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Abstract

In [3] we exhibited a simple boolean functions f, in n variables such
that:

1) fn can be computed by polynomial size randomized ordered read-
once branching program with one sided small error;

2) any nondeterministic ordered read-once branching program that
computes f, has exponential size.
In this paper we present a simple boolean function g, in n variables such
that:

1) g, can be computed by polynomial size nondeterministic ordered
read-once branching program;

2) any two-sided error randomized ordered read-once branching pro-
gram that computes f,, has exponential size.

These mean that BPP and NP are incomparable in the context of
ordered read-once branching program.

1 Preliminaries

Branching programs is well known model of computation for discrete functions
[14]. Many types of restricted branching programs have been investigated as
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important theoretical model of computations [9]. Ordered read-once branching
program or ordered binary decision diagrams (OBDD) [4, 15] also important for
practical computer science. They are used in circuits verifications. But many
important functions cannot be computed by determinsitc read-once branching
programs of polynomial size [4, 13, 8].

In [2] we introduced the model of randomized branching programs and showed
that randomized ordered read-once branching programs can be more effective
than determinstic ones. In [3] we defined exclusive boolean function f, in n
variables which can be computed by polynomial size randomized ordered read-
once branching program, but any nondeterminstic ordered read-once branching
program needs exponetial size to compute f,. Martin Sauerhoff [10] considered
function from theorem 3 [6]. He proved that this function needs (also as in the
deterministic case) exponetial size randomized read-once branching programs for
one-sided error. In this paper we presented exclusive function g,, which is ”simple”
for nondeterminstic ordered read-once branching programs, but is "hard” for
randomized read-once branching programs with two-sided error of computation.

Together with the result from [3] this proves that complexity classes BPP and
NP are incomparable in the context of ordered read-once branching programs.

Note that the results of the paper for ordered read-once branching programs
are true for a more common model — weak-ordered branching program that we
define in the paper. Informaly speaking weak-ordered property for branching
program P means existence of partition of its set {1, xs,...,2,} of variables
into two parts X; and X,, X; (N X2 # (), such that for any computation path of
P the following is true. If a variable from X5 is tested then no variable from X;
can be tested in the rest part of this path.

A deterministic branching program P for computing a function ¢ : {0,1}" —
{0,1} is a directed acyclic multi-graph with a distinguished source node s and a
distinguished sink node t. The out degree of of each non-sink node is exactly 2 and
the two outgoing edges are labeled by x; = 0 and z; = 1 for variable z; associated
with the node. Call such node an x;-node. The label “z; = §” indicates that only
inputs satisfying x; = 6 may follow this edge in the computation. The branching
program P computes function g in the obvious way: for each o € {0,1}" we let
f(o) =1 iff there is a directed s — ¢ path starting in the source s and leading to
to the accepting node ¢ such that all labels x; = 0; along this path are consistent
with 0 = 01,09,...,0p.

The branching program becomes nondeterministic [5] if we allow ”guessing
nodes” that is nodes with two outgoing edges being unlabeled. Unlabeled edges
allow all inputs to produced. A nondeterministic branching program P computes
a function g, in the obvious way; that is, g(o) = 1 iff there exists (at least one)
computation on o starting in the source node s and leading to the accepting node
t.

Define a randomized branching program [2] as a one which has in addition to
its standard inputs specially designated inputs called "random inputs”. When
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values of these "random inputs” are chosen from the uniform distribution, the
output of the branching program is a random variable.

Say that a randomized branching program (a, b)-computes a boolean function
f if it outputs 1 with probability at most a for input o such that f(o) = 0 and
outputs 1 with probability at least b for inputs o such that f(o) = 1.

As usual for a branching program P (deterministic or random), we define
size(P) (complexity of the branching program P) as the number of internal nodes
in P. Define, following [5], the size(P) of the nondeterminstic branching program
P as the number of internal nodes in P minus the number of guessing nodes.

Read-once branching programs is branching program in which for each path
each variable is tested no more than once. An ordered read-once branching
program is a read-once branching program which respects a fixed ordering 7 of
the variables, i.e. if an edge leads from an z;-node to an z;-node, the condition
7(i) < 7(j) has to be fulfilled.

2 Results

We specify a boolean function f,, of n = 4/ variables as follows. For a sequence
o € {0,1}* call odd bits a “type” bits and even bits a “value” bits. Say that
even bit g; € 0, i € {2,4,...,4l}, has type 0 (1) if corresponding odd bit o; ; is
0 (1). For a sequence o € {0,1}* denote o° (o!) subsequence of o that consists
of all even bits of type 0 (1).

For every o € {0,1}" boolean function f, : {0,1}" — {0,1} is defined as
fu(o) =1iff 6° =0l

Definition 1 Call branching program a m-weak-ordered branching program if its
respects a partition m of variables {x1, T, ..., x,} into two parts Xy and Xy such
that if an edge leads from an x;-node to an xj-node, where x; € X; and x; € X,
then the condition t < m has to be fulfilled.

Call branching program P an weak-ordered if it is w-weak-ordered for some
partition © of the set of variables of P into two sets.

Clearly that ordered read-once branching program is also weak-ordered. We
proved the following result in [3] (we use here a restrictive variant of this result).

Theorem 1 For the function f, the following is true:
1. fn can be (e(n),1)-computed by randomized ordered read-once branching
program of the size

6
n n
@ log? .
(e%n) i s<n>>
2. Any nondeterministic ordered read-once branching program that computes
function f, has the size no less than 27/* 1.
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Now define function g, which is "hard” for randomized computation but is
”simple” for nondeterminstic computation for our model of branching program.
This boolean function presented in [11]. Let n be an integer and let p[n| be the
smallest prime greater or equal to n. Then, for every integer s, let w,(s) be
defined as follows. Let j be the unique integer satisfying j = s mod p[n| and
1 < j <p[n]. Then, w,(s) =7,if 1 < j <n, and w,(s) = 1 otherwise.

For every n, the boolean function g, : {0,1}" — {0,1} is defined as g,(c) =
0;, where j = w, (37 i0;).

We will use the following notations in the rest part of the paper. Let A :
{0,1}* — {0,1} be a boolean function. Consider a partition 7 of variables
{z1,29,...,2,} into two parts X; = {z; : 4 € I} and Xy = {z; : j € J}, where
Ic{1,2,...;n}, |I|=1land J ={1,2,....,n}\I}, |J| =t.

Denote L, R sets of binary sequences of length [ and ¢ with indexes from I
and J respectively. For v € L and w € R let (u,w) mean the sequence o from
{0,1}" in wich bits with indexes from I respectively J have the same values as
in u respectively w. We will also use the notation h(u,w) instead of h(c) where
it will be convenient.

Consider one-way randomized communication computation. We use the fol-
lowing standard model of one-way randomized communication computation for
function h. Two players A and B receive respectively © € L and w € R. In the
randomized one-way model, A sends the messages (31, (3, ..., 84 with probabilities
P1,D2, ..., g Tespectively (X%, p; = 1). B, on the receipt of 3;, outputs 1 with
probability ¢; and 0 with probability 1 — ¢;. The probability distribution on the
set, of messages sent by A is entirely determined by the input at A alone, and is
not influenced by the input at B. Similarly, the probabilities ¢; at B depend only
on its input and the message [; received.

In the computation T4(u,w), the probability of outputting the bit b = 1 is
>4 pi(u)g;(w) and the bit b=0is 1 — X%, p;(u)gs(w).

Let p = % + ¢ for 0 < ¢ < 1/2. Say that the probabilistic protocol ¢ p-
computes a function h if for every input o = (u,w) it holds that h(c) = b iff the
probability of outputting the bit b in the computation Ty (u, w) is no less than p.

Let a set U C {0,1}" be such that U = L x R. The randomized communi-
cation complexity C(¢) of the probabilistic protocol ¢ on the inputs from U is
[log |M(¢)|], where M(¢) is the set of messages used by ¢ during computations
on inputs from U. For p € [1/2,1] the randomized communication complexity
PCY_(h) of a boolean function h is

min{C(¢) : protocol ¢ p-computes h for the partion 7 of inputs from U}.

The proof of following lemma is based on simulation technique of weak-ordered
branching program by communication protocol and is similar to simulation tech-
nique from [1] (lemma 6.1).



Lemma 1 Lete € [0,1/2], p=1/2+¢. Let randomized m-weak-ordered branch-
ing program P (1 — p, p)-computes function h : {0,1}" — {0,1}. Let U C {0,1}"
be such that U = L x R, where L and R are defined in according to partition ™
of inputs. Then

size(P) > 2PC=(M-1,

Proof. Describe the following communication protocol ®, which p-computes
function A for the partion 7 of inputs.
Let o0 € U be a valuation of z, 0 = (u,w), u € L, w € R. Players A and B

receive respectively v and w in according to partition 7 of inputs. Let vq,...,vq4
be all internal nodes of P that are reachable during paths of computation on the
part u of input o with non zero probabilities p;(u), . . ., pa(u).

During the computation on the input u, player A sends node v; with prob-
ability p;(u) to player B. Player B on obtaining message v; from A starts its
computation (simulation of the branching program P) from the node v; on the
part w of the input o.

From the definition of the protocol ® results the statement of the lemma. |

We use the lower bound for probabilistic one-way complexity from [1] in the
proof of the theorem 3 below. Recall notations and the statement we need from
[1] in the convinient for us form.

For U = L x R with a boolean function h we associate a |L| x | R| communica-
tion matrix CM whose (u, w)-th entry, CM[u, w| is h(u,w) for all (u,w) € L x R.
As it is mentioned in [16] the one-way deterministic communication complex-
ity DCY(h) for partition m of inputs from U of a boolean function h is easily
seen to be [log(nrow(CM))|, where nrow(CM) is the number of distinct rows of
communication matrix CM of the function h.

Consider w.l.g. the case when all rows of CM are different, nrow(CM) = |L|.

Choose a Y C R such that for an arbitrary two words u,u’ € L there exists
a word y € Y such that h(u,y) # h(u',y). The setY is called the control set for
the matriz CM.

Denote

ts(CM) = min{|Y| : Y is a control set for CM}.

It is evident that [lognrow(CM)] < ts(CM) < nrow(CM).

For number p € [1/2,1], define pecl (h) = %H(p), where H(p) =
—plog p—(1—p) log(1—p) is the Shannon entropy. Call pcc]/ (h) the p-probabilistic
communication characteristic of the function A.

Theorem 2 [1] Let € € [0,1/2], p = 1/2+¢e. Let U C {0,1}" be such that
U =L xR, where L and R are defined in according to partition w of inputs of
function h : {0,1}" — {0,1}. Then

PCY () > DCY(h)(1 — pec? (h)) — 1.



In the proof of the theorem 3 below we use the following result from number
theory (see [7] and [12] for additional citation).

For every natural number n let p(n) be the smalest prime greater or equal
than n. Consider Z,,) the field of the residue classes modulo p.

Lemma 2 For every n large enough, the following is true. If A C Z,y) and
|A| > 3y/n, then, for everyt € Zyy), there is a subset B C A such that the sum
of the elements of B is equal to t.

Theorem 3 Let e € [0,1/2], p=1/2+¢e. Then for arbitrary § > 0 for every n
large enough it holds that any randomized ordered read-once branching program
that (1 — p, p)-computes function g, has the size no less than

(2 .
n

Proof. Let P be a randomized ordered read-once branching program with an
ordering 7 of variables which computes function g,,. For ordering 7 = {iy, 42,...,in}
consider the partition 7 of variables z of g, into two parts X; = {z;,...,2;}
and X, = {z;,,,...,%;,}, where | = n — [3y/n]. Denote t = [3\/n].

Describe below a subset U C {0,1}" in the form U = L x R where |L| =,
|R| = t.

Denote by I and J sets of indexes of variables from sets X; and X, respectively.
For s € {1,...,n} denote Ly a subset of binary sequences of length [ with indexes

from I such that Ly = {u : w,(>;c; tu;) = s}. Denote L a maximum among sets
Li,.... L,

|L| = max }{\Ls\}.

s€{1,...,n
Clearly that

2n7[3\/77|
L] > ——r
n

Let L = L,. Then denote R = {w : w,(Z;c;jw; +5) = k,k € I}. From the
definition of R we have the following properties:

1) |R| = L;

2) for arbitrary u and u' from L there exists w € R such that g,(u,w) #
gn(u',w).

We will prove the second property (the first one is evident). Let 7 € I be
an index such that i-th bits in sequences v and u' are different, u; # u,. From
the lemma 2 it follows that for every n large enough, for our number s and the
number ¢ there exists a sequence w € R such that s + 3., jw; = 7 mod p(n).
Then from the definition of g, it follows that g, (u,w) # g,(u', w).
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Now define set U as U = L x R. From the above it follows that for the set U
|L| x |R| communication matrix CM of g, has the following properties:

1) nrow(CM) = |L|;

2) the set R is the control set for CM.
This means that DCY(g,) = log|L| and that for p-probabilistic communication
characteristic of pccf/(g,) of function g, it is true that

pecy (gn) = (I/ log |LH (p) < ((n = [3y/n])/(n — [3y/n] —logn))H (p).

From this it follows that for arbitrary § > 0 for every n large enough it holds
that

pccg(gn) <(1+9)H(n).

From the above property and the theorem 2 it follows that for every n large
enough the following is true

PGy (gn) > (n = [3v/n] —logn)(1 = (1+0)H(p)) - 1.

From this and the lemma 1 the lower bound for size(P) results. I

Note that in the proof of the theorem 3 from the property of P that it is
ordered read-once we use only the following fact. Set x of variables of P can be
partition into two parts X; and X, such that | X;| = n—[3y/n] and | Xs| = [3y/n].
The cardinality of X, is essential for application of lemma 2. This means that
the following statement is true.

Theorem 4 Lete € [0,1/2], p=1/2+¢. Let P be a randomized m-weak-ordered
branching program that (1 — p, p)-computes function g,. Let w be a partition of x
in two two parts X1, Xy such that | Xo| =t > [3\/n] and | X;|=1=n—1t. Then
for arbitrary 6 > 0 for every n large enough it holds that

2l 1-(14+9)H(p)
)

size(P) > 1/4 (-

Theorem 5 There is polynomial size nondeterministic ordered read-once branch-
ing program that computes function g,.

Proof. The proof is simple. For arbitrary input ¢ nondeterministic or-
dered read-once branching program P that computes function g, works as fol-
lows. On the first (nondeterminstic) phase P nondeterministicaly selects number
s € {1,...,n}. Then on the second (deterministic) phase P reads inputs in
the order zi,...,z,. During computation path on input o P 1) counts number
a = wy(X7, i0;) and 2) store s-ths bit o,. If @ = s then P ouputs bit o, of the
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input o else P outputs 0. Clearly, that P has polynomial size. I
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