explicit construction of expander graphs with vertex set {0, 1}27, degree
d and second eigenvalue A so that A\/d < 0.1. We consider a random walk of (edge) length { — 1 =
log,(1/6) on this expander, and use each of the { vertices along the path as random coins for

the Pairwise-Independent Hitter which makes m def €/3 trials. To analyze the performance of the
resulting algorithm, we let W denote the set of coin tosses (for the basic hitter) which make the basic
hitter fail (i.e., output a 0-valued point). By the hypothesis, |22—VJ < 1/3, and using Theorem B.2,
the probability that all vertices of a random path reside in W is bounded above by (0.3440.1)* < é.
The furthermore clause follows by using a Ramanujan Graph and an argument as in the proof of

Ttem 2 of Theorem 4.1. |

22

C.4 The Expander Hitter

The following hitter was suggested in [20]. Our only deviation from [20] is in using Ramanujan
Graphs rather than arbitrary expanders. We use a Ramanujan Graph of degree d = O(1/€§) and
vertex-set {0,1}". The hitter uniformly selects a vertex in the graph and uses its neighbors as

a sample. Suppose we try to hit a 1-value of a function o and let S def {uw: o(u)=1}. Let

B {v:N(v)NS = 0} be the set of bad vertices (i.e., choosing any of these results in not finding
a preimage of 1). Using the Expander Mixing Lemma we have

o(B)(S) = 'BX|§|)”E' p(B)o(5)

< E p(B)p(S)

Hence, p(B)p(S) < (A/d)? = €5 and using p(S) > € we get p(B) < §. The complexities of this
hitter are as follows

o Sample Complexity: O(4-) (reasonable for constant §).
e Randomness Complexity: n

e Computational Complexity: indeed efficient.

Adapting the argument in the proof of Corollary C.4, we obtain

Corollary C.5 (The Combined Hitter, revisited): There exists an efficient hitter with
e Sample Complexity: O(M).

e Randomness Complexity: n + (2 + «) - log,(1/4)), for any a > 0.

23

