Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:
E( :( :( : FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:  http://www.eccc.uni-trier.de/eccc/

T R97- 023 Email:  ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

On P versus NPNco-NP for Decision Trees and
Read-Once Branching Programs

S. Jukna* A. Razborov! P. Savicky* I. Wegener?

Abstract

It is known that if a Boolean function f in n variables has a DNF and a CNF of
size < N then f also has a (deterministic) decision tree of size exp (O (log n log? N)).
We show that this simulation cannot be made polynomial: we exhibit explicit
Boolean functions f that require deterministic trees of size exp (Q(log2 N)) where
N is the total number of monomials in minimal DNFs for f and - f. Moreover, we
exhibit new examples of explicit Boolean functions that require deterministic read-
once branching programs of exponential size whereas both the functions and their
negations have small nondeterministic read-once branching programs. One example
results from the Bruen-Blokhuis bound on the size of nontrivial blocking sets in
projective planes: it is remarkably simple and combinatorially clear. Whereas other
examples have the additional property that f is in ACO.

1 Introduction

The following general question has been widely studied for various computational models:

o Suppose that both a computational problem and its complement possess an efficient
nondeterministic computation in some model. Does this tmply that the problem
can also be computed efficiently (typically, with at most polynomial blow-up) and
deterministically in the same model?

*Dept. of Computer Science, University of Trier, D-54286 Trier, Germany. Supported by DFG grant
Me 1077/10-1. On leave from Institute of Mathematics, Vilnius, Lithuania. E-mail: jukna®ti.uni-trier.de

tSteklov Mathematical Institute, Gubkina 8, 117966, Moscow, Russia. Supported by RBRF grant
#96-01-01222. E-mail: razborov@class.mi.ras.ru

Hnstitute of Computer Science, Acad. of Sci. of Czech Republic, Pod vodarenskou vézi 2, 182 07
Praha 8, Czech Republic. Supported by grant of GA the Czech Republic No. 201/95/0976. E-mail:
savicky@uivt.cas.cz

$Dept. of Computer Science, University of Dortmund, D-44221 Dortmund, Germany. Supported by
DFG grant We 1066/8-1. E-mail: wegener@Is2.informatik.uni-dortmund.de



We use for this question somewhat imprecise but very expressive the abbreviation the P
versus NP N co — NP question, and, since we study the models in Boolean (non-uniform)
complexity, we assume in this notation polynomial size instead of polynomial time. More
specifically, we study the P versus NP N co— NP question for decision trees and read-once
branching programs (see e.g. [18, 14] for definitions of these models).

In the context of decision trees Ehrenfeucht and Haussler [6] have proved that every
Boolean function f in n variables has a deterministic decision tree of size

exp(O(log nlog® N)),

where N is the total number of monomials in the minimal DNFs for f and —f.! Since
nondeterministic decision trees are essentially equivalent to DNF's, this upper bound states
that for decision trees we have NP N co — NP C P, where P stands for quasipolynomial
size. [6] asked whether their bound can be improved. We prove that it is optimal up to
a factor of logn in the exponent. In particular, NP N co — NP € P in the context of
decision trees. For this purpose we show that the ITERATED MAJORITY function and
the ITERATED NAND function considered for a related purpose already in [15] require
deterministic decision trees of sizes exp (Q(logl'SS N)) and exp (Q(log2 N)), respectively
(Theorems 2.3, 2.4).

In the rest of the paper, we deal with read-once branching programs. The first example
of a function showing that in this context NP N co — NP is not even in subexponential
size was given in [11]. In the present paper, we provide new examples of this kind. One
of them is remarkably simple and combinatorially clear, whereas the other two have the
additional property that the separating function is in AC?. More specifically:

1. We show that the characteristic function f of blocking sets of appropriately bounded
cardinality in a finite projective plane requires 1-b.p. of exponential size whereas
both f and —f have polynomial size 1-n.b.p. of very transparent structure (Theo-
rem 3.2).

2. We exhibit an explicit Boolean function f such that both f and —f not only have
1-n.b.p. of polynomial size, but can also be computed by polynomial size depth-3
circuits. Whereas any 1-b.p. computing f still must have exponential size (Theo-

rem 3.3).

3. We exhibit an explicit Boolean function f such that both f and —f have extremely
small 1-n.b.p., both can be computed by Xi-circuits whereas the minimal 1-b.p.
computing f has quasipolynomial size (Theorem 3.4).

1This result is not stated explicitly in [6], so we describe it more precisely in Theorem 2.1 below. For
the analogous result about the depth of decision trees see [4, 9, 17].



2 Decision Trees

In this section we establish the announced bounds for decision trees. Recall that a (deter-
ministic) decision tree is a binary tree whose internal nodes have labels from {1,...,n}
and whose leaves have labels from {0,1}. If a node has label ¢ then one of the outgoing
edges is labelled by the test z; = 0, and the other by z; = 1. Every decision tree computes
a Boolean function f in a natural way: for a € {0,1}" we simply follow the unique path p
consistent with the input a (i.e. all edge labels along this path have the form z; = a(1)),
and output the label of the leaf finally reached by p. Let the size of a decision tree be the
number of all its leaves, and let dt(f) denote the minimum size of a decision tree for f.

Let dnf(f) denote the minimum number of monomials in a DNF for f. As we already
noted in the Introduction, this is essentially the minimum size of a nondeterministic
decision tree for f, and we do not distinguish between these two complexity measures.

The sum || f|| = dnf(f) + dnf(—f) will be called the weight of f.

The following result is due to Ehrenfeucht and Haussler [6]. Although not stated
explicitly the result follows directly from Lemma 1 and Lemma 6 of that paper.

Theorem 2.1 Let [ be a nonconstant Boolean function in n variables, s = dnf([),
t = dnf(—=f), and
r(f) = [logy(s + 1) In(st)| + 1.

Then f has a (deterministic) decision tree of a size bounded by

r(f)

3 (’Z) = exp (O(log nlog? N)) ,

=0

where N = s+t is the weight of f.

In the following we will show that the simulation given by Theorem 2.1 cannot be
made polynomial. We demonstrate this by proving lower bounds on the decision tree size
for two explicit functions introduced in [15].

Our argument is based on spectral methods, so it will be convenient to switch to
the (—1,+1)-notation, i.e., to consider Boolean functions as mappings from {—1,1}"
to {—1,1}, where the correspondence true = —1 and false = 1 is assumed. These
functions are treated as elements of a 2”-dimensional real vector space with an inner
product defined by (f,¢g) = 27", f(2)g(x). The set of all monomials Xg = [Tics
forms an orthonormal basis for this space. Hence, any function f on the cube {—1,1}"
can be uniquely expressed as f = > g f(S)Xs, where

F(S)=(f,Xs) =273 f(z)Xs(2)



is the Sth Fourier coefficient of f. The unique expression of f as a linear combination of
Xs may be obtained from any real polynomial expressing f using identities 27 = 1.

The following lemma combines [13, Lemma 4] and [12, Lemma 5.1].

Lemma 2.2 For every Boolean function [ in n variables and every S C [n] we have the

bound )
di(f) = 20 37| A(T)]. (1)

T2S

Proof. Take a decision tree for f of size dt(f). For a leaf £, let val(¢) € {—1,1} be its
label (recall that we are in (—1,41)-notation), and let I, be the set of indices of those
variables which are tested on the path to £. Let B, C {—1,1}" be the set of all the inputs
that reach leaf {. We think of B, as of the corresponding ((0, 1)-valued!) function; in
particular, we let

Bg(T) =27 Z XT(.I)

.L‘EB£

Since each input reaches a unique leaf, the sets B, are mutually disjoint, and, hence,
f(T) =Y, val({) - BZ(T) for every T C [n]. Now, if T I, then Xp(z) = +1 for exactly
half of the inputs « € By, and, hence, BZ(T) = 0. If T' C I, then the value of X7 is fixed
on By to either +1 or —1, and hence, |B£(T>| = 27" . |B,| = 2710,

For any S C [n] and any £, there are at most 27¢/=I5| sets T satisfying S C T C I,.
Hence,

S IADIS N[BT =X 3 2= 3= omay(y),

728 TS ¢ ¢ T:1,0TDS
and the desired bound (1) follows.m

We are going to apply Lemma 2.2 for S = [r] to the ITERATED MAJORITY function
and for S = () to the ITERATED NAND function.

Consider the monotone function in n = 3" variables which is computed by the balanced
read-once formula of height A in which every gate is M A.J3, the majority of 3 variables.
Let us denote this function by Fj,.

Theorem 2.3 dt(F}) > exp ((log” Ny,)), where N, = || Fy|| and v = log, 3 > 1.58.

Proof. It is easy to see that dnf(F3) = 3 - dnf(Fh_1)2 and dnf(Fo) = 1. Moreover, the
function is self-dual and hence the DNF size of —F} coincides with that of Fj. Thus,
N,=2-3"""1and n=3"= 6(log™ Ni). So, our goal is to prove the exponential bound

dt(Fy) > exp (Q(n)).

4



By Lemma 2.2 with S = [n], it is sufficient to prove an appropriate lower bound on
the leading Fourier coefficient Fj([n]) of the polynomial Fj(z,zs,...,2,). We denote
this coefficient by a; and proceed by induction on A.

Clearly, ag = 1, since Fy is a variable.

For the inductive step note that MAJ5(zy, 22, 23) = (21 + 22 + 23 — z12223)/2 in
the (—1, 4+1)-representation. Since F}, = MAJg,(F,g]_)l,F}EQ_)l,F}Ei)l), where F;Ei)l are three

copies of Fj_; with disjoint sets of variables, we have

-3 (B -

Since Fj_; depends on less than n = 3" variables, the first summand does not contribute
to the leading coefficient in Fj. Thus, we have the recursion

1

3
ah — __ah_l.

ap = (=1)"- (%) (3"=1)/2 1) (%) (n—1)/2

and gives us (from Lemma 2.2) the bound dt(F}) > 2(””"1)/2, as desired.m

This resolves to

Consider the function in n = 2" variables which is computed by the balanced read-
once formula of height A in which every gate is NAND, the negated AND operation
NAND(z,y) = —z V =y (up to complementation of the inputs this is equivalent to a
monotone read-once formula with alternating levels of AND and OR gates). Let us
denote this function by G},.

Theorem 2.4 dt(G}) > exp (Q(log2 Nh)), where N, = |G|

Proof. dnf(Gy) = dnf(=Gy) = 1 (since Gy is a single variable), and it is easy to see
that for every h > 1 we have dnf(G}) < 2 dnf(=Gj—1) and dnf(=Gp) < dnf(Gj-1)?. By
induction on A one obtains dnf(Gj) < 92"V -1 and dnf(-G)) < g2 M/DH =2, Hence, we

have N}, < 2? MOTY Gince n = 2" our statement boils down to showing

dt(Gr) > exp (2(n)) .

Let us say that a Fourier coefficient éh(S) is dense if for every subtree of height 2,
S contains the index of at least one of the four variables in that subtree. We are going
to calculate exactly the sum of absolute values of dense coefficients. Denote this sum by



¢y Note that in the (=1, +1)-representation, we have NAND(z,y) = (2y —z —y — 1)/2.
Hence,

1
Gr=5 (G -G = G = G2 1), (2)

where Ggl_)l, GELQ_)1 are two copies of GG_; with disjoint sets of variables.

In order to compute ¢z, we use the following transformation. Let f; = Gﬁ” +1/2 and

fo= G?) + 1/2. Then it follows from (2) that

1 3 3 1
Gy = §f1f2 - Zfl - ZfZ + 3

Since each monomial in f; and f; contains at least one variable and the sets of variables
of f; and f, are disjoint, there are no common monomials in the four terms in the above
expression of (5. Hence, it is easy to calculate the sum of the absolute values of the
coefficients in the nonconstant monomials, which is ¢z = 1/2 71 - ry +3/4 - (r1 + 1r2) =
27/8 = 3.375, where ry = ry = 3/2 is the sum of the absolute values of the coefficients in
f1 and f.

In order to compute ¢; for h > 2, we use (2) directly. Only the first term GELI_)l . GELQ_)l
in this equation can contribute to dense coefficients, and its individual contributions do
not cancel each other. Hence, we have the recursion

Cp = 102
2 h—1

This resolves to ¢, = 2(02/2)2h_2 which is exp (2(n)) since ¢; > 2. The proof is now
completed by applying Lemma 2.2 (this time with S =().m

3 Read-Once Branching Programs

In this section we investigate functions which separate P from NP N co-NP for read-once
branching programs. For simplicity, let us call such functions separating. The first example
of a separating function was presented in [11, Example 6.14] and another separating
function of a similar flavour was discovered in [16].

We first present a separating function of quite a different nature, which has a sur-
prisingly compact combinatorial definition. It is the characteristic function of a certain
system of point-sets in a projective plane PG(2, q).

Then we present examples of separating functions in AC°. Let Xf, TI% be the classes
of functions computable by polynomial size depth-d circuits over the de Morgan basis
{AND, OR, NOT} (negations are allowed only at the input variables and do not con-
tribute to the depth) that have OR (respectively, AND) as output gate. Our first example

6



is in X% and demonstrates an exponential separation. The second example belongs to the
smaller class X5 N TT4, but the separation is only quasipolynomial.

All the lower bounds for 1-b.p. in this section are based on the following “folklore
observation” (see [11], or [§] for a simple proof). Let us say that a Boolean function f in
n variables is k-mized if for any I C [n] with |I| = k, and any two different assignments

a,b: I — {0,1}, there is an assignment ¢ : [r] \ I — {0,1} for which f(a,c) # f(b,c).

Lemma 3.1 [If f is k-mized then any 1-b.p. compuling f must have size at least 28 — 1.

3.1 1-b.p. versus 1-n.b.p.

The size of DNF (or CNF) and the size of 1-b.p. are in general incomparable:

o the parity function has a small 1-b.p. but requires exponential size AC? circuits

[7, 2,19, 10], and

o the exact-perfect-matching function has a CNF of size O(n3/2) but requires expo-
nential size 1-b.p. [11].

Gal in [8] has proved that the characteristic function of all blocking sets in finite projective
planes has even a CNF with a linear number of clauses, but still requires 1-b.p. of
exponential size. We describe the function of Gal in more detail, since our first example
is its modification.

Let P = {1,...,n} be the set of points of a projective plane PG(2, ¢) of order ¢, and
let Ly,..., L, be the lines viewed as subsets of P; hence n = ¢*> + ¢ + 1. Recall that each
line has exactly ¢ + 1 points, every two lines intersect in exactly one point, and exactly
g + 1 lines meet in one point. A blocking set is a set of points which intersects every
line. The smallest blocking sets are just the lines. Gal [8] proved that the characteristic

function
n

Gz, .., x,) = /\ \/ T

i=1j€L;

of all blocking sets has no 1-b.p. of size smaller than 2V, Tt appears that, using known
lower bounds on the size of non-trivial blocking sets due to Bruen [5] and Blokhuis [3], the
argument of [8] can be easily modified to get another result, namely that P # NPNeco— NP
in the context of read-once branching programs.

Blocking sets containing a line are called trivial. Bruen in [5] proved that any non-
trivial blocking set in a projective plane of order ¢ must have at least ¢ + /¢ + 1 points,
and this lower bound is known to be tight when ¢ is a square. For the prime order ¢,
Blokhuis [3] improved Bruen’s bound to 3(¢+ 1)/2 (which is also optimal). These results



motivate the investigation of the following Boolean function:

B(zy,...,x,) = (/\ \/ :vj) /\—|T;+k+1(;v1,...,;vn),

i=1j7€l;

where k = (¢ +1)/2if ¢ is a prime, and k = [, /q | otherwise; T (x1,...,x,) is the usual
threshold function which outputs 1 if and only if z; +--- 4+ z, > s. Thus, for any input
a: P — {0,1}, f(a) = 1 if and only if the set a=!(1) is blocking and has at most ¢ + k
points. This modified function has the required property:

Theorem 3.2 Both B and =B have 1-n.b.p. of size O(n®/?) whereas any 1-b.p. compul-

ing B musl have size al least 28 — 1.

Proof. Upper bound. Associate with each of the n lines L; (: = 1,...,n) the following
two Boolean functions: ¢; = Ajer, z; A P | g € Li}) and o = Nier,(—z;).

By the Bruen-Blokhuis bounds we have that B(a) = 1iff a has at most ¢+ k ones and
contains some line L, i.e., a(¢) = 1 for all points ¢ € L. Thus, B is an OR of n functions
©1,y ..., @n, €ach of which has a 1-b.p. of size O(n3/2). Hence, B has a 1-n.b.p. of size
O(n®/%). On the other hand, =B(a) = 1 if and only if either a has at least ¢ 4+ k + 1 ones
or a avoids some line (or both). Thus, =B is also an OR of the threshold function 77, .,
and n functions 1, ..., ¥,. Each of the functions ¢; has a 1-b.p. of size ¢ +1 and T,

has a 1-b.p. of size O(nq). Hence, =B has a 1-n.b.p. of size O(n3/2).

Lower bound. To this end, we use an argument similar to that of Gal [8]. By
Lemma 3.1, it is enough to verify that the function B is k-mixed. To show this, let
I CP,|I| =k, and a,b: I — {0,1} be two different assignments. Take an ¢ € I where
a and b differ. W.l.o.g. we may assume that a(:) = 1 and b(¢) = 0. There are ¢+ 1 lines
containing the point ¢. Since | — {i}| = k — 1 < ¢ — 1 (the number of lines containing ¢,
minus two) we can find among them two lines Ly and Ly such that Ly N1 = LyN 1T = {¢}.
Define the assignment ¢ : P\ I — {0,1} by letting ¢(j) = 1 if and only if j € Ly. Then
the inputs (a,c) and (b, ¢) both have at most |I U Ly| < ¢+ k ones. Thus, f(a,c¢) = 1,
since (a,¢) contains the line Ly, which in turn intersects all other lines. On the other
hand, f(b,¢) = 0 since (b, ¢) does not intersect the line Ly in view of Ly N (1T U Ly) = {¢}
and b(z) = 0.m

3.2 1-b.p. versus 1-n.b.p. and AC"

In this subsection, we describe two separating functions in ACP.

Theorem 3.3 There is an explicit Boolean function in X5 such that both f and —f have
a 1-n.b.p. of polynomial size, whereas the 1-b.p. size of [ is exp (Q(n/ log n)l/Q).

8



Proof. Let k = |log, n| and choose arbitrarily n different subsets (1), a(2),..., a(n)
of {1,2,...,2k} such that |a(¢)| = k for all © € {1,...,n}. Split the n variables into 2k
blocks Xy, Xy, ..., Xo; of size |[n/(2k)]. For every j € {1,2,...,2k} we define a function
gj(z) depending only on variables in X;. For this purpose, we further split the variables
in X; into s subblocks of size s, where s = |(n/2k)"/?], and let g; be the AND of ORs of
variables in these subblocks. Finally, let

f) =\ (A A gj<:c>)-

=1 j€ali)

Obviously, f is in Y&.

To compute f and —f by polynomial size 1-n.b.p., we employ the fact that there are
only logarithmically many functions g1, ..., gar and we can search exhaustively through
all possible 22F outputs of this set. Formally, we re-write f in the form

2k
[@)="\ ( Vo oz A Alg(e) = fj))a (3)
Sewi \iel@ =1

where I(€) = {i € {1,...,n}|Vj € a(i)(¢;, = 1)}. The expansion for —f is obtained by
replacing Vier i with its negation. Now, z; A /\?i1 (gj(z) = ¢;) can be easily computed
by a 1-b.p. of polynomial size, and taking OR of these programs over all € € {0,1}%
and ¢ € I(€) we get a poly-size 1-n.b.p. for f. In order to apply this argument to = f,
we only need to compute /\2-61(5)(—';07;) A /\?il(gj(:v) = ¢;) by a poly-size 1-b.p. But this
becomes obvious if we note that we can get rid of the double occurrences of z; (i € I(€))
by substituting in /\?il(gj(;v) = ¢;) zeros for all these variables.

In order to prove the exponential lower bound on the 1-b.p. size of f we show that f
is (s —1)-mixed. Assume that @ and b are two different partial inputs setting some set I of
s—1 variables to constants. Let [ € I be an index of a variable satisfying a; # b;. We need
to prove that there is an assignment ¢ : [n]\ I — {0, 1} such that f(a,c) # f(b,¢). To this
end, we will construct in the next paragraph ¢ in such a way that for any j € {1,2,...,2k}
¢ reduces g; to the constant 1 if j € a(l), and to the constant 0 if j € a(l). Then it is
clear from (3) that f(a,c) = a;, f(b,¢) = by, and thus f(a,c) # f(b,c).

Assignment ¢ is constructed by considering each block X; separately. If 7 € a(l), select
in each subblock of X; one variable not in [ and set this variable to 1. This guarantees
gile = 1. It 7 & a(l), find a subblock of X; such that all its variables are not in I and
set them to zero. This guarantees ¢;|. = 0. By repeating this for all j and by setting all
remaining variables in an arbitrary way, we obtain the required ec.

Thus, the function [ satisfies all requirements from the theorem.m

Slightly modifying this construction, we get a separating function in X5 N TI5.



Theorem 3.4 There is an explicit Boolean function in X5 NTIL such that both f and —f
have a 1-n.b.p. of polylogarithmic (!) size whereas the 1-b.p. size of [ is

exp (Q((log n/ log log n)2)) .

Proof. We will actually exhibit a Boolean function in m variables such that both f

1/2

and = f have polynomial (in m) size 1-n.b.p. and exp (O(m]og m) )—Sized Ys-circuits,

whereas every 1-b.p. for f must have size exp (2(m/log m)). This function is transformed
m log m)!/2

into the required form by the standard padding argument: simply introduce 2
extra dummy variables.

Let k& = [log,m], and split the m variables into k& blocks Xi,..., X} of size |[m/k]
each. Asin the previous proof, we split the variables of X into s subblocks of size s, where
s = [(m/k)'/?], and let g; this time be the MAJORITY of MAJORITYs of variables in
these subblocks.

[ is defined by the following expansion that is analogous to (3):

flz) = \/ (ivﬁ A Nl(gi(z) = 63‘)) ; (4)

€100 k ]:1

where € ... ¢, is the integer with the binary representation ¢; ...¢; (cf. [11, 16]).

The upper bound O(m?/logm) on the size of 1-n.b.p. for f and —f is clear (cf. the
proof of the previous theorem).

For the lower bound on the size of 1-b.p., note that essentially the same argument as
. L2 . .
in the proof of Theorem 3.3 shows that f is (5— — 1)—H11X6d. Indeed, if |I| < s*/4 then

4
for every particular j, there are at least (s/2) + 1 subblocks of X, each of them having

at least (5/2) + 1 variables not in . Setting all free variables in these subblocks by ¢ to
either 0 or 1 forces the value of g; to the same constant.

Finally, MAJORITY of s variables has a trivial exp (O(s))-sized Yy-circuit and -
circuit. Merging these two, we get exp (O(s))-sized Ys-circuit and II;-circuit for g;(z).
Then we can get rid of the fan-in & AND gates in (4) at the cost of another factor &
in the exponent. This results in ¥s-circuits for both f and —f of size exp (O(ks)) =
exp (O(m log m)l/Z) ..

Remark. Note that in all our examples the nondeterministic 1-b.p. has a very special
form: it is a disjunction of polynomially many small 1-b.p. Moreover, in the last example
the nondeterminism is further restricted to so-called unique nondeterminism, i.e., at most
one computation path may lead to a 1-leaf.

10



4 Open Problems

We conclude with several open questions. By Theorems 2.3 and 2.4, the functions F}, and
(1, defined in Section 2 do not have a decision tree of size polynomial in ||F3|| and |G|
On the other hand, both have an oblivious 1-b.p. of size O(n?).

Question 1. Does there exist a Boolean function f which requires 1-b.p. of size super-
polynomial in || f||?

In the terminology of Section 3, this is equivalent to the question if ¥4 N I contains
a separating function. There are several further questions of the same flavour aimed at
bridging the gap between our lower and upper bounds. Does X have a separating func-
tion? Does X5 or LENTIE contain a function separating NPNco—NP from quasipolynomial
time P in the context of 1-b.p.? Finally, can one get rid of the peculiar log n factor in the
exponent in Theorem 2.17

Question 2. What can be said about the probabilistic complexity of the separating
functions considered in Section 37 Optimistically, what do they separate: NP N co-NP
from BPP or NP N co-NP N BPP(NAC®) from P? A partial step in that direction was
made by Ablayev in [1] where he proves that a Boolean function f,(Z) = x4z with a
particular “pointer” ¢ : {0,1}" — [n], requires oblivious two-sided small error randomized
1-b.p. of exponential size. The pointer ¢ was defined in [16], its graph has small 1-b.p.,
and hence, both f, and —f, have small I-n.b.p. (cf. Section 3.2). Can this bound be

extended to non-oblivious random 1-b.p.?

More modest but still (combinatorially) interesting is the following question.

Question 3. Does Gal’s function (the characteristic function of all blocking sets in
PG(2, ¢)) require exponential 1-n.b.p.? Note that any minimal 1-n.b.p. for this function
(as well as for any monotone function) is monotone, i.e. edges labelled by z; = 0 can
lead only to reject sinks. Thus, the question is in fact about the combinatorial structure
of blocking sets: take an acyclic directed graph and label its edges by points of PG(2, ¢)
so that no point appears in an s—¢ path twice. A graph is blocking if every s—t path
corresponds to a blocking set and every such set has at least one s—¢ path. What is the
minimal number of nodes in a blocking graph for PG(2,¢)?

Acknowledgement

We want to thank Hans Ulrich Simon for giving us the reference to the paper of Ehren-
feucht and Haussler.

11



References

[1] F. Ablayev (1996). Randomization and nondeterminism are incomparable for polyno-
mial ordered binary decision diagrams. Manuscript.

[2] M. Ajtai (1983). X]-formulae on finite structures. Annals of Pure and Applied Logic
24 1-48.

[3] A. Blokhuis (1994). On the size of a blocking set in PG(2, p). Combinatorica 14 111~
114.

[4] M. Blum and R. Impagliazzo (1987). Generic oracles and oracle classes. In: Proc. of
28th IEEE FOCS, 118-126.

[5] A. A. Bruen (1970). Baer subplanes and blocking sets. Bull. Amer. Math. Soc. 76
342-344.

[6] A.Ehrenfeucht and D. Haussler (1989). Learning decision trees from random examples.
Information and Computation 82 231-246.

[7] M. Furst, J. Saxe and M. Sipser (1981). Parity, circuits and the polynomial time
hierarchy. In: Proc. of 22nd IEEE FOCS, 260-270.

[8] A. Gal (1995). A simple function that requires exponential size read-once branching
programs. Tech. Rep. TR-95-09, University of Chicago (to appear in IPL).

[9] J. Hartmanis and L.A. Hemachandra (1987). One-way functions, robustness and non-

isomorphism of NP-complete classes. Tech. Rep. DCS TR86-796, Cornell University.

[10] J. Hastad (1989). Almost optimal lower bounds for small depth circuits. In: S. Micali,
editor, Randomness and Computation (Advances in Computing Research, Vol. 5), 143
170. JAT Press.

[11] S. Jukna (1988). Entropy of contact circuits and lower bounds on their complexity.
Theor. Comput. Sci. 57 113-129.

[12] E. Kushilevitz and Y. Mansour (1991). Learning decision trees using the Fourier
spectrum. In: Proc. of 23rd ACM STOC, 455-464.

[13] N. Linial, Y. Mansour and N. Nisan (1989). Constant depth circuits, Fourier trans-
forms and learnability. In: Proc. of 30th IKEFE FOCS, 574-579.

[14] A. A. Razborov (1991). Lower bounds for deterministic and nondeterministic branch-
ing programs. In: Proc. of FCT’91, Lecture Notes in Computer Science 529 (Springer,
Berlin), 47-60.

12



[15] M. Saks and A. Wigderson (1986). Probabilistic Boolean decision trees and the com-
plexity of evaluating games. In: Proc. of 27th IEEFE FOCS, 29-38.

[16] P. Savicky and S. Zak (1996). A large lower bound for 1-branching programs, Elec-
tronic Colloquium on Computational Complexity (ECCC), Report # TR96-036, 1996.

[17] G. Tardos (1989). Query complexity, or why is it difficult to separate N P4Nco— N P4
from P4 by a random oracle A? Combinatorica 9 385-392.

[18] I. Wegener (1987). The Complexity of Boolean Functions. Wiley-Teubner.

[19] A. Yao (1985). Separating the polynomial-time hierarchy by oracles. In: Proc. of
26th IEFFE FOCS, 1-10.

13



