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Abstract

Starting from Krentel’s class OptP [Kre88] we define a general maximization operator max
and a general minimization operator min for complexity classes and show that there are other
interesting optimization classes beside OptP. We investigate the behavior of these operators on
the polynomial hierarchy, in particular we study the inclusion structure of the classes max-P,
max ‘NP, max - coNP, min P, min- NP, and min - coNP. Furthermore we prove some very
powerful relations regarding the interaction of the operators max, min, U, Sig, C, @, 3, and
V. This gives us a tool to show that all the min and max classes are distinct under reasonable
structural assumptions. Besides that we are able to characterize the polynomial hierarchy
uniformly by three operators.

1 Introduction

The complexity of maximization problems is still a major field of research in structural complexity.
Different lines of approach were chosen in the past. In 1988 Krentel [Kre88] defined the class OptP,
which was subsequently studied in a series of papers [Kre88, Kob89, Kre92, GKR95]. In all these
papers it was pointed out that OptP and its subclasses maz-P and min-P (in Kdbler’s notation)
are constructed from NP in a natural way. We ask, what happens if this construction is applied to
P, coNP, and other complexity classes? In this paper we will take a strong complexity theoretic
approach, extending the work started by Krentel.

Recall that OptP = maz-P U min-P, where maz-P is the set of all functions f such that there
exists a nondeterministic polynomial-time Turing machine N such that every accepting path of N (x)
writes a binary number and the largest among the binary numbers over all accepting paths of N (x)
equals f(x). Similarly one defines min-P.

In [Kre88] it is shown that the function MAXIMUM SATISFYING ASSIGNMENT, which given
a boolean formula outputs the lexicographically largest satisfying assignment, is, though in maz-P,
metric complete for FAY which is a seemingly larger class then maz-P. But note that computing
MAXIMUM SATISFYING ASSIGNMENT does not need the full computational power of the class
maz-P, namely it can be computed by a nondeterministic polynomial-time Turing machine in the
sense that the largest accepting path (not output) is the value of the function (we guess all assignments
and accept if the guessed assignment satisfies the input formula). Does this observation lead to a
smaller class of optimization functions?

There have been various attempts to relate function and complexity classes by defining operators
in order to map one kind of class to the other. Two major examples of operators which map



complexity classes to function classes are # [Tod91] as a generalization of Valiants class #P [Val79a,
Val79b] and Med [VW93]. In these papers the authors define for a complexity class K :

fe#-k = \VV V A f@=[{y:0<y<2?CDA(z,y) € A}|.
AeK pePol zeX*
feEMed- K = \/ \/ /\ f(@) = median{y : 0 < y < 2202D A (z,4) € A}.
AeK pePol zeX*

Here Pol denotes the set of all polynomials. Both definitions have turned out to be of considerable
interest in structural complexity as can be seen by a long series of papers, for instance [HV95, OH93,
VW93] to name only a few of them. Note that the # and the Méd operator capture the essence of
counting and finding the middle element, respectively.

So it is quite natural to similarly define “pure” optimization operators. Let K be a complexity
class. We define the function classes max - and min -K:

f € maxk < \/ \/ /\ f(a:)=ma${y:0§y<2p(|z|)/\<$,y)EA}

Aek pePol zeX*
and if this set is empty let f(z) = 0.

g € min- KX <= \/ \/ /\ g(z) =min{y : 0 <y < 27020 A (2, y) € A}
A€k pePol  zeX*

and if this set is empty let g(z) = op(lz)),

Obviously we have max-NP = maxz-P. But we do not know similar equivalences for our classes
max -P and max - coNP offhand. So we study the inclusion relations between the min and max
classes and also their inclusion relations with the other well known function classes such as # - P,
span-P, # - coNP and the classes FP and FAS. Tt turns out that none of the interesting new classes
such as max-P and max - coNP is equal to some known class. And under reasonable structural
assumptions all min and max classes are distinct. Our results reveal an interesting asymmetry
between maximization and minimization with respect to counting.

Our operator max should be compared with the maximization operator defined in [VW95, Vol94].
Vollmer and Wagner define for a complexity class K:

f€FK <= thereexist a set A € K and functions gy, g2 € FP such that for all z:
(L) (z,y+1)€ A= (z,y) € 4,

(2.) f(z) =maz{y : g1(z) <y < g2(2) A (z,9) € A}
if this set is not empty, f(x) = g1(x) otherwise.

In contrast to our definition we have here the additional condition (1.) which essentially allows a
binary search to find the value of a maximization function. We want to study a pure optimization
operator and thus concentrate on maximization without any further constraints.

Regarding the relationship of the operators F [VW95] and max we note that clearly F-X C max-K
for any complexity class K. Furthermore we are able to show that F- = max-KX <= K =3-K
and F-X = min - coK <= K =V K. Hence in the case that = P or K = coNP we get truly new
function classes.

A different model of maximization was investigated by Chen and Toda [CT95]. Chen and Toda
investigate the complexity of finding mazimal solutions with respect to a partial order. Note that
we search for the mazimum solution with respect to the natural ordering of natural numbers.



We prove a number of powerful relations regarding the interaction of the operators max, min, U,
Sig, C, @, 3, and V. In particular we show for complexity classes K having some reasonable closure
properties, such as closure under <? :

U - max-K = K, Sig - min-XC = cok,
U - min-K = cok, C-max-K=3-K,
Sig - max-K = 3 - K. C - min-K =V - cok,

@ - max-K = @ - min- K = P¥X,

Note that we define the operators C and @ on function classes and not on complexity classes as
originally done in the literature [Wag86, PZ83]. Our operator C appeared already in [VW95].

The above relations turn out to be a very useful tool in order to show that various inclusions
between function classes are unlikely. Our study yields a huge number of new characterizations
of central complexity classes such as P, NP, coNP and PP and allows a characterization of the
polynomial hierarchy based on only three operators.

2 Preliminaries

We adopt the notations commonly used in structural complexity. For details we refer the reader to
any of the following standard books, e.g., [BDG88, Pap94]. Denote the characteristic function of
a set A by c4. We usually identify strings over the alphabet ¥ = {0,1} with computation paths
of nondeterministic Turing machines in the following manner: The sequence of 0’s and 1’s is the
sequence of nondeterministic choices our machine will make, where 0 stands for taking the first and
1 for taking the second of the two possible computation steps. A nondeterministic polynomial-time
Turing machine (NPTM for short) with time bound p is said to be normalized if for all inputs z all
of its computation paths have the same length p(|z|). Denote the set of all polynomials by Pol.

For a nondeterministic polynomial-time Turing machine M with output device we define for
every input z, the sets Accy(z) and Outpr(z) and the function mazpatha(x) as follows:

Acepr(z) = {z : z is an accepting computation path of M(z)},
Outpr(z) = {y : y is output on some accepting path of M(x)},
mazxpathpy(xz) = maz{z : z € Accyr(z)},

Let {.,.) and (.,.) be pairing functions mapping from ¥* x IN and ¥* x X* to X*, respectively,
and having the standard properties such as being polynomial-time computable and polynomial-time
invertible. Let for every natural number n, bin(n) denote the binary representation of n and let for
every nonempty string z € X*, number(z) denote the natural number whose binary representation,
possibly with some leading 0’s, forms the string z.

Let # - K be defined as done in the previous section.

As already noted we want to study classes of “pure” optimization functions and thus define for
a complexity class K,

f €max-K < \/ \/ /\ f(@) = maz{y:0 <y < 277D A (z,y) € A},
AcK pePol zex*

g € min-KX <= \/ \/ /\ g(z) =min{y: 0 <y < 272D A (z,y) € A}
AecK pePol zeX*



Note that one can define max -X in a more elegant way, namely

f € max-K <— \/ \/ /\ f(@) = sup{y:0 <y < 2?0V A (z,9) € A}.

AeK pePol zeX*

Because of reasons of tradition we stick to the notation max and min instead of introducing sup
and inf. But when writing max or min we actually mean sup or inf. In the following we omit any
statement concerning the empty set, since all complexity classes K in the context of this paper are
at least closed under <P , and thus we can without loss of generality assume that for all A € K and
all z, in the case of maximization (x,0) € A and in the case of minimization (z,2P(?)) € A. Note
that we can, if K is closed under intersection with P sets, equivalently define

femack <= \ VA f@)=mar{y: Ai() Sy < fole) Ale,y) € A).

AEK f1€FP f,€FP  gex+

Recall that the polynomial hierarchy is defined as follows: Xf = ITI§ = Al = A = P and, for
eachi > 0,%XF = NP1, P ={L:LeXl} and A? = P>-1. In this paper we want to concentrate
on classes of optimization functions where the underlying complexity class K is a class AY, £? or
II? from the polynomial hierarchy. For short we will call these classes the min-max classes.

Let FA? denote the set of all single valued total functions (mapping from ¥* to IN) computable
in polynomial-time with the help of an oracle from X? ;. Let FP = FAY.

We say a set is trivial if it is ) or ©* and otherwise we say it is nontrivial. We often need that a
complexity class K is closed under intersection with P sets. Note that closure under <P, reductions
together with the property that K contains nontrivial sets ensures that. In order to be able to state
theorems in a very compact form we let for reasons of simplicity complexity class denote a set of
languages over ¥*, containing at least one nontrivial language.

Let a function class be a set of single valued total functions mapping from ¥* to IN. For a
function class F define its subset of polynomially bounded functions by

Foa={feF: \| N\ f@ <p(a)}

peEPol zeX*

Note that the same class was denoted by F[O(logn)] in [KST89].
For every set of operators OP defined on a (complexity or function) class C we denote the algebraic
closure of C under the operators of OP by I'op(C).

3 Inclusion Relations

We will study the inclusion relations among the min-max classes. Recall # -NP C # - coNP
from [KST89]. Do the operators max and min display a similar behavior with respect to their
effect on the complexity classes NP and coNP? We will see that this is not the case.

The operators max and min are obviously monotone and one can easily verify the following
claims.

Proposition 3.1 1. max-NP = maz-P,
2. min - NP = min-P,

3. FP C max-P C max-NP C FAZ,



4. FP C min - P C min- NP C FA?,
5. max-P C max - coNP C max-Af,
6. min - P C min - coNP C min-Af.

Note that all the above claims relativize.
Besides that we are able to prove another inclusion which establishes a close connection between
max -X¥ and min -II?, and min-¥¥ and max-II?, for all + € IN.

Lemma 3.1 For every i € IN,
1. max-X? C min-II?,
2. min-X? C max-II?.

Proof: (1.) Let f € max-X?, A € ¥ and p € Pol such that for all z,
f(@) = maz{y: 0 <y < 2°02D A (z,y) € A}.
Define B to be the set

B={y:\/(y <y <2?") A(z,y) € A)}.

yl
Since the class Ef is closed under 3 we have B € Ef . And note that

f@) = maz{y:0<y< 2@ A(z y) € A}
min{y:0<y < 2p(lzl) A (z,y) ¢ B}.

Hence f € min-II%.
(2.) The proof is similar to the proof of (1). |

Note that we have max-NP C FA! according to Proposition 3.1. One would expect that also
max - coNP C FAS holds. We will see later, that this is not the case under reasonable structural
assumptions.

Our next theorem shows that we have an inclusion between # - K and max-C if and only if there
is also an inclusion between # - coK and min-C. We show furthermore that min and max are dual
with respect to their inclusion relations.

Theorem 3.1 For every complezity classes K and C closed under <P ,
1. #-K Cmax-C <= # - coK C min-C,
2. max-K C min-C <= min-K C max-C.

Proof: Let K and C be complexity classes closed under <? . Before we start with the actual proof
let us make some observations.

(I) Consider a function f € # - K, thus there exist a set B € K and a polynomial p such that
f(@) =|{y:0<y<2!2D) A (z,y) € B}|| for all z. Obviously

2¢(2) _ f(z) = ||{y : 0 < y < 222D A (z,y) ¢ BY||

and thus is in # - coK.



(IT) Now consider a function f such that f € max-C via the set B € C and g € FP, that is
f(z) =maz{y : 0 <y < g(z) A{z,y) € B} for all z. The set

B' = {{z,y) : 0 <y < g(2) A (z,9(z) —y) € B}

is also a set from C, since C is closed under <P . Note that

g(z) — f(z) =min{y : 0 <y < g(z) A (z,y) € B'}

and thus is in min -C.

(TII) Similarly one can see: If f € min-C via B € C and g € FP then g(z) — f(z) € max-C.
Now lets turn to the actual proof of our theorem.

(1.) Suppose # - K C max-C. Let f € # - coK via B € K and polynomial p. We conclude
2v(12l) — f(x) € # - K from observation (I) and thus 27() — f(z) € max-C by our assumption.

Let 272D — f(z) € max-C via the set C' € C and the polynomial g, thus

op(|zl) _ f(x) =maz{y:0<y< 9a(lz]) A (z,y) € C}.
Without loss of generality we have p < ¢ and hence
22(2) _ f(z) = maz{y : 0 < y < 27020 A (z,y) € C}.

But 27Uz — (2012 — £(z)) = f(2) € min-C by observation (II).

This proves # - K C max-C => # - coK C min-C. Similarly one can show the other implication
of claim (1.).

(2.) The proof of claim (2.) is quite similar and thus omitted. |

Recall from [KST89, Kob89] that max -NP C # - NP, FAL C # - coNP and # - coNP = # - AL.
The known inclusion relations between the considered function classes are presented in Figure 1.

In Section 5 and 6 we will show that we can not expect to have more inclusion relations than
shown in Figure 1. Though we are neither able to prove that min - P C # - NP nor can give structural
consequences for this case, there is also relativized evidence that the above inclusion picture can not
be improved. Recently, Glaser and Wechsung [GW97] showed among other relativization results
that there exists a relativized world in which min-P C # -NP. They also describe a relativized
world in which min - P € # - NP. In other words, non relativizable proof techniques are not powerful
enough to solve the question whether “min - P C # - NP?”

The original definition of the class OptP in [Kre88] gives us a machine based characterization of
max -NP and min - NP. The following two lemmas express similar characterizations for max -P and
max - coNP.

Before we state the lemmas let us make the following observation. Let K be a complexity class
closed under <P . Consider the function f where f € max-K via the set A € K and the polynomial
p, in other words f(z) = maz{y : 0 <y < 2°(2D A (z,y) € A} for all . Now define the function f'
which maps from ¥* to £* such that for all strings z, |f'(z)| = p(|z|) and f'(z) = 000---0 bin(f(z)).
Note that f’ can also be described via f'(z) = maz<, {z : z € 572D A (z,z) € A'} where
A" = {{z,z) : (x,number(z)) € A}. Clearly A’ € K if K is closed under <P, and thus f’ is close
to be a real max - function, but formally speaking it is not since max - functions map from ¥* to
IN.

Similarly to the above we find a true max-K analog of each function g defined by g(z) =
maz<,, {2 : 2 € =40 A (2, 2) € B} where ¢ is some polynomial and B € K.



max -A; min -A;

max - coNP FA%7 min - coNP # - NP

Figure 1: Inclusion structure of the min-max classes

The point of the above comment is that the function MAXIMUM SATISFYING ASSIGNMENT
is, formally speaking, not a max -P function.

Problem: MAXIMUM SATISFYING ASSIGNMENT
Input: boolean formula F'.
Output:  lexicographically largest satisfying assignment of F'.

Note that MAXIMUM SATISFYING ASSIGNMENT maps to ¥* and not to IN as all max-P
functions do, since a satisfying assignment is a string as leading zeros matter.
But clearly, MAXIMUM SATISFYING ASSIGNMENT NUMBER is a max -P function, where

Problem: MAXIMUM SATISFYING ASSIGNMENT NUMBER
Input: boolean formula F'.
Output:  number(lexicographically largest satisfying assignment of F').

and returns the same information as MAXIMUM SATISFYING ASSIGNMENT does.

Related to the above comment is the fact that we can understand every max -P function as being
computed by a NPTM as the largest accepting path—modulo the string integer correspondence, as
the number of leading zeros is crucial for the outcome of a path. The lemma below states this fact
in more detail.



Lemma 3.2 For every function f,

f €Emax-P < \/ /\ f(z) = number(mazpathy (z)).
normalized NPTM M  zeX*

Proof: Let f € max-P via the set A € P and the polynomial p. Now let M be a nonde-
terministic Turing machine which on input 2 guesses a string z € Y=P(2) and accepts if and
only if (x,number(z)) € A. M is obviously a normalized NPTM and we have for all inputs z,
f(x) = number(mazpathp(x)).

For the other implication let M be a normalized NPTM working in time p. The set B = {(z,y) :
M (z) accepts along path 0P(=D—1bn()ly1 is clearly in P and hence

number(mazpathy (x)) = maz{y : 0 <y < 2P12D A (2,4) € B}.

Lemma 3.3 For every function f,

f € max - coNP <— \/ /\ f(z) = maz Outp ().
NPTMM  z€x*

Proof: Let f € max-coNP via the set A € coNP and the polynomial p. Let N be a NPTM
accepting A in time q. Let M be a Turing machine working as follows: On input x M guesses v,
0<y<2°UzD) and 2z, 0 < z < 290¥D and simulates the work of N({z,y)) along computation path
z. M(z) accepts and outputs y if and only if N({x,y)) accepts. Note that

maz Outy(z) = maz{y:y ¢ Outm(z)}
= maz{y:0<y < 2?70 A (z,y) € A}
= f(=).

The other implication is true since we have for all NPTM M the set A = {{z,y) : y ¢ Outp(z)}
is in coNP. [ ]

Easily one can get similar characterizations for min - P and min - coNP and also in general for
max -AY min-A? etc.

For the sake of self containment we will study the inclusion relations of the polynomially bounded
counterparts of the min-max classes at the end of this section. The only known result is due to
Kobler [K6b89], namely maxpol - NP = spanpe-P. So lets take a look at the inclusion relations of
the polynomial bounded subsets of the min-max classes.

Lemma 3.4 1. maxpel - P = mingg - P = FPpq C FP,
2. maxye; - NP = miny,, - coNP,
3. minger - NP = max;, - coNP.

Proof: (1.) can be seen as follows. Every maxpe - P function can be computed in deterministic
polynomial-time by brute force simulation. And thus maxpe - P C FPpe1. The inverse inclusion is
trivial. The same argumentation works for ming - P.



(2.) The inclusion maxpe - NP C minge - coNP can be shown by using the same ideas as in the
proof of (1.) of Lemma 3.1. The other inclusion can be seen as follows: Let f € ming,) - cONP via the
set A € coNP and the polynomial p. The set B = {{z,y) : 0 <y < p(lz)) AN\(z <y = (z,2) ¢ A)}

is in NP and we have max{y : 0 <y < p(|z|) A (z,y) € B} = f(z). Thus f € maxp, - NP.
Similarly one can show (3.). ||

4 Operators on Function Classes

In this section we define and study operators which map function classes to complexity classes.
We investigate their images with respect to max-K and min -X. Those investigations yield a huge
number of new characterizations of central complexity classes and thus turn into a key tool for giving
evidence that the picture of inclusion relations of Section 3 (see Figure 1) can not be improved, unless
the polynomial hierarchy collapses.

One way of giving such consequences is applying a suitable monotone operator to the classes
under investigation such that the non inclusion of the images is widely believed to be true. This
idea was extensively exploited by Vollmer and Wagner in [VW93]. We will use the same method
here to show that there are no more inclusions between the min-max classes, the FA? classes and
the # classes than shown in Figure 1 .

We define the following operators:

Definition 4.1 For any function class F let

AeU-F << ca€F,

AeSig-F = \/ N@ed = f)>0),
feF zex*

4ec.F = \/ V A@ed = f)>g0@),
FEF geFP  zex+

Aed-F <= \/ N\ @ecA = f)=1mod?2).
feF zex*

The above operators C and @ are usually defined on complexity classes and not on function
classes (see [Wag86, PZ83]). But note that we have for every operator OP € {C, @} (denote its
counterpart defined on complexity classes by op):

op-K=O0P-#- K.

So it is quite natural to denote the above defined operators in that manner, since they capture the
essential properties of their original definitions. Note that all of the above operators are indeed
monotone.

Next we are going to study the effect of the above mentioned operators on the FA? and the #
classes.

Proposition 4.1 For every positive i € IN,

U-FA? =Sig - FA? = C-FA? = @ - FA? = A?.



The proof is obvious and thus omitted. The results of the following proposition are also either
well known or easy to prove. For the results 5 - 7 recall from [KST89] that # - coNP = # - A%,

Proposition 4.2 1. U.-#.P =TUP, 5. U-#-coNP = UPNF,
2. C-#-P=PP, 6. C-#-NP = C-# - coNP = PP,
3. @ -#-P=0P, 7. @ -#-NP = @ - #-coNP =
@PNP.

4. U-#-NP =NP,

The following sequence of theorems investigates the images of classes of the form max-K or min-X,
where K is some complexity class, under the various operators.

Theorem 4.1 For every complezity class K closed under <P ,
1. U-max-K = K,
2. U-min-K = cok.

Proof: (1.) Let K be a complexity class closed under <2 . Let A € U -max-K, hence there exist a
set B € K and a polynomial p such that for all x € ¥*,

r€A = mar{y:0<y <2PPD Az y) e B} =1

r¢ A <= maz{y:0<y < 2?1®D A (x y) e B} =0.

Hence
€A < (z,1) € B.

Since K is closed under <P we get A € K.
Now let A € K. Define B to be the following set: B = A x {1}. We conclude B € K since A € K
and K is closed under <P . Thus the following is true:

€A < calz)=1=maz{y:0<y <1A{(z,y) € B}

¢ A <= ca(z) =0=maz{y:0<y <1A{z,y) € B}.

But this shows that ¢4 € max-K and hence A € U - max-K.
Similarly one can show (2.). |

Note that the proof of Theorem 4.1 yields also U - maxpo1'K = K and U - minge-K = coK.
Theorem 4.2 For every complexity class K closed under <P ,

1. Sig-max-KX =3- K,

2. Sig - min-K = cok,

3. Sig-#-K=3-K.
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Proof: Let K be a complexity class closed under <% .
(1.) Let A € Sig - max-K. Hence there exists a function f € max-K such that for all z € *,

r€A <= f(x)>0.
By definition of the class max-/C there exist a set B € K and a polynomial p such that for all z,

reAd < max{y:0<y<2?0=D Az ¢y) e B} >0

= V' (=) eB).

o<y<2rllzl)

We conclude A € 3- K since K is closed under <2 .
Now let A € 3- K. Hence there exist a set B € K and a polynomial p such that for all z,

T€EA = V ({z,y) € B).
0§y<2p(|m|)

Define C to be the set C = {{z,y + 1) : (z,y) € B}. C € K since K is closed under <2, .
Thus we have shown that there exist a set C' € K and a polynomial p such that for all z,

zed = \J1<y<2?"DA(a,y)€0)
y
— maz{y:0<y <2?(zD A(z,9) € C} > 0.

This proves A € Sig - max-K since K is closed under <?, and thus completes the proof of (1.).
(2.) Let A € Sig - min-X. Hence there exists a function f € min-X such that for all z € ¥*,

z€eA < f(z)>0.
By definition of the class max-/C there exist a set B € K and a polynomial p such that for all z,

reA = min{y:0<y <2’ A(x,y) € B} >0
<~ (z,0) ¢ B.

We conclude A € coK since K and thus also coK are closed under <? .
Now let A € coK and B = A x {0}. Thus B € coK. Note that we have for all z € ¥*,

r€A < min{y:0<y<1A(z,y) € B} >0.

This proves A € Sig - min-K and completes the proof of (2.).
(3.) The proof is straightforward and thus omitted. ||

Theorem 4.3 For every complexity class K closed under <P ,
C -max-K =3-K.

Proof: Let K be a complexity class closed under <? .
Let A € C - max-K. Hence there exist a function f € max-X and a function g € FP such that for
all z € %,
reA = f(x)>g(x).

11



By definition of the class max-/C there exist a set B € K and a polynomial p such that for all z,

reA = maz{y:0<y< 2?1 A(z,y) € B} > g(z)

= \/ ((z,y) € B).

g(z)<y<2e(=D

We conclude A € 3- K since K is closed under <? .
Now let A € 3- K. Hence there exist a set B € K and a polynomial p such that for all z,

red = \/ (=yeB
0<y<2r(zD

Define C to be the set C = {{z,y + 1) : (z,y) € B}. C € K since K is closed under <?,.
Thus we have shown that there exist a set C' € K and a polynomial p such that for all z,

zed = \J1<y<2?"DA(z,y)€0)
y
= maz{y:0<y <2*?*DA(z,y) € C} > 1.

This proves that A € C- max-K since K is closed under <P . ||

Theorem 4.4 For every complezity class K closed under <P, ,
C - min-K =V - cok.

Proof: Let K be a complexity class closed under <? .
Let A € C-min-K. Hence there exist a function f € min-X and a function g € FP such that for
all z € %,
reA = f(x) >g(x).

By definition of the class min-XC there exist a set B € K and a polynomial p such that for all z,
reA = min{y:0<y< 2?1 A(z y) € B} > g(z)

= A (&¢B)

0<y<g(x)

We conclude A € V- coK since K is closed under <P .
Now let A € V- cok. Hence there exist a set B € K and a polynomial p such that for all z,

zed = NO0<y<2??DA(z,y) ¢ B)
Yy
= minfy:0<y <27V A ((z,y) € B} > 277D,

This proves that A € C - min-K since K is closed under <P . ||

A result similar in flavor to the one of Theorem 4.3 was proven in [VW95].

Theorem 4.5 [VW95] If K is closed under <P, and P C K, then C-F-K =K.

12



Corollary 4.1 For any complezity class K closed under <P ,
1. F-K=max-K <—< K=3-K,
2.F-K=min-KX < K =V-cok.

The proof is immediate from the Theorems 4.3, 4.4 and 4.5.

Now lets take a look at the images of the min-max classes under the operator @. One general
result regarding the image of function classes under the operator @ can be found in [VW95], namely
if K has certain closure properties then @F-K = PX. Note that this equality does not give us results
related to max -P or max - coNP because of Corollary 4.1. Our result given below holds for a wider
range of classes since we only require closure under <%,,.

Theorem 4.6 For every complezity class K closed under <%,,,
1. @ - max-K = PFK,
2. @ - min-K =PFK,

Proof: Let K be a complexity class closed under <%,,.
(1.) Let A € @ - max-K. Hence there exists a function f € max-K such that for all z € T*,

r€A < f(z) =1mod2.

Let B be the set B = {{z,2) : f(z) > z}. Obviously B € C-max-K and thus by Theorem 4.3
Be3d-K.

For a given z € ¥*, the value f(x) can be determined deterministically in polynomial-time by
binary search using queries to B. And given the value f(z), checking wether f(z) is odd or even
can also be done deterministically in polynomial-time. So we have A € PP and thus 4 € P3X.

Now let A € P?X. So by definition there exist a deterministic oracle machine M, aset B € 3-K
and a nondecreasing polynomial p such that MP® accepts A in time p. Since B € 3- K there exist a
set C' € K and a polynomial ¢ such that for all y,

ye€B \/ ({y,w) € C).

|w|=24C¥D)
Let us without loss of generality assume that the machine M on input z runs exactly p(|z|) steps,
making one query of length p(|z|) to B in every step. Define a set D to be
D={{(z,2):z € Z* Az € N and
(1) bin(z) = laraz - - - ap(|z))Y1Y2 - - * Yp(|o|) W1 W2 * * - Wp(|z|)C and

(2) for every 1 < i < p(lal): a; € {0,1}, yi € 5* A lyi] = pllal), w; € T A fuwy| =
a(p(lz))) and ¢ € {0,1}, and

2) MO yields the result ¢ given that on input z the queries yi,ys, - - - Yp(|z|) are
g ) p(lz])
asked in this order under the assumption that a1, az, - - - ap(z|) are the answers,
and

B) A (ai=1=(yi,w)€O)}

1<i<p(|zl)

13



Note that for every (z, z) € D, where bin(z) is of the form

bin(z) = 1a1as -+ ap(sY1Y2 - Yp(|a|) W1W2 - - Wp(|a])C;

we have, w; is a witness for y; (being an element of B) for all ¢ with a; = 1. With other words there
is no element (z, z) in D such that for some ¢, a; = 1 and y; ¢ B. Hence the largest z, call it zo(z),
such that (z,z) € D describes the computation process of M2 (z) in the sense that zo(z) contains
all queries asked by MB(z), all their answers and also the overall answer of M (z). Thus the least
significant bit of bin(z¢(x)) is equal to ca(z) and we have,

z €A << maz{z:{z,z) € D} =1mod 2.

Note furthermore that condition (1) and (2) of D can be checked in deterministic polynomial-time
and condition (3) is clearly a K predicate due to the closure of K under <%,,. Hence D € K. This
proves A € @ - max-K.

(2.) The proof is similar. Note that for any complexity class K closed under <%,, we have,
V- coK = 3 - K. Furthermore one can easily modify the definition of the set D in such a way that
the smallest z, such that (z,z) € D, describes the computation of M (z). [ |

From the last five theorems, Theorem 4.1 to 4.6, we conclude a series of corollaries.

Corollary 4.2 1. U -max-P =P, 5 U-min-P =P,
2. Sig - max-P = NP, 6. Sig-min-P =P,
3. C-max-P =NP, 7. C-min- P = coNP,
4. @ -max-P=Af, 8. @ -min-P = Af.
Corollary 4.3 1. U-max-NP = NP, 5. U-min - NP = coNP,
2. Sig - max-NP = NP, 6. Sig - min - NP = coNP,
3. C-max-NP = NP, 7. C-min - NP = coNP,
4. @ -max-NP = Af, 8. @ -min-NP = Af.

The results (1.), (3.), (4.),(5.), (7.) and (8.) of Corollary 4.3 were previously known and men-
tioned in a series of papers [Kre88, K6b89, Wag87, GKR95, VW95].

Corollary 4.4 1. U:max-coNP = coNP, 5. U-min - coNP = NP,
2. Sig - max - coNP = X8, 6. Sig - min - coNP = NP,
3. C-max - coNP = ¥, 7. C-min - coNP =TI%,
4. @ -max-coNP = A, 8. @ -min - coNP = A%,

As all the proofs of this section relativize, the results of the corollaries also do.
Note that according to Theorem 4.3 and 4.6 we can verify the results of Ogiwara [Ogi91], namely,

1. P°=F = @ - min - coC_P,
2. NP®=F = C - max - C_P,

14



3. PNP=T = ® -max - C_P.

Similarly we can now characterize all levels of the polynomial hierarchy relative to every class (having
the closure properties mentioned in the theorems). Especially we are now able to characterize the
polynomial hierarchy itself by three combined operators, namely C - max, C - min and @ - max.

Corollary 4.5 P = 2 = AP = P,
¥, = C-max-A?,
I, = C-min-A?,
Al = ©-max-Al,
PH = T max,Comin, @ -max} (P)-

5 Structural Consequences

As already noted in [Vol94] the operator theoretical approach in order to provide evidence that two
function (or complexity) classes are incomparable is very powerful and elegant. In the next two
sections we will completely analyze the inclusion relations of the main function classes which are the
min-max classes, the # classes and the FAY classes. The results of this section, that are the ones
not including the # classes are presented in Figure 2.

To illustrate the method let us take a look at the following questions: Is max-P C min-P?
Suppose max -P C min - P. Then by Corollary 4.2 we can immediately conclude NP C P, since the
operator Sig is monotone. Hence we can claim

max -P C min-P = P = NP.

Thus proving max-P C min - P is at least as hard as proving P = NP. In the next theorem we will
see that max-P C min - P is even equivalent to P = NP.
Before we state the main theorems of this section recall that for every i,j € IN we have,

A} C AL < FA} CFAL

The following theorems show how closely the min-max classes and the polynomial hierarchy are
related.

Theorem 5.1 The following statements are equivalent:
1. FP = max-P = min - P = max -NP = min - NP = max - coNP = min - coNP = FA},
max-P CFP,
min - P C FP,
max-P = min - P,
max -NP C max-P,
min - NP C min - P,

max - coNP C max-P,

ST S R A S TR

min - coNP C min - P,
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max - 2; min -Eg

NP=coNP NP=coNP

NP=coNP

max - coNP FA; min - coNP
NP=coNP NP=coNP

NP=coNP

NP=coNP

min - P max -P
P=NP

P=NP P=NP

FP

Key: a bold line indicates an inclusion of the lower in the upper class
Fi1-2 o Fo means : F1 g Fo <— «
.7‘—1<a—> Fa means : (.7‘-1 g Fo <— a) N (.7‘-1 2 Fo <— a)

Figure 2: Structural consequences I
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9. max-NP C min - P,
10. min - NP C max-P,
11. max - coNP C min P,
12. min - coNP C max-P,

15. P = NP.

Proof: In the proof we want to show that (1.) implies (2.) --- (12.), that any of (2.) --- (12.)
implies (13.) and that (13.) implies (1.) to complete the circular argument. Recall the results of
Proposition 4.1 and the Corollaries 4.2 to 4.4.

Note that from (1.) the statements (2.) --- (12.) follow directly.

By applying the operator C to (2.) or (3.) we conclude (13.). Similarly we can conclude (13.)
from (4.) by applying the operator Sig and any of (5.), ---, (12.) by applying the operator U.

In order to complete the proof of our theorem it remains to show that (13.) implies (1.). Suppose
P = NP. In this case the polynomial hierarchy collapses to P. Hence AL = P and equivalently
FA% = FP. We conclude (1.) since all the min-max classes considered here are subsets of FAL (see
Proposition 3.1 and Lemma 3.1).

Theorem 5.2 The following statements are equivalent:
1. max-NP = min - NP = max - coNP = min - coNP = FAL,
. max-P C min - NP,
. min - P C max -NP,

. max-NP = min - NP,

2

3

4

5. max - coNP = min - coNP,
6. max-NP = max - coNP,

7. min - NP = min - coNP,

8. max - coNP C min - NP,
9. min - coNP C max-NP,
10. FAY C max-NP,

11. FAY C min - NP,

12. FAY C max - coNP,
18. FAY C min - coNP,

14. max-Af C max - coNP,
15. min-A% C min - coNP,

16. max-Af C min - coNP,

17



17. min-A% C max - coNP,
18. NP = coNP.

Proof: Recall the results of Proposition 4.1 and the Corollaries 4.2 to 4.4. We will show that (1.)
implies any of (2.) to (17.), that any of (2.) to (17.) implies (18.) and that (18.) implies (1.).

(1.) obviously implies the statements from (2.) to (13.) by the inclusion relations of the
considered classes (see Proposition 3.1, Lemma 3.1 or Figure 1).

Note that we can conclude NP = A? from (1.) by applying operator U and due to the mono-
tonicity of the operators max and min we further conclude statements (14.) and (15.). Since (1.)
implies also (5.) we have (16.) and (17.).

By applying the operator C to (2.), (3.), (8.) and (9.) we get statement (18.). Similarly we can
conclude (18.) from any of (4.) to (7.) or any of (10.) to (17.) by applying operator U.

Now lets show that (18.) implies (1.). Assume NP = coNP and thus PH = NP. In this case we
conclude max-NP = max - coNP = max-A% and min - NP = min - coNP due to the monotonicity of
max-. We can further conclude max -NP = min - NP from max-NP C min - coNP and min - NP C
max - coNP. Also we know FAY C max-Af and max-NP C FA? by Proposition 3.1. Combining all
these results we have (1.).

This completes the proof of our theorem. [ |

The equivalence of (4.) and (17.) can already be found in Kébler [K6b89]. Furthermore note that
maxpel - NP = ming - NP is also equivalent to NP = coNP due to the monotonicity of the operator
U.

In Figure 3 we present the inclusion structure of the considered function classes for the case
that NP = coNP. Despite the fact that we have not yet discussed the effect of NP = coNP on the
inclusion relations with respect to the # classes we will see in Section 6 that the picture given now
can not be improved.

# - NP = # . coNP

e

max -NP = min - NP = max - coNP = min - coNP = FAg

T

min - P max -P #-P

FP

Figure 3: Inclusion structure if NP = coNP

Recall the known inclusion relations (see Figure 1). By the preceding theorem we know that
FA? is contained in max - coNP if and only if PH collapses to its first level. What about the inverse
inclusion? The answer is given in the next theorem.
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Theorem 5.3 The following statements are equivalent:
1. max - coNP C FAL,
2. min - coNP C FA?,
3. max - coNP C min-A¥,
4. min - coNP C max-Af,
5. AL =3P,

Proof: We conclude (5.) from both (1.) and (2.) by applying the operator C. Similarly we conclude
(5.) from (3.) by applying operator Sig. Furthermore, (3.) and (4.) are equivalent according to
Theorem 3.1.

For the inverse implications suppose A% = ¥F. This implies AL = A} and hence FA? = FAS.
But by the inclusion relations shown in Figure 1 we conclude min-AY = max-A} = FA? and thus
(1.), (2.), (3.) and (4.) hold. ||

There are only a few still possible inclusions left for which we will give structural consequences
in the last theorem of this section.

Theorem 5.4 The following statements are equivalent:
1. max - coNP C min -3,
2. min - coNP C max -3,
3. X =TI5.

Proof: (1.) and (2.) are equivalent according to Theorem 3.1. We conclude (3.) from (1.)
by applying the operator C. For the implication (3.)==(1.) suppose ¥f = II5. Recall that
max - coNP C max-¥8 by the monotonicity of max and max-X5 C min -IT¥ by Lemma 3.1. Thus we
get max - coNP C min -X5. [ |

The theorems of this section give evidence that we either have already proven an inclusion
between various min-max and FA? classes in Section 3, or there is none.

6 Structural Consequences with respect to the # Classes

Recall from [KST89] that max -NP C # - NP. One might expect that similarly max-P C # - P or,
since min - coNP is somehow closely related to max -NP (see Lemma 3.4), also min - coNP C # - NP.
We will prove that these expectations are false under widely accepted structural assumptions. The
results of the following theorems are presented in Figure 5.

Recall from [KST89] # - coNP = #-Af. Regarding our task of showing that various min-max
classes and # classes are incomparable only a few results were previously known. Statements (1.),
(2.) and (5.) of the following theorem were proven in [KST89]. (5.) can be found together with (3.),
(4.),(6.), (7.) and (8.) also in [K6b89]. A generalization of the fifth and sixth claim can be found
in [Vol94].

Theorem 6.1 1. #-P=#-NP < UP = NP,
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. # NP =#.coNP <= NP = coNP,
. max-NP C#.-P < NP =UP,
. min-NP C#-P <= NP = coNP = UP,

2

3

4

5. #-P C max-NP < NP =PP,

6. #-P Cmin-NP < NP = PP,

7. min- NP C # - NP <= NP = coNP,

8. #-NP C min - NPV # - NP C max-NP =5 NP = coNP.

It is interesting to note that NP = PP is equivalent to a seemingly stronger statement, namely
using results of Toda [Tod91] one can prove:

Lemma 6.1 NP = PP < NP = PP"F,

Proof: The implication from right to left is obvious. For the other implication suppose NP = PP.
According to [Tod91] we have PP*® C PPP. Furthermore we conclude PH = NP = coNP due to
NP = PP. Thus PPP® C PFP = PNP — NP, [ |

It is clear that we have also P = PP <= P = PP"F and similar statements when replacing P
and NP by X%

We will now turn to the actual task of this section, namely show that various min-max classes
are incomparable with the # classes under reasonable structural assumptions. The first theorem
shows that the containment of # - coNP, # - NP or # - P in max-P or min - P is equivalent to the
collapse of the counting hierarchy to P.

Theorem 6.2 The following statements are equivalent:

1. FP = max-P = min-P = max-NP = min-NP = max:-coNP = min-coNP = #-P =
# - NP = # - coNP = FAL,

-P CFP,
-P C max-P,

-P C min - P,

-NP C min - P,
- coNP C max P,

- coNP C min - P,

© X RS TN

#

#

#

# - NP C max P,
#

#

#

P = NP = PP.
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Proof: We want to prove our theorem showing that (1.) implies (2.)--- (8.), that any of (2.)---(8.)
implies (9.) and that (9.) implies (1.).

Note that from (1.) the statements (2.)---(8.) follow directly.

The implication (2.)=(9.) follows from an application of C. Furthermore (3.) and (4.) are
equivalent due to Theorem 3.1. We conclude NP C P and PP C coNP from (4.) by applying the
operators Sig and C, respectively. Thus (3.)=(9.) and (4.)=(9.).

We can conclude (9.) from any of (5.)---(8.) by combining the results when applying the
operators C and U and using the fact that P = PP <= P = PP,

For the implication (9.)==(1.) suppose P = NP = PP. Then we have FP = max-P = min-P =
max ‘NP = min - NP = max - coNP = min - coNP = FA? and # - P = # - NP = # - coNP according
to Theorem 5.1 and 6.1, respectively. Furthermore we can make use of the fifth claim of Theorem 6.1
which yields # - P C max-NP <= NP = coNP. Combining these results with the known inclusion
max ‘NP C # - NP we get (1.).

This completes the proof. [ |

In the next theorem we will strengthen the sixth claim of Theorem 6.1 and show that a # class
is contained in max-NP or min - NP if and only if NP = PP and thus the polynomial hierarchy
collapses to its first level. We want to remind the reader that # - P C max-NP <= NP = PP and
# P Cmin-NP <= NP = PP were already shown in [K5b89].

Theorem 6.3 The following statements are equivalent:
1. max-NP = min - NP = max - coNP = min - coNP = # - NP = # - coNP = FA},
. # - NP C max-NP,
-NP C min - NP,
- coNP C max -NP,
- coNP C min - NP,

- NP C min - coNP,

2
3
4
5.
6
7.
8 - coNP C max - coNP,
9

#
#
#
. # - NP C max - coNP,
#
#
#

- coNP C min - coNP,

10. NP = PP.

Proof: In the proof we want to show that (1.) implies (2.) --- (9.), that any of (2.) --- (9.) implies
(10.) and that (10.) implies (1.).

Note that from (1.) the statements (2.) --- (9.) follow directly.

We get (10.) from (2.), (3.), (4.) and (5.) by applying operator C and using the equivalence
given in Lemma 6.1. By applying the operators U and C to (6.) we conclude NP = coNP and
¥? = PP respectively. Thus (6.)==(10.).

Note that (7.) and (8.) are equivalent according to Theorem 3.1. The implication (8.)=>(10.)
can be seen as follows. Suppose # - coNP C max - coNP. We conclude PPNF C ¥ and UPNf C
coNP by applying the operators C and U, respectively. Combining the two results with the equiva-
lence given in Lemma 6.1 we get (10.).
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Similarly one can show (9.)=(10.).

It remains to show that (10.) implies (1.). Suppose NP = PP, thus PH = NP = coNP and
also NP = PP according to Lemma 6.1. We conclude max-NP = min - NP = max - coNP =
min - coNP = FA? and # - NP = # - coNP according to Theorem 5.2 and 6.1, respectively. Since
we have max -NP C # - NP it remains to show that # - NP C max -NP.

Let f € # -NP. Then there exists a B € NP such that for some polynomial p it holds that
f@) =[{y:0<y < 2?00 A (z,y) € B}|l.

C = {{(=z,1) : There exist at least i distinct y such that (z,y) € B}

and note that C' € PPNY and due to NP = PPN even C € NP.
Furthermore f(z) = maz{i : 0 < i < 2PUzD) A (2,i) € C}. This proves f € max-NP and
completes the proof of (10.)==(1.). [ |

The last theorem shows that in the case of NP = PP only a few function classes remain, namely
FP, max-P, min - P, # - P, and max-NP = min - NP = # - NP = FAL. Their inclusion relations are
shown in Figure 4.

max ‘NP = min : NP = max : coNP = min : coNP# - NP = # - coNP = FAg

min - P max -P #-P

FP

Figure 4: Inclusion structure if NP = PP

Note that we have # - P C max - coNP <= # - P C min - coNP due to Theorem 3.1. Until now
we are unable to present structural equivalences for the case that # - P C max - coNP, but we give
a structural consequence which implies the collapse of the polynomial hierarchy to its second level.

Theorem 6.4 1. #-P C max-coNP = PP C X%,
2. #-P C min-coNP = PP C X5.

The two claims follow directly from an application of the operator C and we can conclude X5 = 15
according to [Tod91]. Note that we can draw also the conclusions UP C coNP and @®P C Af from
# - P C max - coNP by applying the operators U and @, respectively.

In the remainder of this section we will show that except the inclusions already shown, no min-
max class is contained in any # class. Recall the third and fourth claim of Theorem 6.1 which
show that max-NP and min - NP can not be contained in # - P unless UP = coNP and UP = NP,
respectively.

Theorem 6.5 1. max-coNP C #-P <= NP = coNP =UP,
2. max -coNP C # -NP <= NP = coNP.
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UP=coNP N

Ve AN
P=PP A
mn-P<«———— =50 — F-
AgCi@P
P=PP
FP

Key: a bold line indicates an inclusion of the lower in the upper class
Fi_ o o Fo means : F1 CFa = «
Fi_o o Fo means : F1CFa <= «

Figure 5: Structural consequences 11
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Proof: (1.) The implication from left to right can be seen as follows. From max - coNP C # - P we
conclude min - NP C # - P, since min - NP C max - coNP. By the result of Theorem 6.1 we further
conclude NP = coNP = UP.

For the inverse implication let NP = coNP = UP. We conclude max - coNP = min - coNP =
min - NP by Theorem 5.2. Furthermore we have min - NP C # - P by Theorem 6.1. This completes
the proof of Claim (1.).

(2.) The implication from left to right follows from the monotonicity of the operator U. For
the inverse implication suppose NP = coNP. We conclude max - coNP = max -NP. But max-NP C
# - NP and thus max - coNP C # - NP [ |

Theorem 6.6 1. max-P C #-P = A? C ®P,
2. min-PC#-P= A} C P,
3. min-coNP C #-P = Af C P,
4. min - coNP C # - NP = A} C @PNP,
5. max - coNP C # - coNP = A? = PP,
6. min - coNP C # - coNP = A} = @PNF.

Proof: All claims follow from an application of the operator . |

Note that from min - coNP C # - P we can conclude also NP = UP by applying operator U.

7 Conclusions

We completely analyzed the inclusion relations among the min-max classes and the other central
function classes. We showed that the inclusion structure of these function classes is closely related
to the inclusion structure of central complexity classes, such as P, NP and PP. By defining and
investigating the behavior of several operators, which map function classes to complexity classes, we
were able to characterize known complexity classes. It turned out, that though max -NP and min - NP
remain central classes of optimization functions, there are other interesting classes of optimization
functions. In contrast to the the operator # where we have # -NP C # - coNP (see [KST89])
the operator max displays a different behavior, namely max-NP and max - coNP are incomparable,
unless NP = coNP.

As already noted in Section 3 we would like to have a structural consequence if min - P C # - NP.

Furthermore we would like to find structural equivalences for all inclusions listed in the Theo-
rems 6.4 and 6.6.
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