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Abstract

In this paper we investigate the security of the server aided RSA protocols
RSA-S1 and RSA-S1M proposed by Matsumoto, Kato and Imai resp. Mat-
sumoto, Imai, Laith and Yen. There a smart card wishes to calculate an
RSA signature and wants computational assistance from a untrusted power-
ful server. We focus on generic attacks, that is, attacks that do not exploit
any special properties of the encoding of the group elements. The notion of
generic attacks has been introduced by Shoup. We prove lower bounds for
the complexity of generic attacks on these two protocols and show that the
bounds are sharp by describing attacks that almost match our lower bounds.
To the best of our knowledge these are the first security proofs for efficient

server aided RSA protocols.

1 Introduction

In this paper, we investigate the security of server-aided secret computations of RSA
signatures. Consider the following scenario: Let n = pg be an RSA modulus and
d, e be a pair of private/public exponents. A smart card stores n and d and needs to
sign a message = by computing y = z? mod n. This takes O(logn) multiplications
modulo n, which is a heavy task for the card. The solution proposed by Matsumoto,
Kato and Tmai in [8] is server-aided secret computation (SASC). In their protocol

RSA-S1 the main part of the computation is done by a more powerful server.



The RSA-S1 Protocol

0. (Preprocessing step) The card chooses an integer vector d = (dy,...,dn) €
Z™ and a vector f = (f1,..., fm) € {0,1}™ with Hamming weight k& so that

d=7>3"", fidi mod ¢(n).
1. The card sends z,n and d to the server.

d’L

2. The server returns z; = z** modn fori=1,...,m.

3. The card computes the signature y as y = [~ z{ mod n.

i=1 "1

Consequently Matsumoto, Imai, Laih and Yen proposed a two-phase version of this
protocol, called RSA-SIM ([7]).

There exist two kinds of attacks against such protocols: classical searching ones
are called passive attacks; specific ones where the server returns false values to
get some information from the card are called active attacks. In [6] Lim and Lee
showed, that active attacks can be avoided efficiently. In this paper we focus on
the computational complexity of generic attacks against RSA-S1 and RSA-SIM —
that is, passive attacks, which do not exploit any special properties of the encoding
of the elements of Z,. A similar class of algorithms has been analysed by Shoup
([15]). He proved lower bounds for the complexity of generic algorithms for the
discrete log and related problems.

We prove an average case lower bound of Q(N1/2) for generic attacks against
RSA-S1. Here N is the number of possible cointosses of the card. In addition we
prove a lower bound of Q(N3*) for meet-in-the-middle attacks against RSA-S1M,
which have been the most successful attacks so far. Both bounds are asymptotically
sharp.

Kawamura and Shimbo ([5]) and Quisquater and de Soete ([11]) proposed rather
different SASC protocols. There the communication between the server and the card
is independent of the secret key and consequently they are as secure against passive
attacks as RSA. Unfortunately these protocols are not efficient. Our results are the
first security proofs for efficient SASC protocols.

The structure of the paper is as follows: In section 2 we define SASC protocols
and the model of computation. In sections 3 and 4 we review the considered proto-
cols and investigate their security. Finally in section 5 we discuss our results giving

some concrete examples and shortly discuss active attacks.



2 Model of Computation

2.1 Server Aided Secret Computation

Let n be a product of two large primes, d € Z;(n) and z € Z} . Furthermore let the
security parameters of the protocol be fixed. In order to compute z? mod n using
the help of a server the client carries out the following protocol with the server. In a
preprocessing step the client generates some secret (I,) and some public infomation
({p) using a fixed randomized algorithm. When the client wants to sign a message
he contacts a server. For a fixed number of times he sends him some information
and receives an answer. This information depends on the security parameters, the
public information generated in the preprocessing and the previous responses of
the server. At the end the client computes the signature y using the information
responded by the server and his private information generated in the preprocessing.

d

If both parties follow the protocol the result is correct, i.e. y = 2% mod n.

2.2 Generic Attacks

In [9] Nechaev investigated the complexity of the discrete log problem. Given a
finite abelian group G and a fixed generator g of G this is the problem to compute
for any ¢ € G an integer z with ¢ = a. Nechaev considered algorithms that
only perform two kinds of operations on elements of G, multiplication and equality
testing.

In [15] Shoup proved lower bounds for the complexity of the discrete log in
Z, and the Diffie Hellmann problem. He considers algorithms that do not have
any computational restriction but get their input (g,¢”) encoded by a randomly
chosen function o. Furthermore they have access to an oracle, which on input
o(9%),o(g%) outputs o(g*?) or on input o(g?) outputs o(g=?). Shoup calls this
kind of algorithms generic. The class of these algorithms can be seen as those that
do not depend on the representation of the group G.

These models are closely related and both authors prove a lower bound Q(,/p)
for the discrete log problem, where p is the greatest prime divisor of ord(G). We
adapt the model of generic algorithms to prove lower bounds for the server aided
RSA protocols.

Let n, 2, y,d be as above and r, s be distinct primes dividing ¢(n). Further let S
be a set of bit strings of cardinality at least n and ¢ be an injective map from Z,, to
S, the encoding function. A generic attack against the server aided RSA protocol

is an algorithm which for randomly chosen z,d, ¢ takes as input o(z) and o(y). Tt



is required to output a value d’ with a2t = 24

mod n. During the computation the
algorithm consults an oracle, which on input (a,b) returns o(y®2®). (This oracle is
more powerful than that in the Shoup model.)

For fixed x and I, let 6 be the number of oracle queries of the algorithm and p
its probability of success over randomly chosen I; and a randomly chosen encoding
function . Then the complexity of the algorithm is defined by the expectation of
d/p, over randomly chosen z and 7,,.

o

In practice an adversary can’t take advantage of equations z® = y° mod n,
unless  divides a. The most obvious way to avoid this problem, is to look for
equations with f = 1, like in the meet-in-the-middle attacks of Pfitzmann and
Waidner ([10]) or Lim and Lee ([6]). We formalize this type of attack.

We call a generic attack a meet-in-the-middle attack iff in all oracle queries the
value a is binary, i.e. all queries have the form (0,b) or (1,5). These kind of attacks
actually cover the so called meet-in-the-middle attacks of Pfitzmann and Waidner
([10]) and Lim and Lee ([6]), which have been the most successful attacks against
RSA-S1 resp. RSA-S1M so far.

All known passive attacks against RSA-S1 and RSA-SIM are generic attacks.
Generic algorithms may depend on n but not on the public key e. Otherwise the
algorithm could give d rightaway without computation. It seems impossible for
a real attacker to use 7, and e both, because in the considered protocols they are
related by a quadratic equation modulo ¢(r). Since we focus on attacks that exploit
the additional information given by the SASC protocols, we consequently disregard
the public key.

3 The 1 Round Protocol

Consider the RSA-S1 protocoll, described in section 1. There a weak device (called
the client) generates a signature y = z¢ mod n of a message = € Z, using the help
of a powerful device (called the server). For the sake of clarity we claim that the
Hamming weight of the secret vectors is fixed, but our results hold for more general
variants as well (see the remark at the end of this section). We suppose that ¢(n)
has two large prime factors r, s so that 2, s* don’t divide ¢(n) (e.g. ¢(n) = 4rs).
This condition always holds for a secure RSA modulus (see [16, page 151]).

In the RSA-S1 protocol the secret information I is the vector f and the public
information /, is the message x and the vector d.

In the preprocessing step (fi1, ..., fm) is chosen uniformly from the set of all 0-1-



vectors with Hamming weight k. We denote this set by Xx. Given the f; and d, the
d; are generated by a random process as follows. Let j be the largest index ¢ with
fi = 1. Then, all d; with ¢ # j are drawn independently according to the uniform
distribution on {0,...,c- ¢(n)} for a constant integer ¢ > 1 and d; is computed
as d; =d— 2;7:_11 d; fi mod ¢(n). The integer ¢ should be chosen not too small to
prevent the knapsack attacks discussed in section 5.

For the generation of the f; and d; different scenarios are possible. They can
either be generated once for each card and stored in the ROM of the card. Or the
generation is done by the card while communicating with the server. In the latter
case the cards needs to store all f; but only a constant number of log n bit numbers.

The pros and cons of both methods are discussed in [6].

3.1 The best known Attack on RSA-S1

A trivial attack is to enumerate all (7:) canditates f € Xj, compute ¢ = Z;n:l fid;
and check if z° = y mod n.

A more sophisticated approach, called the meet-in-the-middle attack, was pro-
posed by Pfitzmann and Waidner [10]. We present a variation of their attack which
was proposed by Oorschot and Wiener in [17] and is slightly more efficient.

From the definition of the protocol we have z? = Hf,:l zi mod n. Let m,k be
even. With probability p = (7://22)2/(7;) it holds that (fi,..., fm) has Hamming
weight k/2. For all possible (fi,..., f=) with Hamming weight k/2 the attack

computes

H z; mod n

fi=1
i<m/2

and sorts them. Subsequently for all (fm 1, ..., fr) with Hamming weight k/2 it

computes
-1
Y ( H zz) mod n
Fi=1
i>m/2
and sorts them as well. It is easy to see that if (f1,..., fm) has Hamming weight

k/2 then there is a collusion which reveals d.
Since the complexity of generic algorithms does not count the effort for sorting

and checking the equalities the complexity of this attack is 2(7://22) /p= 2(’:)/(?//22)

3.2 The Security of RSA-S1

The following theorem shows that the complexity of this attack is nearly optimal.

Lot y(n) := 6(é(n))/@(n) and N := (7).



Theorem. 3.1 Let be n, 7k, m as above so that (N2 +1)/r < v(n)//2. Then any

generic attack against RSA-S1 has at least complexity 7(n)N1/2

Proof. For a random variable X let E(X) be the expectation of X. Consider the
set Z == {f € Xy | ged(3in, fi di, #(n)) = 1}. It is easy to see that E(|Z|) = y(n)N
where the expectation is taken over a randomly chosen d.

For randomly chosen d the probability that there are two vectors f and f’ with
S, fidi = S0 fid; mod r (collision) is at most N?/r. Furthermore for ran-
domly chosen z the probability that r doesn’t divides the order of z is 1/r. Depend-
ing on z and d let ¥ be |Z| iff there is no collision and r divides the order of z and
0 else. Since |Z| < N we can estimate E(¥) > E(|Z]) = N(N?+1)/r > v(n)N/V2.

Let n, 2z and d be fixed and A be a generic attack that makes § oracle queries

and has probability (over a randomly chosen f € Z) of success p. We show that
d/p>\/2/NT (1)

For ¥ = 0 this is trivial.

Now let ¥ = |Z| > 0. Then there is no collision and r divides the order of
z. The probability that A outputs a d’ with d = d’ mod r is at least p. For each
pair of oracle queries (a;,b;), (a;,b;) with a; # a; mod r the oracle returns the
same value only if b; — b; = (a; — a;)d mod r. Since there is no collision this holds
with probability (over a randomly chosen f € 7) at most 1/|7|. Therefore the
probability that the oracle returns the same value for any pair (a;, b;), (a;,b;) with
a; # a; mod r is at most (g)/|Z| On the other hand, since the encoding function
is random, the probability that for all pairs (a;, b;), (a;, b;) with a; # a; mod » the
oracle answers are distinct and A outputs a d’ with d = d’ mod r is at most 1/|Z|.
Thus we get § > 2p|7| which implies (1).

Taking expectations on both sides yields the claim.

Remark. Theorem 3.1 holds for the non-binary RSA-S1 as well, where the f; are

£-bit integers. In this case the client performs k 4+ ¢ — 1 multiplications, a gener-

mt -1
b))

and we get a lower bound of 7(71)(”22)1/2. In addition Theorem 3.1 holds if f are

alisation of the described meet-in-the-middle attack has complexity 2(”22)(

chosen from the set of vectors with Hamming weight at most k. There the number
of possible choices of f is N = Zf:l ("ZZ). Furthermore Theorem 3.1 remains valid

if the values a; of the oracle queries may depend on the public information d.



4 The 2-Round Protocol

To prevent the meet-in-the-middle attack Matsumoto, Imai, Laih and Yen [7] pro-
posed a 2-round server-aided RSA computation protocol called RSA-S1M. We con-
sider a variant where the Hamming weight of the secret vectors is fixed. This

restriction is essentiell for our results.

4.1 The RSA-S1M Protocol

Again let n be a product of two large primes and r, s be large prime factors of ¢(n)
so that r?, s do not divide ¢(n). The client wants to sign a message = with his

secret key d.

0. (Preprocessing) The client chooses an integer vector d € Z™ and two vectors
f,g € {0,1}™ with Hamming weight k so that d = f - g mod ¢(n) where f, g
are defined as f = Y ir, fid; and g = > i~ gid; with dj = d;(j + 3m). Fur-
thermore the client randomly picks an h € Z,, and computes { = h~9 mod n.
(To avoid multi-round attacks the client must pick a new h for each execution

of the protocol)

1. The client sends z,n and d to the server.

di

2. The server returns z; = 2* modn fori=1,...,m.

3. The client computes and sends to the server z = h - Hf,:l zi = h - zf mod n.
4. The server returns v; = 2% mod n for j=1,...,m.

5. The client computes the signature y as y =1 - [| v; =129 mod n.

g;=1

In this protocol the secret information I, are the vectors f,g and the public
information 7, is the message z and the vector d.

Again let Xj denote the set of 0-1 vectors with Hamming weight k& and set
d(f,g) = ZZ}:] figjdid; mod ¢(n). Since z is a random number it does not
reveal any information about d to the server.

The vectors f, g are uniformly drawn from Xj. Here we only consider the case
where f # g. So there are ¢’ and ¢ with fiy = 1, g;» = 0, fiv = 0, and g;» = 1.
d 1s uniformly drawn from Z:;(n). All d; except d;; are drawn independently and
uniformly from Z,,. d; is chosen so that ) f; d; is invertible modulo ¢(n). d;» is
chosen so that (3 fid;) (3 g;d;) = d mod n. Finally z is drawn uniformly from
Z,.



Our protocol differs from the original RSA-SIM ([7]). We insist on a fixed
Hamming weight k of f whereas in [7] f is chosen with a Hamming weight up to
k and in the second round we let the server use the d; = d;(j + 3m) as exponents
instead the d;. This modifications have technical reasons and do not substantly
affect the efficiency of the protocol. In order to achieve a security of 264 we have to

insist on an RSA modulus of at least 750 Bit.

4,2 The best known attack on RSA-S1M

In [6] Lim and Lee showed that the ideas of [10] are applicable to RSA-S1M as well.
They gave a meet-in-the-middle attack with complexity O (N3/4), where N was the
number of possible pairs (f,g). We give a variation of this attack which is slighly
more efficient and uses ideas of [17].

Let m, k be even. From the definition of the protocol we have

24 = H 9% mod n.
fi=1

With probability p := (’://22)2/(’;) it holds that (g1,...,9=) has Hamming weight
k/2. The attack guesses f, thereby determines f and for all possible tupels (g1,...,gm)
with Hamming weight k/2 it computes the values

H v; mod n

g;=1
i<m/2

and sorts them. Subsequently for all (gm41,..., gm) with Hamming weight k/2 it

computes the values

-1
Y ( H vj) mod n
g;=1
i>m/2
and sorts them as well. Tt is easy to see that if (g1,...,gm) has Hamming weight

k/2 then there is a collusion which reveals d.

This attack can be written as a generic attack and has complexity

27) (i e = 20012/
4.3 The Complexity of Meet-in-the-middle Attacks

We show that best known attack against RSA-S1M is optimal for a meet-in-the-
middle-attack.
Let n,r, s, z,d be fixed and let 4 be a meet-in-the-middle attack that makes

the oracle queries (a1,b1),..., (as,bs) (ie. a; € {0,1} for i = 1,...,d) and has



probability of success p over randomly chosen (f,g) € Z and random encoding

function o.

Definition We say that two oracle queries (a;, b;), (a;,b;) are related via (f,g) €
Z iff a; # a; and y* 2% = y* 2% mod n holds with y = 2918 mod n. The latter
condition means that the oracle answers of the queries are identical if d = d(f, g)
and implies b; — b; = £d(f, g)mod ord(z). We say that (a;, b;), (a;,b;) are related
if they are related via a pair (f,g) € Z.

We define a graph G = (V, E) as follows: For every oracle query (a;, b;) set a
vertex u; € V. For i # j set an edge (u;,u;) € E iff (a;,b;) and (a;,b;) are related.
Due to the particular form of the oracle queries, GG is bipartide. The following
Lemma reveals the connection between the size of F and the probability of success

of the attack.

Lemma. 4.1 With probability at least 1 — (AN? +r +s)/rs (over randomly chosen
f,g and o) it holds that p|Z| < |E| + 1.

Proof. Assume that rs divides the order of #. This holds with probability at least
1 —1/r—1/s. Then with probability at least p the algorithm outputs a d’ with
d = d' mod rs. Further assume that there is no collision d(f,g) = d(f',g') mod rs
with (f,g) # (f,g') € Z. This holds with probability at least 1 —4N?/rs. Then
two oracle queries (a;, b;), (a;,b;) are related via at most one pair (f,g) € X7.
Therefore the probability (over randomly chosen (f,g) € Z) that there are any
related oracle queries is at most |E|/|Z]. On the other hand, since the encoding
function o is random, the probability (over randomly chosen f,g € Z) that there
are no related oracle queries and A outputs a d’ with d = d’ mod rs is at most
1/1Z|.
|
Exploiting the nonexistence of certain cycles in G we get a bound for its number

of edges. The proof is given in the appendix.

Theorem. 4.2 Let N > 2°2. Then with probability at least 1 — 8N®/rs (over a
randomly chosen vector d) it holds that |V| > 24| E|N~1/4,

We are now able to prove the lower bound for the complexity of birthday attacks.
Let 7:= (8N® + 2N? + 7 + s)/rs.



Theorem. 4.3 Let be n,r,s,m, k as above so that N > 2°? and 7 < 21—07(11)2.
Then every meet-in-the-middle attack against RSA-SIM has at least complexity
7(11)22_5]\73/4.

Proof. Using standard arguments, we can estimate E(|Z]) > () ((%) — 1)v(n)?,
where the expectation is taken over a randomly chosen vector d. Since N > 28
this is at least %N’y(n)? Depending on 2 and d let ¥ be | 7| if Lemma 4.1 and
Theorem 4.2 hold, and 0 else. Using |Z| < N we can estimate £(¥) > E(|Z])—TN.
Since T < 557(n)? and E(|Z]) > $2Nv(n)? we find that E(¥) > 2°2Ny(n)%.

On the other hand by Lemma 4.1 and Theorem 4.2 we get § > 274+75(p¥ —
1)N=1/4, For p¥ > 30 we get

6/p Z 2—4.8\IIN—1/4 (2)

and since N > 2°2 for p¥ > 30 equation (2) is trivial. Taking expectations on both

sides yields the claim.

Remark. FEven if the values a; of the oracle queries may depend on the public

information d, Theorem 4.3 still remains valid.

5 Conclusions

5.1 Discussion of our Results

We give some concrete examples of the sharpness of our results for several choices
of the parameters that yield a security of 24, Since the binary RSA-S1 is not very
efficient, we consider the non-binary version. There the f; are [-bit integers and
Theorem 3.1 holds as well. In the case of RSA-SIM | for technical reasons, we
suppose that ¢(n) has prime factors r, s fulfilling rs > (’:)12. This holds for a
secure RSA modulus of at least 750 bit. But we don’t believe that RSA-S1M is less
secure for 512 bit moduli.

We compare the upper bound ¢; (given by the described attacks) for the security
and the lower bounds ¢y and ¢3 (given by our results) for the complexity of a generic
resp. a birthday attack against RSA-S1 and RSA-STIM. In the case of RSA-S1 we
have ¢3 = c3. We omit the terms y(n) and y(n)?. They don’t seem to play any role
in practice because an attacker does not have much knowledge about ¢(n). The

client has to perform k +1 — 2 resp. 2k 4+ 1 multiplications.

10



RSA-S1 RSA-S1M

m| k | c1 co m | k c1 co c3

80 40 2 2654 263.0 54 20 27()‘9 2613 2663

92 36 92 266.] 263.7 60 16 269.2 259.8 264.6

These examples show that the bounds of Theorem 3.1 and Theorem 4.3 are quite
sharp. The factors y(n) resp. v(n)? don’t seem to play any role in practice because

an attacker does not have much knowledge about ¢(n).

5.2 Active Attacks

Various active attacks against the protocols RSA-S1 and RSA-SIM have been
proposed in the past (for example see [1],[4],[6]). In an active attack the server
returns false values and tries to extract information out of the results presented by
the client. As noted in [6] the active attacks can be partially prevented by checking
y = z?. This can be done efficiently if e is small by computing y°. A forged y; with
fi = 1 will be detected. However, using small public exponents can be dangerous
in certain circumstances (see [3]). Lim and Lee ([6]) proposed a method to check

4 using only 6 multiplication, irrespective of the size of e. We

the equality y = =
suggest to use this kind of result checking.

However, there are still multi-round active attacks possible. Lim and Lee sug-
gested to change the secret vectors f, g and d randomly after a small number of
runs. But in the case of RSA-S1 it is crucial not to choose the vector d from Z’;(n)
but as integer vectors with components from an intervall [1,. .., c¢(n)]z with a con-
stant integer ¢ being large enough. Otherwise the following knapsack-type attack
is possible.

Let d = Y0, ftd} mod ¢(n) for | = 1,2,..., where all but one d/ are chosen
uniformly from [1, ¢¢(n)] and the remaining d} is chosen from [1, ¢(n)] so that the

equation holds true. Now an attacker can hope that

f}fid! = iﬁ'd!' (3)
i=1 i=1

holds in Z for small /,1’. Tn this case using a 2m dimensional lattice it is possible to
obtain the secret vectors by lattice reduction (see [14],[13]) or max—norm enumera-
tion ([12]). Note that with probability at least 1 — 22™/(c¢(n)) the 0-1 solution of
the corresponding knapsack problem is unique.

The following Theorem gives upper and lower bounds for c.

Theorem. 5.1 For fized I,1' it holds that 1/(ke+ 1) <Pr[(3)] < 1/c.

11



Proof W.lo.g we assume that fi = fI' = ... = fL = f = 1 and that all
d} with i > 1 are chosen uniformly from [1,cé(n)]. Then since d; is chosen from
[1, é(n)] equation (3) holds iff both S°5_, d} and 35_, d} are in the same intervall
L == [d+(j—-1)¢(n),d+jé(n)—1] for 0 < j < ke. Since the d} are chosen
indepentently from the d} we get Pr[(3)] = Z?io Pr {Zf:Q d} € 2. Setting
z; :=Pr Zf:Q d} € I; | we can write this as ||x][3.

Now the first inequality follows from ||v||2 > ||v||?/t for all v € R’ and # € N.

On the other hand for fixed di,...,d}_, the function F(d},...,d}) takes cé(n)
distinct values as d} varies over [1,c¢(n)]. Thus we get z; < |I;|/(cé(n)) < 1/c and
the second inequality follows from ||v||2 < ||v||1]|v]|eo for all v € R.

We recommend to choose ¢ > 280 to prevent the described attack. For the

RSA-S1M protocol this kind of attack doesn’t seem applicable.

A Proof of Theorem 4.2

E° > 228, we need

The case |E?| < 228 is trivial. Before we prove the Theorem for

some definitions and technical lemmata.

Lemma. A.1 Let f', gt ... 8 g® € Xy with
8
Y (-1t eg £0.
=1
Let dy,...,dm be independently randomly chosen from Zy,). Then it holds with
probability at most 4/rs that

i(_y)l d(f',g") = 0 mod rs. (4)
1=1
Proof. Equality in (4) is equivalent to equality mod r and mod s. We show that
equality mod r holds only with probability 2/r. Analogously one can see that the
probability of equality mods is 2/s.
Let equation (4) hold modr. Set

8

Gj=> (1) figh

=1
and, for 1 <i<j<m,
cij = Gj(j+3m)+¢Ei(i+3m)modr

¢i = ¢€i(t+3m) modr.

12



If Zle(—l)lfl ® g # 0 then there is a & ; # 0. We show that there is a ¢;/ j» #
0 mod r as well.
This is obvious for ¢ = j. If i # j we set ¢/ = min(¢, j) and j* = max(¢, j). Then

cir,j» = 0 is equivalent to ¢ ;o (j' + 3m) + ¢;: (¢ + 3m) = 0 mod r. Since r >> 32m

this equation holds in Z as well and we get JZ'_'I'_‘?,’)”TZ = —égj’/{’l/' Since the right hand

side of the last equation is either equal to 1 or no closer to 1 than 3/4 or 4/3, this
equation cannot hold. This shows that ¢; ;1 # 0.

Now we distinguish two cases. First assume that ¢/ = j'. In this case (4) is
equivalent to

cir (1 + 3m) d?, +v1di +v2 =0 mod 7| (5)

where v; and 2 depend on the ¢; ; and the d; (i # 4'). Since Z, is a field, equality
(5) holds for no more than two out of the r possible values of d;.

In the second case we have i’ # j' and ¢; ; = 0 for all 4. Fixing all d; except d;

and dj, (4) becomes
cprjrdyrdjr + vy dy +yadjr +v3 = 0mod r (6)

with certain constants 1,72, v3. Interpreting the left hand side as a linear function
in d; the coeflicient of d;» is ¢;¢ j+ djr+71. This coefficient is nonzero with probability
1 — 1/7. But in this case the linear function computes zero on a random d; also

with probability 1 — 1/r. Thus the probability of (6) holding modr is at most 2/r.

Definition. For an edge (z,y) labeled by f, g we call f the F-colour and g the
G-colour of (2, y) and write f = F(z,y), g = G(z,y). For any f,g € X}, there are at
most (’:‘) edges of F-colour f and (’;’;) edges of G-colour g. A path in G is colourful
iff it neither all its edges are of the same F-colour nor all its edges are of the same
G-colour.

Now suppose d to have no collision d(f,g) = d(f', g’) with (f,g) # (f',g’). This
holds with probability 1 — (2)4/7“5. For each edge (vi,v;) € E there exists a pair
(f,g) € X} fulfilling b; — b; = (a; — a;)d(f, g) mod rs. Since there is no collision
this pair is unique. We label the edge by this pair. If a pair (f, g) occurs more than
once as a label of an edge in E we remove all but one of this edges.

The main property of G we will exploit is the non-existence of certain 6—cycles
(and even certain 8-cyles). We will then prove a variant of the well known gen-

eral result that graphs with v nodes not containing cycles of length 1. < 2k have

13



O(v1+1/”) edges ([2]) (here we have k = 3). The results of non-existence of certain

cycles are obtained using the following Lemmata.

Lemma. A.2 With probability at least (1 — 4N°®/rs) (over a randomly chosen d)

there are no colourful 6-cycles in G°.

Proof. For every edge disjunct colourful 6 cycle, we get an equation

3

6
Zd(fl,gl) = Zd(fl,gl) mod rs.

=1 =4

Thus by Lemma A.1 with probability at least (1 —4N%/rs) we get an equation

3 6
d flog = ) fleg
=1 =4

for every edge disjoint colourful 6 cycle. If the cycle is colourful then f!, f2, f3 are
not all equal and g', g2, g% are not all equal. Weset A =f'o@g! +f20g?+f3og?.

If £2 = £3 we can determine f! from (f1); =1 < Y./~ A;; € {k, 3k} and g'
as A; for any j with Z:n:l Aj; = k. This uniqueness of f' ® gt contradicts the edge
disjointness of the cycle. Analogously we can conclude that f # 3, f! £ f2 g2 £
g’ g #g° 8 #g”

Now we assume that the f', (I = 1,2,3), are all distinct and the g', (I = 1,2,3),
are all distinct. First we show that g' g2 g2 are uniquely determined up to per-
mutation by A and therefore {g', g%, g%} = {g* g°, g°}.

If there are 3 (as vectors) distinct columns ji, jo, js of A with Y02 Aij, = 2k
for{ =1,2,3 then for all a,b € {1,2,3} it holds that (f,);, is 1 iff a # b and is 0 iff
a=b,and g',g?, g are uniquely determined up to permutation by
gl= Al = AL+ AL g? = Al — AL+ A% and g® = Al — AL+ AL

If there are no such 3 columns in A then w.lo.g. (fi); = (f2); = 1 implies
(fs); =1 for all j.

Now we can conclude that since f' # £3, £2 £ 2 there are ji, j» with (f;);, = 1
iff i =1 and (f;);, = 1iff i = 2. Thus there are at least 2 (as vectors) distinct
columns j of A satisfying 7", A;; = k. If there are 3 of them then they are equal
tog!,g? g? and if there are only 2 of them they are equal to g', g% and we can easily
determine g® from A. Again g', g%, g3 are uniquely determined up to permutation
by A.

Analogously one can see that f1, 2 £3 are uniquely determined up to permuta-

tion by A and therefore {f,£? £3} = {f* £5 £°}. Weget flog! +f?0g?+f>0g® =
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flog, +f20 g, +2®gi, with {i1,is,i3} = {1,2,3}. Now considering a j satis-
fying (f1); = 0 and (f2); = 1 it is easy to see that i, = k for k = 1,2, 3.
|

Definition. For V C V we say that V is F-monochromic if for every vertex x € 1%
all edges incident to z are of the same F-colour. For any colour f and z € V we
define V¥ (f) as the set of vertices in V whose incident edges are of the F-colour f.

Analogously we define V to be G-monochromic and YN/G(g) for any colour g.

Lemma. A.3 With probability at least (1 — 4(’:)12/1“5) (over a randomly chosen
d) for every subgraph G = (‘71, Va, 1:7) of G with F-monochromic Vi the following
fact holds:

Fact. A.4 Foranyx, € Vi (f'), 25 € V¥ (£?) the number of 4-paths (x1,a,b, ¢, )
with F(zy1,a) # F(a,b) and F(b,c) # F(c, z2) is bounded by

o 2M if fl#£1£2
o 2Md(zs) if £' =12

where M := maxe(|V{ (f)]).

Proof. Let there be 2 such 4-paths from z; to z5. Since Vl is F-monochromic for

every such 8 cycle we get an equation

8

4
Z(_l)ld(flagl) = Z(_l)ld(flagl) mod rs

=1 =5
with f1 = 8 f4 = f5, f2 = f2, % = f7. Thus by Lemma A.l with probability at
least (1 — 4(’:)12/%) we get the equation

4 8
Y eg = Y (-)fog
=1 =5
We set A := Z?zl(—])lfl ® gl. Tn A there are at most 3 (as vectors) distinct

columns j that contain 1’s and —1’s:

Q) fl=fi=1 fi=1
b fl=ri=1 fi=0
g fi=ri=0 =1
f? is determined by an assignment of the cases a) — ¢) to the columns. For each

column j that contains 1’s and —1’s it is uniquely determined whether it is of type

¢) or a) — b). Thus there are only 2 possibilities for f2. Now fix f2.
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1. Let zy and x5 be of different F-colours. We show that g! and g* are uniquely
determined by A and £

If for all j it holds that f7 =1 & f! # f} then there are ji, ja, js so that for
all a,b € {1,2,3} it holds that f} is 1 iff a # b and is 0 iff @ = b and gl g are
uniquely determined by 2g! = Az-a — A;-l + A;z and 2g* = Aﬁa — A§3+ A;z.

If there is a j satisfying sz =0 and fjl #+ fJ4 then Az- equals g or g* and one

can easily determine the other value from A.

2. Let z; and x5 be of the same F-colour. g' is uniquely determined by g* and
A.
For fixed f' ® g' and £ there are at most |V;" (f?)| many possible values g2 and
g3 is uniquely determined by f2 ® g? and f* © g*.
|

Lemma. A.5 Let G = (V1, Vs, E) be a graph with |V1|, |Va| < v. For any verter x
let U(z) denote the set of vertices y € N(z) that are F-dominated. Then G contains
a subgraph G = (V4, Vy, E) with |E| > |E| — 4vlogy v so that for all z € V; it holds
that

max (d(y) — dry)(¥) < 1/2 Y d(y) — drgy(v) (7)

y€eU(z)

yeU (w)

Proof. We consider the function D(G) := 3" .y, ZyEU(:c) d(y) — dp(e,y)(y). For
every z € V) for that (7) doesn’t hold we remove the edge (z,y,) with y, € U(z)
and d(ys) = dp(z,y,)(¥z) = Maxycu(2)(d(y) — dr(zy)(y)). By that procedure we
decrease D(G) at least by a factor of 2. Since D(G) <3 v, ZyEN(z) d(y), which

is at most |E|?, we can perform this procedure at most log, (| E|) many times.

Definition. For a vertex z let N(z) denote the set of vertices y adjacent to z.
For y € N(z) let dp(sy)(z) denote the number of edges incident to # with F-colour
F(z,y). Analogously we define dg(; ,)(#).

For G = (V,E) and Uy, Us C V we set E(Uy,Us) :={(z,y) € E |z €Ui Ay €
Us}.

Lemma. A.6 Letz € V be colourful and fory € N(z) let Ay (y) be the set of edges
(2,2) # (z,y) with F(z,z) = F(x,y) or G(x,z) = G(x,y). Then there is at most
one y € N(z) with |A;(y)| > 7/8d(z).

The proof follows immediately from |Ay(y) N Az (y')| < 3/4d(x).
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Proof of Theorem 4.2 Assume that § = |[V]| < 27475 E|N="/4 Then, by
Lemma A.2 and A.3, with probability at least 1 — N®/rs there is no collision,
no colourful 6-cycle and fact A.4 holds. Assume that this is the case and that
|E| > 228, Set V. := {z € V | x is colourful}, VF := {z € V | x is F-dominated}
and Vg := {# € V | x is G-dominated}.

Subsequently we use variables ¢; in the estimations which will be fixed at the

end of the proof.

If |[E(Vp,V2)| > ¢1|E| then G contains a subgraph G' = (V}', V4!, E') so that
V]! is F-monochromic and |E!| > %€1|E|. If the number of F-colours f satisfying
|V11’F(f)| > N1/%is greater than es| E1|[N~1/2 we have v > %€1€2|E|N_1/4.

On the other hand if the number of those colours is at most ¢s|E*|N~1/2 using
Lemma A.5 we see that G' contains a subgraph G? C (Vi%, V5, E?) so that (7)
holds for z € V2, for all F-colours f it holds that |V]2’F( )| < N'Y* and |E?| >
(1—€3)|EY| —4vlogy v = aq|E|. Let Uy := {x € Vi | z is F-dominated}. There are

only two possibilities:

1. If E2(V?,Us2) > €3| E?| then G? contains a subgraph G= (f/i, Va, E) so that ¥
and V5 are F-monochromic and |E| > 3¢3|E|. The number of it’s vertices [Vi| +
Vo] is at least 25, \/|Y~/'1F(f)| - |VF'(£)] which is no more than 2N =145 |V (f)|-
V3 (£)]. Since |E| < Yo¢ [V (£)] - V5 (£)] we get

V| > 3ezaq |E|N Y4,

2. I |E* (VP V7 =Us)| > (1—e)| B we set G = (V{, V5 = Uz, B*(V{, V5 = U3)).
Since V; is F-monochromic and |ViF (f)| < N'/* holds for all F-colours f, using fact
A4 we see that the number of 4-paths (21, a, b, ¢, z3) with 21,25 € Vi, F(21,a) #
F(a,b) and F(b,¢) # F(c,z2) is bounded by

> (2N1/4|V| + 2d($2)N1/4), which is at most 4|V|?N'/4,
zaeVy
On the other hand since ‘A/l is F-monochromic the number of those 4-paths is at

least

> > Y d(z) —dry,)(2):
(w2)eB o M55 “EN WM

Since (7) holds for z € Vi, we can estimate this by

UCED DD DR DN 00 (2)

yEN(z) N(
(w,z)els F(w,z)#F (y,2) 2E€N()

=12y (X d(z)—dp(yyz)(z)>2.

yevn  zeN(y)
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Using the Cauchy-Schwarz inequality and that all z € V3 are not F-dominated this is
2 2

at least 2_5|V|_1(Z(y ek d(z)) , which equals 2_5|V|_1(ZZ€V2 d(z_)2) . Final-

ly we get the bound 27%|V|~3| E|* which yields |V| > 2-7/5(1 —63)4/501‘11/5|E|N_1/4.

If |[E(Vg,V2)| > €1|Eo|, E(V1,VE) > €1|Eq| or E(V1,Vg)L;i| > €1|Eq| we get
the same estimations analogously.

If E(V., Vo) > (1 —4¢1)|Eo| set G* := (Vi, Vs, B(V,, V.)) and let EJ denote the
set of edges (z,y) € F* with |A;(y)| < 7/8d(z) and |A,(z)| < 7/8d(y). By Lemma
A6 we get |ES| > |Ea| — 2|V].

Since there are no colourful 6-cycles in G* the number of coloured 3-paths,
i.e. the paths (w,z,y,2) in G* with w € V3!, F(w,z) # F(z,y) # F(y,2) and
G(w,z) # G(z,y) # G(y, 2), is at most |V|2.

On the other hand it is at least

> (@) - 14-w)1) () - 14y (@)])

(zy)EE]

which is greater than 27° Z(x,y)eEg d(z)d(y). Using the identity Z(x,y) d(z)~! =
2 (o) d(y)~! = |V| we can estimate this by 2= min (3" a;b; | Say '+ b7 < 2|V|),
where the minimum is taken over all @b € R/l — {§}. The minimum occurs,
if all a; and b; are equal. Setting |Ej| > |E*| — 2|V| = a3|FE| we get the bound
2-5a3| E?|V|~2 which yields |V| > 2=3/2a3/4| B|N-1/4.

Assume that |V| < 2747 |E|N="/* and |E| > 2?8, Set ¢ = 0.2, €5 = 0.3, €3 =
0.5. Since N > 2°2 we get a; > 0.11, as > 0.2 and finally |V| > 24| E|N—1/4
which is a contradiction. This completes our proof.
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