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Abstract

In a variety of PAC learning models, a tradeoff between time and information seems to exist:
with unlimited time, a small amount of information suffices, but with time restrictions, more
information sometimes seems to be required. In addition, it has long been known that there
are concept classes that can be learned in the absence of computational restrictions, but (under
standard cryptographic assumptions) cannot be learned in polynomial time regardless of sample
size. Yet, these results do not answer the question of whether there are classes for which learning
from a small set of examples is infeasible, but becomes feasible when the learner has access to
(polynomially) more examples.

To address this question, we introduce a new measure of learning complexity called computa-
tional sample complexity which represents the number of examples sufficient for polynomial time
learning with respect to a fixed distribution. We then show concept classes that (under similar
cryptographic assumptions) possess arbitrary sized gaps between their standard (information-
theoretic) sample complexity and their computational sample complexity. We also demonstrate
such gaps for learning from membership queries and learning from noisy examples.
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1 Introduction

PERSPECTIVE AND MOTIVATION. In this work, we examine the effects of computational restrictions
on the number of examples needed for learning from random examples or membership queries. It has
long been known that there are concept classes, containing only concepts which are implementable
by “small” Boolean circuits, which can be learned in the absence of computational restrictions, yet
cannot be learned (using any hypothesis class) in polynomial time (under standard cryptographic
assumptions) [Val84, KV94, AK91, Kha93]. Yet, these results do not answer the question of whether
there are classes for which learning from a small set of examples is infeasible, but becomes feasible
when the learner has access to (polynomially) more examples. Such a phenomenon seems to be
present in various learning problems (described below) and we focus on this tradeoff between
information and computation.

The most common method of learning from examples in the PAC setting is through the use
of Occam algorithms [BEHW87, BEHWS89]. These are algorithms which take as input a set of
labeled examples and output a concept from the target class which is consistent with the given set
of examples. Blumer el.al. give an upper bound on the number of examples sufficient for an Occam
algorithm to provide a good hypothesis. This bound depends on the PAC accuracy and confidence
parameters and the Vapnik-Chervonenkis dimension (VC-Dimension) [VCT71] of the target class.
The general lower bound on the number of examples required for learning [EHKV89] nearly matches
(within a logarithmic factor) the upper bound for Occam algorithms. Thus, the sample complexity
for learning is essentially tight when we have an algorithm which finds a consistent concept from
the target class.

While Occam algorithms exist for all classes
efficient. Yet, for some of these classes learning is still feasible, although the known computationally

1. not all such algorithms are computationally

efficient algorithms use more examples than does the Occam algorithm for the class. In these
situations, computational restrictions appear to impair learning by requiring more data, but do
not completely preclude learning. For example, it is NP-hard to find a k-term-DNF formula?
consistent with a set of data labeled by a k-term-DNF formula [PV88]. The computationally
efficient algorithm most commonly used for learning k-term-DNF works by finding a consistent
hypothesis from an hypothesis class (kCNF) which strictly contains the target class. In using
this larger class, the Occam algorithm requires a sample size dependent on n* (the VC-Dimension
of kCNF') as opposed to k- n (the VC-Dimension of k-term-DNF') as would be possible if the
hypothesis class were k-term-DNF itself. Thus, although k-term-DNF learning is feasible, there is
a gap between the sample size suflicient for learning k-term-DNF in the absence of computational
restrictions and the sample size of known algorithms for computationally efficient learning.?

When the learner is allowed to make queries, we again see the phenomenon in which efficient
learning seems to require more information than learning without such restrictions. One such
example is the learning of deterministic finite automata (DFAs). Angluin’s algorithm for this
class [Ang87] can be viewed as drawing the standard Occam-sized sample and outputting a DFA
consistent with it. But in order to efficiently find this consistent DFA, the algorithm makes many
additional membership queries.

We also find computational restrictions to effect sample size when learning from examples

In this work, we restrict our attention to classes of functions that can be represented by polynomially sized
circuits.

2A k-term-DNF formula is a disjunctive normal form Boolean formula with at most constant & terms.

?Note that the possibility remains of there being an algorithm which learns using the “Occam number of examples”
but does not learn by outputting a consistent k-term-DNF formula.



corrupted with noise. In the absence of computational restrictions, any PAC-learnable class can
also be learned in the presence of classification noise rate n = 1/2—v < 1/2 using a factor of ©(1/7?)
more examples than the noise free case [Lai88, Tal94]. This increase is information theoretically
required [Sim93, AD96]. Yet for many classes, when computation is restricted in the presence
of noisy data, the sample complexity of known algorithms is increased by more than O(1/7?).
Furthermore, this larger increase occurs even for classes which have computationally efficient noise-
free Occam algorithms with optimal sample complexity, i.e., classes with no gap in their noise-free
sample complexities. One very simple class exhibiting these properties is the class of monotone
Boolean conjunctions.

Thus, it appears that in a variety of learning models (PAC, PAC with queries, and PAC with
noise) there may exist a tradeoff between time and information — with unlimited time, a small
amount of information will suffice, but with time restrictions, more information is required. None
of the examples described above provably require the additional examples, yet researchers have
been unable to close these gaps. In this work, we describe classes of functions for which we prove
(based on cryptographic assumptions) a quantitative gap between the size of the sample required
for learning a class and the size of the sample required for learning it efficiently.

SUMMARY OF OUR RESULTS. We focus our attention on learning under the uniform distribution. As
discussed later in this section, this seems to be an appropriate and natural choice for demonstrating
sample complexity gaps. Let C = |, C,, be a concept class, where each €, consists of Boolean
functions over {0,1}". The (Information Theoretic) Sample Complexity of C, denoted 115C(C;n,€),
is the sample size (as a function of n and ¢) needed for learning the class (without computational
limitations) under the uniform distribution with approximation parameter €, and confidence 9/10.
The Computational Sample Complexity of C, denoted csc(C;n,¢), is the sample size needed for
learning the class in polynomial time under the uniform distribution with approximation parameter
€, and confidence 9/10. In both cases, when the class is clear, we may omit it from the notation.

Definition 1.1 (admissible gap functions): A function g : N X R—R is called admissible if
1. g(+,-) is polynomial-time computable.
(bounded growth in n): For every e > 0, 1 < g(n,¢) < poly(n).

2.
3. (monotonicity in €): For every ¢,¢' > 0 such that € < ¢, g(n,¢) > g(n,€);

4. (smoothness in €): there exists a constant a > 1 so that for every € > 0, g(n,¢) < a-g(n,2e¢).
For example, the function g(n,€) = :Td, is admissible, for every d,d’ > 0. Our main result is that
any admissible function can serve as a gap between the sample complexity of some concept class

and the computational sample complexity of the same class. That is:

Theorem 1.1 (basic model): Let g : N XxR—TR be an admissible function, and k : N XR+— R be
of the form k(n,e) = %, where d > 2. Suppose that one-way functions exist.* Then there exisis a
concept class C which has sample complexity

1Tsc(n, €) = O(k(n,€))
and computational sample complexity

csc(n,e) = O(g(n,€) - k(n,e¢)) .

Furthermore, log, |C,| = O(n?*') and each function in C, has a poly(n)-size circuil.

*Here and in all our other conditional results, the computational sample complexity lower bounds hold for ¢ =
1/poly(n) under standard complexity assumptions (i.e., the existence of one-way functions.) For smaller values of €
these bounds hold assuming slightly non-standard yet reasonable complexity assumptions.



NOISE FREE NOISE RATE 77 = 0.25

ITSC | CSC ITSC | CSC
Item 1 | k(n,€) | g1-g2-k(n,€) | k(n,€) | g1-95 - k(n,e¢)
Item 2 | k(n,¢) k(n,e€) | k(n,e) k(:z—;f

Figure 1: The results of Theorem 1.3 (with ©-notation omitted). For general noise rate n =
0.5 — v > 0.25, both ITSC and CSC increase linearly in 1/~

In the above, and all subsequent theorems, one-way functions are merely used to construct pseu-
dorandom functions [HILL, GGMS86]. Assuming either that RSA is a one-way function or that
the Diffie-Hellman Key Exchange is secure, one can construct pseudorandom functions in N'C (cf.,
[NRY5]), and so all of our “gap theorems” will follow with concept classes having N'C circuits.

We next consider classification noise at rate n < % That is, the label of each example is flipped
with probability 7, independently of all other examples. In this case we add + Lt % —
parameter to the sample complexity functions (e.g., ITsc(C;n,€,7)). We obtain:

n>0asa

Theorem 1.2 (noisy model): Let g : N X R+—R be an admissible function, and k : N x R*—R be

of the form k(n,e,v) = o> where ¢ > 2. Suppose that one-way functions exist. Then there exisls

ey?
a concepl class C which, in the presence of noise at rate n = % — 7, has sample complexily
1Tsc(n, €,7) = O(k(n,€,7))
and computational sample complexity
CSC(')”L, € ’7) = ®(g(n7 6) ' k(na € 7)) :
Furthermore, each function in C,, has a poly(n)-size circuil.

We stress that the above holds for every noise rate and in particular to the noise-free case (where
n =0 and v = 1/2). Thus, we have for every v > 0

csc(n, €,7) _ ®<csc(n,e)>

1TS0(n, €,7) 1msc(n, €) 0 (g(n,))

In particular, the computational sample complexity for moderate noise is of the same order of

magnitude as in the noise-free case (i.e., csc(n,€,+) = O(csc(n,€))). This stands in contrast to
oso(n.e,3)
csc(ne)

while 1TsC(n, €, 1) = O(1TsC(n, €)) still holds (as it always does). See Figure 1.

the following theorem in which the ratio between the two (i.e., ) may be arbitrarily large,

Theorem 1.3 (noise, revisited): Lel g1, g, : N X R— R be admissible functions, and k : N X R—R
be of the form k(n,e) = "=, where d > 2. Suppose that one-way functions exist. Then

1. there exists a concept class C which,

e in the presence of noise at rate n = has sample complexity

% -7 i;
€,7) = 0(k(n,€)/7°)

>
ITsC(n, €,7) =

and computational sample complexity
cso(n,e,7) = O(g1(n, €) - (92(n, €))" - k(n, €)/77) ;
o whereas the noise-free complexities are
1Tsc(n, €) = O(k(n,e) and csc(n,e) = O(gi1(n,€) - ga(n,€) - k(n,¢))

respectively.



INFORMATION THEORETIC | COMPUTATIONAL MEASURES
ITSC = ITQC cQC \ CSC

| k(m, €) [ g1 -k(n, ) | g1-95-k(n,6) |

Figure 2: The results of Theorem 1.4 (with ©@-notation omitted).

2. there exists a concept class C which,

has sample complexity

O(k(n,0)/?)

e in the presence of noise at rate n = % -7 >
ITsC(n,€,7) =

and computational sample complexity

cse(n,e,7) = O(-

e whereas the noise-free complexities are

csc(n,€) = O(1Tsc(n,€)) = O(k(n,¢)) .
Furthermore, each function in C,, has a poly(n)-size circuit.

Theorem 1.2 follows as a special case of Item 1 by setting g, = 1. Using Item 2 we get that for
every a > 0 and for every v < 1/4, csc(n, €,7) = Q(csc(n, €)= /4.

We now turn to learning with membership queries. The (Information Theoretic) Query Complexity
of C, denoted 11QC(C; n, €), is the number of membership queries (as a function of n and €) needed
for learning the class (without computational limitations) under the uniform distribution with
approximation parameter €, and confidence 9/10. The Computational Query Complexity of C, denoted
cQc(C;n,€), is the number of queries needed for learning the class in polynomial time under the
uniform distribution with approximation parameter €, and confidence 9/10. We obtain (see also
Figure 2):

Theorem 1.4 (query model): Let g1, ¢> : N X R— R be two admissible functions, and k : N X R—TR
be of the form k(n,e) = %, where d > 2. Suppose that one-way functions exist. Then there exists
a concepl class C which has query complexity

1TQC(n, €) = O(k(n,€)) = O(1Tsc(n, €))
computational query complexity

cQc(n,€) = O(gi(n,€) - k(n,e))

and computational sample complexity

csc(n,€) = O(g1(n,€) - gao(n,€) - k(n,e€)) .

Furthermore, each function in C,, has a poly(n)-size circuit.

Note that we may set g, = 1 and obtain
csc(n,€) = O(cqc(n,€)) = O(gi1(n, €) - 1TQC(n, €))
(and 1T5C(1, €) = O(ITQC( N, €))).

UNIFORM VS. DISTRIBUTION-FREE LEARNING. Above, we show that in a variety of settings there
exists a concept class exhibiting a sample complexity gap when learning occurs with respect to the
uniform distribution. We note that in all our theorems the information theoretic upper bounds
hold, within a factor of n, with respect to distribution-free learning.® Thus, there exist concept

°In Theorem 1.4 the upper bounds hold in the distribution-free case, without any extra factor.



classes for which efficient learning under the uniform distribution (is possible but) requires vastly
larger sample sizes than the distribution-free information theoretic upper bound.

One may wonder whether there exists a concept class exhibiting similar sample complexity
gaps with respect to every distribution. Clearly, degenerate distributions preclude such results.
Alternatively, one may wonder whether, for every distribution, there exists a class that exhibits
sample complexity gaps. Again, such results are precluded by degenerate distributions. Thus,
we believe that an appropriate goal is to demonstrate gaps on fixed distributions, the uniform
distribution being the most natural and well studied.®

Although the above notion of a gap cannot exist for a single concept class across all distributions,
a different notion of distribution-free gap can exist. Specifically, we may consider a gap between:
(1) an upper bound on the information-theoretic distribution-free sample complexity; and (2) a
lower bound on the distribution free sample complexity of an efficient learner that is tight (i.e., has
a matching upper bound). More precisely, let the ( Distribution-Free Information Theoretic) Sample
Complexity of C, denoted Z7 SC(C;n,¢€), be the sample size (as a function of n and €) needed for
learning the class (without computational limitations); and let the Distribution-Free Computational
Sample Complexity of C, denoted CSC(C;n,€), be the sample size needed for learning the class in
polynomial time. We stress that an upper bound for any of these measures refers to all possible
distributions, whereas a lower bound merely refers to one (possibly “pathological”) distribution.
In fact, such pathological distributions are used in the result below.

Theorem 1.5 (distribution-free): Let p be a polynomial so that p(n) > n, and suppose that one-
way functions exist. Then there exists a concept class C so that ZTSC(n,e¢) = O(n/e) whereas
CSC(n,€) = O(p(n)/€). Furthermore, each function in C, has a poly(n)-size circuil.

Note that the gap shown in the theorem is polynomially in n (independent of €). Thus, we do
not get arbitrary admissible gaps as in Theorem 1.1. We note that the computational sample
complexity under the uniform distribution for this class is ©(p(n) - min{log(1/¢),logp(n)}).

TeECHNIQUES. The basic idea is to consider concepts which consist of two parts: The first part
of the concept is determined by a pseudorandom function (cf., [GGMS86]), while the second part
encodes the seed of such a function. Since it is infeasible to infer a pseudorandom function, the
computational-bounded learner is forced to retrieve the seed of the function which is sparsely
encoded in the second part. This sparse encoding makes retrieval very costly in terms of sample
complexity; yet, the computationally-uNbounded learner is not effected by it.

The basic idea described above suflices for establishing a gap between the computational sample
complexity and the information-theoretic sample complexity for a fixed €. Additional ideas are
required in order to have a construction which works for any ¢, and for which one may provide
tight (up to a constant factor) bounds on each of the two complexities. One of these ideas is the
construction of concept classes, called equalizers, for which the computational sample complexity
upper bound is of the same order as the information-theoretic lower bound. An result of this form
follows:

Theorem 1.6 (equalizers): Let p(-) be any polynomial.

1. (noisy-sample equalizer): There exists a concepl class S = U, S,, with concepls realizable by
polynomial-size circuits, such that

ITsc(S;n,€,7) = O(csc(Sin,e,7)) = O(p(n)/ev?).

5We note that our techniques may be used to show similar sample complexity gaps on distributions other than
the uniform distribution.



2. (query equalizer):  There exists a concept class S = U,S,, with concepls realizable by
polynomial-size circuits, such that

ITQC(S;n,€¢) = O(csc(S;n,e)) = O(p(n)/e) .

Another idea used in our proofs is the introduction and utilization of a novel (probabilistic)
coding scheme. In addition to the standard coding theoretic requirements, this scheme has the
property that any constant fraction of the bits in the (randomized) codeword yields no information
about the message being encoded. We also use this coding scheme to obtain efficient constructions
for the Wire-Tap Channel Problem (cf., [Wyn75]) — see Proposition 2.2. We believe that this
probabilistic coding scheme is of independent interest.

ORGANIZATION. After introducing the cryptographic tools we shall nee, we establish the separation
of computational sample complexity from (IT) sample complexity in the basic model. This result
(i.e., Theorem 1.1) may be derived as a special case of the other results, but we chose to present
a self-contained and simpler proof of the separation in the basic model: All that is needed is our
new coding scheme (presented in Section 2), and the basic construction (presented in Section 3).

To establish separation in the noise and query models, we use a more general construction. This
construction utilizes the Great Equalizer (of Theorem 1.6 presented in Section 4). The general
construction itself is presented in Section 5 and is used to derive Theorems 1.1 through 1.4.

Theorem 1.5 is proven in Section 6. We note that this proof is much simpler than any other
proof in the paper and that it can be read without reading any of the other sections.

2 Cryptographic Tools

In subsection 2.1 we review known definitions and results regarding pseudorandom functions. In
subsection 2.2 we present a computationally efficient (randomized) coding scheme which on top of
the standard error-correction features has a secrecy feature. Specifically, a small fraction of (the
uncorrupted) bits of the codeword yield no information about the message being encoded.

2.1 Pseudorandom Functions

Loosely speaking, pseudorandom functions are easy to select and evaluate, yet look as random
functions to any computationally restricted observer who may obtain their value at inputs of its
choice.

Definition 2.1 (pseudorandom functions [GGMS86]): Let £ : N'—N be a polynomially-bounded
length function, and F = {F, : n € N'} where F,, = {f, : «€{0,1}"} is a (multi)set of 2" Boolean
functions over the domain {0,1}*""). The family F is called a pseudorandom family if

o Basy to Evaluate: There exist a polynomial-time algorithm A so that A(a,z) = f.(z), for
every a € {0,1}* and x € {0,1}*°D). The string a is called the seed of f,.

e Pseudorandomness: For every probabilistic polynomial-time oracle machine M, every posilive
polynomial p and all sufficiently large n’s

IPrier, (MY (1")=1) = Pryen, (M*(1*)=1)| < ool

where R, denotes the set of all (22£(n)) Boolean functions over the domain {0, 1}4"),



Pseudorandom functions exists if and only if there exist one-way functions (cf., [GGMS86] and
[HILL]). Pseudorandom functions which can be evaluated by NC circuits (one circuit per each
function) exist”, assuming either that RSA is a one-way function or that the Diffie-Hellman Key
Exchange is secure (cf., [NR95]).

2.2 A Probabilistic Coding Scheme

We present an efficient probabilistic encoding scheme having constant rate (information/codeword
ratio), constant (efficient) error-correction capability for which a (small) constant fraction of the
codeword bits yield no information about the plain message. Note that a scheme as described above
cannot be deterministic (as each bit in a deterministic coding scheme carries information).

Theorem 2.1 There exist constants Crate, Corrs Csec < 1 and a pair of probabilistic polynomial-time
algorithms, (E, D), so that

1. Constant Rate: |E(z)| = |z|/cpate, for all z € {0,1}*.

2. Linear Error Correction: for every x € {0,1}* and every e € {0, 1}1¥@| which has at most
Cerr * | E(2)| ones,

Pr(D(E(z)de)=2z) = 1

where a @ B denotes the bit-by-bit exclusive-or of the strings a and 3. Algorithm D is deter-
ministic.

3. Partial Secrecy: Loosely speaking, a substring containing cee.-| F(2)| bits of E(z) does not yield
information on x. Namely, let I be a subset of {1, ..., |a|}, and let a; denote the substring of
corresponding to the bits at locationsi € I. Then for everyn € N', m = n/cpare, z,y € {0,1}",
Te{Jc{l,..,m}:|J| < cee-m}, and a € {0,1}1],

Pr(E(z); = a) = Pr(E(y); = a)
Furthermore, E(z); is uniformly distributed over {0, 1},

In addition, on input z, algorithm E uses O(|z|) coin tosses.

Items 1 and 2 are standard requirements of Coding Theory, first met by Justesen [Jus72]. What is
non-standard in the above is Item 3. Indeed, Item 3 is impossible if one insists that the encoding
algorithm (i.e., F) be deterministic.

Proof: Using a “nice” error correcting code, the key idea is to encode the information by first
augmenting it by a sufficiently long random padding. To demonstrate this idea, consider an 2n-
by-m matrix M defining a constant-rate/linear-error-correction (linear) code. That is, the string
z € {0,1}?" is encoded by z- M. Further suppose that the submatrix defined by the last n rows of
M and any ¢, - m of its columns is of full-rank (i.e., rank ¢g. - m). Then, we define the following
probabilistic coding, FE, of strings of length n. To encode z € {0,1}", we first uniformly select
y € {0,1}", let z = 2y and output E(z) = z- M. Clearly, the error-correction features of M are
inherited by FE. To see that the secrecy requirement holds consider any sequence of ¢y - m bits in
E(z). The contents of these bit locations is the product of z by the corresponding columns in M;
that is, z- M’ = - A+ y - B, where M’ denotes the submatrix corresponding to these columns
in M, and A (resp., B) is the matrix resulting by taking the first (resp., last) n rows of M’. By

" Actually, these circnits can be constructed in polynomial-time given the seed of the function.



hypothesis B is full rank, and therefore y - B is uniformly distributed (and so is z - M’ regardless
of z).

What is missing in the above is a specific construction satisfying the hypothesis as well as allow-
ing efficient decoding. Such a construction can be obtained by mimicking Justesen’s construction
[Jus72]. Recall that Justesen’s Code is obtained by composing two codes: Specifically, an outer
linear code over an n-symbol alphabet is composed with an inner random linear code.® The outer
code is obtained by viewing the message as the coeflicients of a polynomial of degree ¢t — 1 over
a field with ~ 3¢ elements, and letting the codeword consists of the values of this polynomial at
all field elements. Using the Berlekamp-Welch Algorithm [BWS86], one can efficiently retrieve the
information from a codeword provided that at most ¢ of the symbols (i.e., the values at field el-
ements) were corrupted. We obtain a variation of this outer-code as follows: Given z € {0,1}",

we set 1 = 2n/log,(2n), and view z as a sequence of % elements in GF(3¢).” We uniformly select
y € {0,1}" and view it as another sequence of ¢ elements in GF(3t). We consider the degree ¢ — 1
polynomial defined by these ¢ elements, where z corresponds to the high-order coefficients and y
to the low order ones. Clearly, we preserve the error-correcting features of the original outer code.
Furthermore, any ¢/2 symbols of the codeword yield no information about z. To see this, note
that the values of these ¢/2 locations are obtained by multiplying a ¢-by-t/2 Vandermonde with
the coefficients of the polynomial. We can rewrite the product as the sum of two products the first
being the product of a ¢/2-by-t/2 Vandermonde with the low order coefficients. Thus, a uniform
distribution on these coefficients (represented by y) yields a uniformly distributed result (regardless
of z).

Next, we obtain an analogue of the inner code used in Justesen’s construction. Here the aim is
to encode information of length £ = log, 3¢ (i.e., the representation of an element in GF(3t)) using
codewords of length O(¢). Hence, we do not need an efficient decoding algorithm, since Maximum
Likelihood Decoding via exhaustive search is affordable (as 2 = O(¢) = O(n)). Furthermore, any
code which can be specified by log(n) many bits will do (as we can try and check all possibilities
in poly(n)-time), which means that we can use a randomized argument provided that it utilizes
only log(n) random bits. For example, we may use a linear code specified by a (random) 2{-by-4/¢
Toeplitz matrix.'® Using a probabilistic argument one can show that with positive probability such
a random matrix yields a “nice” code as required in the motivating discussion.!! In the rest of the
discussion, one such good Toeplitz matrix is fixed.

We now get to the final step in mimicking Justesen’s construction: the composition of the two
codes. Recall that we want to encode z € {0,1}", and that using a random string y € {0,1}" we

have generated a sequence of 3¢ values in GF(3t), denoted z, ..., 25, each represented by a binary
string of length ¢. (This was done by the outer code.) Now, using the inner code (i.e., the Toeplitz
matrix) and additional 3¢ random ¢-bit strings, denoted yy, ..., y3;, we encode each of the above z;’s

by a 4£-bit long string. Specifically, z; is encoded by the product of the Toeplitz matrix with the
vector z;y;.

Clearly, we preserve the error-correcting features of Justesen’s construction [Jus72]. The Secrecy
condition is shown analogously to the way in which the Error Correction feature is established
in [Jus72]. Specifically, we consider the partition of the codeword into consecutive 4¢-bit long

& Our presentation of Justesen’s Code is inaccurate but suffices for our purposes.

9Here we assume that 3t is a prime power. Otherwise, we use the first prime power greater than 3t. Clearly, this
has a negligible effect on the construction.

10 A Toeplitz matrix, T = (t; ), satisfies ¢; ; = ti11,j41, for every i, j.

1 The proof uses the fact that any (non-zero) linear combination of rows (columns) in a random Toeplitz matrix
is uniformly distributed.



subsequences corresponding to the codewords of the inner code. Given a set I of locations (as
in the secrecy requirement), we consider the relative locations in each subsequence, denoting the
induced locations in the "™ subsequence by I;. We classify the subsequences into two categories
depending on whether the size of the induced I; is above the secrecy threshold for the inner code
or not. By a counting argument, only a small fraction of the subsequences have I;’s above the
threshold. For the rest we use the Secrecy feature of the inner code to state that no information
is revealed about the corresponding z;’s. Using the Secrecy feature of the outer code, we conclude
that no information is revealed about z. W

EFFICIENT CODING FOR THE WIRE-TAP CHANNEL PROBLEM: Using Theorem 2.1, we obtain an
efficient coding scheme for (a strong version of) the Wire-Tap Channel Problem (cf., [Wyn75]).
Actually, we consider a seemingly harder version introduced by Csiszar and Korner [CK78]. To the
best of our knowledge no computationally efficient coding scheme was presented for this problem
before.'?

Proposition 2.2 Let (E, D) be a coding scheme as in Theorem 2.1 and let Bsc,(a) be a random
process which represents the transmission of a siring a over a Binary Symmelric Channel with
crossover probability'® p. Then,

1. Error Correction: For every z € {0,1}*
Pr(D(nscan(E(x)) = 2) = 1 - exp(~9(J2]))
2. Secrecy: For every z € {0,1}*

‘Pr(Bsc%_C%(E(x)) =a) — 9= |E(=)|

a€e{0,1}1E(=)]

is exponentially vanishing in |z|.

Proof: Item 1 follows by observing that, with overwhelming high probability, the channel com-
plements less than a c../2 fraction of the bits of the codeword. Ttem 2 follows by representing
BSC(1_)/2(@) as a two-stage process: In the first stage each bit of a is set (to its current value)
with probability v, independently of the other bits. In the second stage each bit which was not set
in the first stage, is assigned a uniformly chosen value in {0,1}. Next, we observe that, with over-
whelming high probability, at most 2v|E(z)| = ¢s.|E(2)| bits were set in the first stage. Suppose
we are in this case. Then, applying Item 3 of Theorem 2.1, the bits set in Stage 1 are uniformly
distributed regardless of z, and due to Stage 2 the un-set bits are also random. W

Remark 2.3 The above proof can be easily adapted to assert that, with overwhelming high prob-
ability, no information about x is revealed when obtaining both *= - |E(x)| of the bits of E(x) as
well as the entire BSC1_ e (E(2)).

12We note that Maurer has shown that this version of the problem can be reduced to the original one by using bi-
directional communiaction [Mau91]. Crépeau (private comm., April 1997) has informed us that, using the techniques
in [BBCM95, CM97], one may obtain an alternative efficient solution to the original Wire-Tap Channel Problem
again by using bi-directional communiaction.

¥The crossover probability is the probability that a bit is complemented in the transmission process.



3 Proof of Theorem 1.1

We start by describing a construction which satisfies the gap requirement of Theorem 1.1 for a
fixed €, say € = 0.1. That is, we only show that there exists a concept class C, which for ¢ = 0.1,
has sample complexity 17s¢(n,€) = O(k(n,€)) and computational sample complexity csc(n,e) =
O(g(n,€) - k(n,¢)). The construction is later generalized to handle variable e.

3.1 Motivation: Construction for constant e

We view a function f € C,, as an array of 2” bits. This array is divided into the following three
(consecutive) slices which have sizes 2”71, 2"~2 and 2”72, respectively.

Slice I: This slice, called the pseudorandom slice, is determined by a pseudorandom function f; :
{0,1}"~t — {0, 1}, where the seed s is of length n. (See subsection 2.1.)

Slice II: This slice, called the seed encoder, is determined by the abovementioned seed s and an
additional string 7 of length O(n). More precisely, first we employ the probabilistic encoding

scheme of subsection 2.2 to encode the message s using r as the randomness required by

the scheme. The result is a codeword of length m % O(n). Next we repeat each bit of the

codeword in W_&nm) specified locations. All other locations in this slice are set to zero.

Slice ITI: This slice, called the sample equalizer, is determined by a binary string = of length
k(n,0.1). The slice consists entirely of k(n,0.1) blocks of equal length, each repeating the
corresponding bit of u. The purpose of this slice is to dominate the (information theoretic)
sample complexity, and allow us to easily derive tight bounds on it.

INFORMATION THEORETIC BoUNDS. Applying Occam’s Razor [BEHWS8T] to the class C, we obtain
1Ts¢(C;n,0.1) = O(log |C|) = O(n+ O(n) + k(n,0.1)) = O(k(n,0.1)) where the last equality is
due to k(n,0.1) > n. On the other hand, in order to learn a function in the class with error at
most 0.1, it is necessary to learn Slice III with error at most 0.4. Thus, by virtue of Slice III alone,
we have

1Tsc(C; n,0.1) > 17sc(Slice II;n,0.4) > 0.2 - k(n,0.1)

where the last inequality is due to the fact that learning a random string with error € requires
obtaining at least 1 — 2¢ of its bits. Thus, we have established the desired information-theoretic
bounds. We now turn to analyze the computational sample complexity.

COMPUTATIONAL LOWER BOUND. The computationally bounded learner cannot learn Slice I from
examples (or even queries) in the slice. Still, it must learn Slice I with error at most 0.2. Hence, the
role of Slice I is to force the computationally bounded learner to obtain the function’s seed from
Slice II. By Item 3 of Theorem 2.1, in order to attain any information (from Slice II) regarding
the seed, the learner must obtain Q(n) bits of the codeword (residing in Slice II). By Item 1 of
Theorem 2.1, this means obtaining a constant fraction of the bits of the codeword. Recall that the
probability of getting any bit in the codeword is m Therefore, by a Chernoff Bound,
for every fraction a < 1, there exists a constant 3 < 1, such that the probability of obtaining a
fraction a of the codeword given (8- g(n,0.1) - k(n,0.1)) examples, is exponentially small. Thus,

csc(C;n,0.1) = Q(g(n,0.1) - k(n,0.1)).

CompuTATIONAL UPPER BOUND. By Chernoff Bound a sample of O(g(n,0.1)-k(n,0.1)) examples
contains, with overwhelmingly high probability, an occurrence of each bit of the codeword of the
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seed. Thus, by (a special case of ) Item 2 of Theorem 2.1, the learner can efficiently retrieve the seed
and so derive all of Slices I and II of the concept. However, by g(n,0.1) > 1, the above sample will
also allow obtaining (with high probability) all but at most a 0.1 fraction of the bits in Slice III,
and thus csc(C;n,0.1) = O(g(n,0.1) - k(n,0.1)).

3.2 General Construction — Variable €

We adopt the basic structure of the construction above, except that each of the three slices is further
subpartitioned into blocks. Specifically, each slice has ¢ L log, O(n) (consecutive) blocks, so
that each block corresponds to a different possible value of € = 27¢, for i = 1, ..., ¢. We start with a
detailed description of each of the three slices (see Figure 1).

| 1:51 fs2 f53
nls s, s | s
n Uy - u, - us |.|uj.
€41 8283 " 0 /,/’/ .
e, =E(s.r;)
Ui | Uz

Figure 1: Construction for Theorem 1.1

Stice I: THE PSEUDORANDOM PART. The ™" block has size 2"7'~% and is determined by a
pseudorandom function f, : {0,1}"~1~" — {0,1}, where the seed s; is of length n. Note that the
blocks are shrinking in size, and that they are all pseudorandom.

Stick II: THE SEEDS ENCODER. Here the blocks are of equal size B Lt % -27=2, The " block
encodes the i seed, s;, using an additional string r; of length O(n). Let e; be the codeword obtained

by employing the probabilistic encoding scheme (of Theorem 2.1) on input s; using randomness ;.

Recall that m % |e;] = O(n). The i™ block is further divided into m (consecutive) information

fields, each of size WZ”Q")’ and an additional empty field (of size BQ— #}:(22‘)) Thus

the m information fields have relative density le(nﬁ‘) = @(m) with respect to
the total size B of the block. All bits in the 5™ information field are set to the value of the 5™ bit

of e;, and all bits in the empty field are set to zero.

Stice ITI: THE SAMPLE EQUALIZER. The i'" block has size B; L' 9n-2-i 4nd is determined by

a binary string u; of length K % 2% . k(n,2=7) = n?. The i block is further divided into K
(consecutive) sub-blocks, each of size £:. All bits in the ;™ sub-block are set to the value of the
4™ bit of u;. Note that the blocks are shrinking in size, and that for each block it is possible to

obtain most bits in the block by viewing ©(K') random examples residing in it.

We first observe that Slice III above gives rise to a concept class for which tight bounds, of the
form k(n,€) = poly(n)/e, on the information theoretic and computational sample complexities, can
be given.
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Proposition 3.1 For Slice I described above we have:

1. 11sc(Slice IIL; n, 4¢) = Q(k(n, €)).

2. csc(Slice II; n, €) = O(k(n,€)).
Proof: Item 1. Let i € |log,(1/8¢)|. In order to learn Slice III with error at most 4¢, one
must learn the i*" block reasonably well. Specifically, one must obtain examples from at least
half of the K sub-blocks of the i*® block, and hence must have at least K /2 examples in the i}
block. By Chernoff Bound, this implies that the total number of random samples must be at least
20K =92 k(n,e) > 277 - k(n,¢). Item 1 follows.
Item 2. On the other hand, we consider the fraction of the third slice that is determined (with
constant probability close to 1) given a sample of 16 - k(n,€) = 16 K /e random examples. It suffices
to show that the total area left undetermined in the first £ < [log,(4/€)] blocks is at most an €/2
fraction of the total domain (since the remaining blocks cover at most an €/2 fraction of the total).
Fixing any 7 < £, we consider the expected number of sub-blocks determined in the i"* blocks (out

of the total K sub-blocks). A sub-block is determined if and only if we obtain a sample in it, and
the probability for the latter event not to occur in 16 K /€ trials is

_i\ 16K/e

27° 16
1- = —— 1
( K) eXp( 226) L

It follows that the expected fraction of bits which are not determined in the first £ blocks is bounded
above by

£ -1

Eg—i.g—;ﬁ% — 22—(l‘j).2_m (2)
=1 j=0
-1 -
= 270} 9797 (3)
j=0
< 2-2‘422‘1 (4)
j=0
€
< — 5
32 ( )

where Eq. (4) follows from the fact that Vj > 0, 20-%2" < 2-4.277_ Item 2 follows. W

Lemma 3.1 The concept class described above has (information theoretic) sample complexity

1Tsc(n, €) = O(k(n,¢€)).

Proof: Clearly, it suffices to learn each of the three slices with error €. Applying Occam’s Ra-
zor [BEHWS8T] to Slices I and IT of the class, we obtain

1rsc(Slices T and IT;n,€) = O(n’/e) = O(k(n,¢€))

where the last equality is due to the hypothesis regarding the function &(-,-) (i.e., that it is Q(n?/¢)).
Using Item 2 of Proposition 3.1, we obtain 1Tsc(Slice III; n, €) < csc(Slice IlI;n,€) = O(k(n,€)) ,
and 1Tsc(n, €) = O(k(n, €)) follows. (Note that in order to obtain the desired, tight bound we cannot

simply apply Occam’s Razor to Slice IIT since it is determined by roughly 2n - K = 2n - ek(n.c)
bits.)
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On the other hand, in order to learn a function in the class, we must learn Slice III with error
at most 4e. Using Item 1 of Proposition 3.1, we obtain 1rsc(Slice III; n,4¢) = Q(k(n,4¢)), and
1TsC(n, €) = Qk(n,4¢)) = Q(k(n,€)) follows. M

Lemma 3.2 The concept class described above has computational sample complezity csc(n,e€) =

O(g(n,€) - k(n, ).

We stress that this lemma, as well as all subsequent lemmas which refer to computational complexity
lower bounds, holds provided Slice I is indeed determined by a pseudorandom function.

Proof: Using Item 2 of Proposition 3.1, we have that csc(Slice III; n, €) = O(k(n,€)), and using
g(n,e) > 1 we infer that Slice III can be efficiently learned with € error given a sample of size
O(g(n,e€) - k(n,e)). We next show that such a sample suffices for learning Slice I and Slice II as
well. Since the information fields in the ¢*" block of Slice II have density bounded above by 27¢, in
order to learn Slice IT with error at most ¢, it suffices to learn the first £ % [log,(4/¢)] with error
at most €/2. However, such an approximation might not suffice for learning Slice I sufficiently well.
Nonetheless, we next show that a sample of size O(g(n, €)-k(n, €)) suffices for efficiently determining
(ezactly) the first £ seeds (residing in the first £ blocks of Slice IT) and thus determining the first £
blocks of Slice I.

Let ¢ < £ and consider the m information fields in the ** block of the Seed Encoder. Suppose
that for some constant ¢’ (to be specified), we have 2¢' - (g(n,€) - k(n,€)) random examples. Then
the expected number of examples residing in the information fields of the i*" block is

m

7, 20)  f(n, 2T) (6)

2¢ - (g(nv 6) ' k(nv 6)) : g(

Since g(n,€)- k(n,€) = Q(g(n,27")k(n,27")), for a suitable constant ¢’ (the depends on ¢’ and on
the constants in the omega notation), this expected number is 2¢”m. With overwhelmingly high
probability (i.e., 1 — exp(—£(m))), there are at least ¢”m examples in the information fields of
the i*" block (for every ¢ < £). We set ¢’ so that ¢’ will be such that, with overwhelmingly high
probability, such a sample will miss at most c...mn of these fields, where ¢, is the constant in Item 2
of Theorem 2.1 (e.g., ¢ = 2/¢.,, will suffice). Invoking Item 2 of Theorem 2.1 (for the special case
in which there are no errors but part of the code-word is missing), we obtain the seed encoded in
the i*" block of Slice II. Since the probability of failure on a particular block is negligible, with very
high probability we obtain the seeds in all the first £ blocks of Slice II. This concludes the proof of
the upper bound.

We now turn to the lower bound and let i & |log,(1/4€)]. Considering the i*® block of Slice I, we
will show that too small a sample does not allow information regarding the i seed to be obtained
from Slice II. This will lead to the failure of the computational bounded learner, since without such
information the ™ block of Slice I looks totally random (to this learner). Specifically, let c,.. be
the constant in Item 3 of Theorem 2.1, and let ¢/ = 2/¢,... Suppose the learner is given

" g(nye) k(n,e) < ¢ -g(n,27")k(n,27% (7)
random examples. (The constant ¢ is such that the last inequality holds.) Then, using a Chernoff

Bound we infer that, with overwhelmingly high probability, we will have at most

2¢ - (g(n72_i)'k(n72_i)) ’ g(n Q_Z)mk(n Q—i) = 2dm = ceem (8)
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random examples in the information fields of the i*® block of Slice II. Invoking Item 3 of Theo-
rem 2.1, this yields no information regarding the seed encoded in the " block of Slice II. Thus,
the computationally bounded learner cannot predict any unseen point in the i*" block of Slice T
better than at random. This means that its error is greater than allowed (i.e., > 27'=! > ¢). Thus,
csc(n,€) > ¢’ - g(n,e)k(n,€), where ¢” is a constant as required. W

4 The Two Equalizers (Proof of Theorem 1.6)

In this section we show that : (1) the sample equalizer (i.e. Slice III) described in Section 3.2 can
be used to prove the first item in Theorem 1.6 (noisy-sample equalizer); (2) another construction,
based on interval functions can be used to prove the second item of the theorem (query equalizer).

4.1 Noisy-Sample Equalizer (Item 1 of Theorem 1.6)

As noted above, we use Slice III of the construction in Section 3.2. Here we think of a concept in
the class § = U, S, as being an array of size 2" (as opposed to 2"~% when it serves as the third
slice of a concept). The number of sublocks in each of the ¢t = n — O(log(n)) blocks is p(n). The
proof follows the structure of the proof of Proposition 3.1.

Lemma 4.1 115¢(S,n,¢,7) = Q (%7—21) .

Proof: Let i = |log,(1/2¢)|. In order to learn a function in the class S,, one must learn
the #*® block reasonably well. Specifically, one must obtain sufficiently many examples from the
i'" block, or else the information we obtain on the bits residing in this block is too small. In
particular, we claim that we must have at least Q(p(n)/7?) examples in the i"" block. We prove the
claim by noting that it corresponds to the classical Information Theoretic measure of the mutual
information (cf., [CT91]) that these samples provide about the string residing in this block. Each
example provides information on a single bit residing in the block and the amount of information is
merely the capacity of a Binary Symmetric Channel with crossover probability n = % — 7. That is,
each example yields 1 — Ho(n) bits of information, where H, is the binary entropy function, which
satisfies 1 — H(0.5 — 7) ~ ©(7?). The claim follows by additivity of information.

Let ¢ > 0 be a constant so that we must have at least p(n)/cy? examples in the i block.
Then, in order to have (with high probability) at least p(n)/cy? examples in the i"* block, the total

number of random samples must be at least 2 - % =0 (%) |

Lemma 4.2 csc(S,n,e,7)=0 (”6(72')) .

Proof: We consider the fraction of a concept in 5, that can be correctly inferred by a sample of
O(p(n)/ey?) random examples. It suffices to show that the total area left incorrectly inferred in
the first £ % [log,(4/¢)] blocks is at most an /2 fraction of the total domain (since the remaining
blocks cover at most an €/2 fraction of the total). Fixing any ¢ < ¢, we consider the expected
number of sub-blocks incorrectly inferred in the :*" block (out of the total p(n) sub-blocks). We use
the obvious inference rule — a majority vote. Thus, a sub-block is correctly inferred if and only if a
strict majority of the examples obtained from it are labeled correctly. (Having obtained examples
from this sub-block is clearly a necessary condition for having a strict majority.) Using a Chernoff
bound, the probability that we do not have the correct majority in O(p(n)/ey?) trials is at most
exp(—Q(27*1/€)). As in the proof of Proposition 3.1, it follows that the expected fraction of bits
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that are incorrectly inferred in the first £ blocks is bounded above by ¢/20 and the Lemma follows.

4.2 Query Equalizer (Item 2 of Theorem 1.6)

For every n, we consider the following concept class S,,. Each concept in the class consists of p(n)
blocks of equal size @) wef 27=2/p(n). Fach block corresponds to an interval function. Namely,

the bit locations in each block are associated with [Q] Lt {1,...,@Q}, and the bits themselves are
determined by a pair of integers in [@]. If the i"" block is associated with a pair (u;,v;), then the
5% bit in this block is 1 if and only if u; < j < v;. Note that pairs (u;,v;) with w; > v; determine
an all-zero block.

Lemma 4.3 11QC(S,n,€) = Q(p(n)/e) .

Proof: We start by bounding the expected relative error of the algorithm on a single block when
making at most ¢ queries to this block. We later discuss the implication of such a bound on the
total error on 5,. Suppose first that the learner is deterministic. Then, no matter how it chooses
its ¢ queries, there exists an interval of length 1/¢ which is never queried. Hence the algorithm
cannot distinguish the case in which the target concept is all 0’s and the case the target concept
has 1’s only in the non-queried interval, and must have error at least 1/2¢ on at least one of these
concepts.

Next, we consider a probabilistic learner which makes ¢ queries all of them are answered by 0
(as would be the case for the all-zero concept). Then, for every § > 0, there must exists an interval
of relative length ¢ /¢ (i.e., actual length 6Q)/¢) so that the probability that a query was made in
this interval is below §. We again consider the all-zero concept and the concept which has 1’s only
in this interval. We consider a 1 — 4 fraction of the runs of the algorithm in which no query is made
to the above interval. In these runs the algorithm cannot distinguish the all-zero concept from the
other concept. Thus, with probability 1;—‘5 the algorithm has error at least §/2¢ (on some concept).
If we set § = 0.2 and ¢ = 75—, then we have that with probability at least 0.4 the error is at least
10€ on one of the two concepts.

To analyze the execution of a learning (with queries) algorithm on a (complete) concept in 5,,,
we consider the following game, consisting of two stages. In the first stage, the algorithm makes ¢
queries in each block. The algorithm is not charged for any of these queries. In the second stage,
the algorithm makes a choice, for each block, whether to output a hypothesis for this block or
to ask for additional queries. In the latter case it is supplied with an infinite number of queries
(for this block) and gets charged only for the ¢ original queries made in the first stage. At the
end of the second stage the algorithm must output a hypothesis for each of the remaining blocks.
The algorithm is required to output hypotheses which together form an e-approximation of the
target. Clearly, the charges incurred in the above game provide a lower bound on the actual query
complexity of any learning algorithm.

Claim: Any algorithm that learns 5, with € error and confidence 0.9, incurs a charge of at least
0.04 - p(n)-q.

Proof: Consider the following mental experiment in which an algorithm executes only the first stage,
and all its queries are answered ‘0’ (as if each block corresponds to the empty interval function).
For each 1, let I; be an interval (of maximum length) in the i*" block such that the probability that
a query is made (in the above mental experiment) to this interval is below ¢ (for § = 0.2). We
next define a distribution on 2°(*) possible target concepts: For the i*® block, independently, with
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probability 1/2, the interval I; is chosen, and with probability 1/2, the empty interval is chosen.
Now consider a full (two stage) execution of an algorithm that learns 5, with ¢ error and confidence
0.9, when the target is chosen according to the above distribution. Since the bound on the error
and confidence of the algorithm are with respect to a worst-case choice of a target concept, it must
still hold that with probability at least 0.9 over the randomization of the algorithm and the random
choice of the target, the error of the algorithm is at most e.

Suppose, towards contradiction, that this algorithm incurs charge less than 0.04p(n)g (where ¢
is set as above). Then, for at least 0.96% of the blocks, the algorithm outputs a hypothesis at the
end of the first stage. By our assumption on the algorithm, with probability at least 0.9, the overall
error in these hypotheses must be bounded by ¢, and so at most one ninth of these blocks may have
relative error greater than 10e >. But this implies that, with probability at least 0.9 -0.96 -% > 0.6,
the algorithm has relative error smaller than 10e on a randomly located block, in contradiction to
the above analysis of the single-block case. W

Lemma 4.4 csc(S,n,e) = O(p(n)/e) .

Proof: The computationally bounded learner simply finds a minimal consistent hypothesis for
each block in the concept. Namely, for the i"" block it lets @; € [Q] be the smallest index of an
example labeled 1 that belongs to i'" block, and it lets ©; € [@] be the largest index of an example
labeled 1 in the :*" block. If no example in the block is labeled 1, then it lets @; = [Q], and &; = 1
(so the hypothesis is all 0).

Assume the learner is given a sample of size bp(n)/e (= b - k(n,€)) for some constant b > 1.
Then, for any particular block, the expected number of examples that fall in the block is b/e,
and the probability that less than b/(2¢) belong to the block is exp(—£(b/¢€)). Thus, by Markov’s
inequality, for sufficiently large b, the probability that the fraction of blocks receiving less than b/2¢
examples exceeds ¢/2, is a small constant. It remains to show that with high probability the total
error in the blocks receiving a sufficient number of examples is at most €¢/2. To this end we show
that for each such block, the expected error, relative to the size of the block, is at most ¢/’ for
some constant b'.

Consider a particular block that receives at least s = b/(2¢) examples. Let the interval defining
the block be [u,v], and let the hypothesis of the learner be [, #]. First note that by definition of
the algorithm, [, ?] is always a subinterval of [u,v], and hence we have only one-sided error. In
particular, in the case that u > v (i.e., the target interval is empty), the error of the hypothesis
is 0. Thus assume u < v. For sake of the analysis, if & > & (i.e., the learner did not observe any

positive example in the block, and the hypothesis is all 0), redefine @ to be v 4+ 1, and © to be v.

By definition, the hypothesis remains all 0. Let ¢, &' (4 —u)/Q, and (g o (v—19)/Q. The error

of the hypothesis (relative to the block) is the sum of these two random variables. We next bound
the expected value of (i, (the expected value of (g is bounded analogously).

For any integer @, the probability that (;, > a- % is the probability that no example fell between
wand u+ (a/s)-Q, which is (1 — a/s)* < exp(—a). Therefore,

a+1) a+1

Bxp(c) < Y Pr(f<qs ! (9)

< gPr<cL>3)-“+1 (10)

S S

< %i(a—}— l)e™® (11)
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< 3/s = 6e/d . (12)

Thus, the (total) expected error of the algorithm on all blocks that receive at least s = b/(2¢)
examples, is bounded by 12¢/6. W

5 The General Construction

We adopt the structure of the construction presented in Section 3. Specifically, the Pseudorandom
Slice remains the same here, and the Sample Equalizer is one of the two equalizers analyzed in
Section 4 (depending on the application). The main modification is in the Seed Encoder Slice
(Slice II). For an illustration of the construction, see Figure 2.

I fsl fSZ fS3
] S, S, S, S
o |Qay) | (W, V)| (W ) u.v)
//,/’// e, =E(s.,r,) /// /// \\\\\\
€1 €2 € O /// \\\\\
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Figure 2: The General Construction with the Query Equalizer (analyzed in Item 2 of Theorem 1.6)

As in Section 3, we encode each seed using the probabilistic coding scheme of Theorem 2.1.
In Section 3 we repeated each resulting bit (of each encoded seed) in each bit of a corresponding
information field, where the information fields occupied only a small fraction of Slice II and their
locations were fixed. Here we augment this strategy by having only few of the bits of these informa-
tion fields equal the corresponding bit and the rest be set to zero. Thus, only few locations in each
information fields are really informative. Furthermore, the locations of the informative bits will
not be known a-priori but will rather be “random” (as far as the computational bounded learner is
concerned). This strategy effects the computational bounded learner both in the query and noisy
models. Using queries the computational bounded learner may focus on the informative fields but
it cannot hit informative bits within these fields any better than at random.

Suppose that a p fraction of the bits in an information field are really informative. Then to dis-
tinguish a ‘0’ from a ‘1’ (with constant confidence) the learner must make @(1/p) queries/examples
into the information field. Things become even harder in the presence of classification noise at rate
n = 0.5 — 7, say, greater than 0.2. In this case, when getting an example in the information field,
or even making a query to the information field, the answer may be ‘0’ both in case the bit is not
informative (and the answer is correct) and in case the bit is informative. The latter case happens
with probability 0.5 + v (resp., 0.5 — 7) when the real information is ‘0’ (resp., ‘1’). Thus, in case
the information bit is ‘0’ (resp., ‘1), the answer is ‘0" with probability 1 —7 (resp., with probability
(1—=p)-(054+9)4+p-(05—v)=1-n—2py). As 1 — 7 is bounded away from (both 0 and)
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1, distinguishing an encoding of ‘0’ from an encoding of ‘1’ (with constant confidence) requires
O(1/(py)?) queries/examples into the information field.

The above discussion avoids the question of how we can make the informative locations be
“random” (as far as the computational bounded learner is concerned). These “random” locations
must be part of the specification of the concepts in the class. We cannot have truly random
locations if we want to maintain polynomial-size description of individual concepts. The use of
pseudorandom functions is indeed a natural solution. There is still a problem to be resolved — the
computational bounded learner must be able to obtain the locations of “information” for those
blocks that it needs to learn. Qur solution is to use the 7 + 1% pseudorandom function in order to
specify the locations in which information regarding the i*® seed is given.

The following description is in terms of two density functions, denoted pi,ps : NXR—TR.
Various instantiations of these functions will yield all the results in the paper. Each function in
the concept class consists of the three slices, and each slice is further sub-partitioned into blocks as
described below.

Stice I: THE PsSEUDORANDOM PART. Exactly as in Section 3. That is, the i*" block has size
2"~1=" and is determined by a pseudorandom function f,, : {0,1}"~'=" — {0, 1}, where the seed s;
is of length n.

Stick II: THE SEEDS ENCODER. As in Section 3, this slice is partitioned into ¢ blocks (of equal

size) so that the i™ block has size B % +.2""% and encodes the i'" seed, s;, using an additional

string r; of length O(n). Let e; be the codeword obtained by employing the probabilistic encoding

scheme on input s; using randomness r;. Recall that m qef le;] = O(n). The i™ block is further

divided into m (consecutive) information fields, each of size p(n,27%)- %, and an additional empty
field (of size (1 — pi(n,27") - B).

A ps(n,27%) fraction of the bits in the j™ information field are set to the value of the j™
bit of e;. These bits are called informative and their locations are determined (“randomly”) by
a pseudorandom function, A, ., : {0,1}" ~— {0,1}" (this function uses the ¢ + 1°* seed!). The
remaining bits in each information field as well as all bits of the empty field are set to zero.

A few details are to be specified. Firstly, bit locations in Slice II are associated with strings
of length n — 2. Thus, bit location a € {0,1}"~? that is inside an information field is informative
if and only if h,,,,(11) is among the first 2" - ps(n,277) strings in the lexicographic order of all
n-bit long strings. The pseudorandom functions (over the domain {0,1}"~"~!) used in Slice I are
determined by the same seeds by letting f,,(z) = LsB(h,,(0°*'2)), where LSB(c, - --0) = 0, is the
least significant bit of o, - - -o1. Thus, there is no “computational observable” interference between
the randomness used for determining informative locations and the randomness used in Slice I.

Note that Slice II in the construction of Section 3 is obtained by setting p;(n,€) =

im
g(n,e)k(ne)
and p; = 1.

Stick II1: THE EQUALIZER. In this Slice we use one of the two equalizers analyzed in Theorem 1.6
(depending on the application).

5.1 Analysis of Slices I and II.

It will be convenient to analyze the concept class that results from the above by omitting Slice TII
(the Equalizer). We refer to the resulting class as to the core class.

Fact 5.1 The core class has information theoretic sample complezity 1TSC(n,€,v) = O(n?/ey?) =
O(k(n,)/").
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Proof: Follows from the Noisy Occam Razor [Lai88]. W

We are not interested in an information theoretic lower bound for the core class since the Equalizer
will dominate the information theoretic complexities. Thus, we turn to analyze the computational
complexities of the core class.

Lemma 5.2 The core class has

1. computational (noiseless) sample complexity csc(n,e€) = @(m), provided that m

is an admissible function and that it is lower bounded by 1/e.

2. for v < 1, computational (noisy) sample complezity csc(n,e,v) = @(m)

vided that pl?pQ is an admissible function and that it is lower bounded by 1/e.

, pro-

n
p2(n,€)

3. computational query complexity cQc(n,e) = O ), provided that ;)1_2 is an admissible

function and that it is lower bounded by 1/e.

Proof: Item 1 (noise-less sample complexity:) This item follows by observing that arguments
used in Lemma 3.2 can be modified to obtain the desired bound. Consider the i*" block of Slice II.
We first note that a random example hits an information field of the i"" block with probability
p1(n,27%)/t (i.e., with probability 1/¢ it falls in the *" block and conditioned on being in the 7
block it falls in an information field with probability p;(n,27%)). Thus, the probability of hitting a
specific information field (out of the m = O(n) fields) is ”1(?;5_1) = G)(pl(ril’f_l)). We also know that
a random example in an information field is informative (i.e., depends on the encoded bit) with

probability ps(n,27") and is set to zero otherwise.

For the lower bound, consider the #*® block for i = |log(1/4¢)]. Similarly to what was show in
the lower-bound of Lemma 3.2, for an appropriate constant ¢”, a sample of size ¢” - m will
contain informative examples in less than c..m of the information fields in the i*® block (where
Csec 1 the constant in Item 3 of Theorem 2.1). As a result, the 1™ seed cannot be obtained and the
error of the learner on Slice I is too large.

The proof of the upper bound is easily adapted as well. As in the proof of Lemma 3.2 we have
that for a sufficiently large constant ¢/, with very high probability, a sample of size ¢’ - n*/(p1(n,€) -
pa(n,€)) will contain at least one informative example in all but a small constant fraction of the
m information fields in the i™ block, for every i < £ = [log(8/¢)]. The only difference here is
that while seeing a ‘1’ in an information field in fact means that the bit encoded in it is ‘1’, seeing
only ‘0’s in the field only provides statistical evidence towards ‘0’. Thus, while in Lemma 3.2 we
only had to deal with missing informative examples (that encode seeds), here we might have errors
when inferring that the bit encoded is ‘0’. However, the coding scheme (of Theorem 2.1) allows a
constant fraction (i.e., ¢, ) of errors, and hence we can handle a constant fraction of errors in each
of the first £ blocks. Note that the £ corresponding seeds determine not only the first £ blocks of
Slice I but also the locations of informative bits in the first £ — 1 blocks of Slice II.

Item 2 (noisy sample complexity:) The additional difficulty we encounter here (as compared to
Item 1 above) is that due to the noise it does not suffice to “hit” informative examples inside
information fields in order to infer the encoded bit. Namely, each example (informative or not) has
an incorrect label with probability n = £ — 7. Therefore, seeing a ‘1’ in an information field does
not necessarily mean that it is an informative example and the field encodes the bit ‘1°, but rather
it could be a noisy bit in an information field encoding the bit ‘0’.
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However, there is clearly still a difference between information fields that encode ‘1’, and those
that encode ‘0’: In case an information field encodes ‘0’, a random example in it will be labeled ‘1’
with probability 5. On the other hand, in case an information field encodes ‘1’, a random example
in it will be labeled ‘1’ with probability ps(n,27%) - (1 —n) + (1 — pa(n,27%)) - p = n+ 2yps(n, 27%).
Thus, we need to distinguish a 0-1 sample with expectation n from a 0-1 sample with expectation
n 4+ O(7 pa(n,27")). This is feasible (with high probability) using O(1/(7?pa(n,27)) examples.
Since our coding scheme can suffer a constant fraction of errors, we can allow that a small fraction
of information field will receive less than the required number of examples, and that among those
receiving the desired number, a small fraction will be determined incorrectly. The upper bound
follows.

For 7 that is bounded below by some constant (say, n > 1/4), a sample of size Q(1/(pa(n,27%)7)?)
is also required to distinguish between the two cases discussed above with probability greater than,
say 1/2 4+ ¢sec/8, where ¢y is the constant defined in Item 3 of Theorem 2.1. Suppose that a
sample of size ¢'m/(pa(n,27%)y)? falls in the ¢** block of Slice II. Then, for sufficiently small ¢,
at most c¢g../2 information fields receive a sufficient number of examples. Hence, even if all these
information fields are correctly inferred, by Remark 2.3, with very high probability no information
about the ith seed will be revealed. In particular, this holds for i = |log,(1/4¢)]. We conclude
that, for vy < 1/4,

n?

p1(n,€)

cscln,e7) =0 [ (s, 7)) (13)

Item 3. Using similar arguments to those applied above we show that O(n/ps(n,€)) queries suffice
def

for efficiently determining the first £ = [log,(8/¢)] seeds residing in the first ¢ blocks of Slice II.
Specifically, we use a 27*=** fraction of the ¢’ - (n/pa(n,€)) queries as a random sample into the
information fields of ™ block, for ¢ = 1,...,£ (and ignore the empty fields in all blocks). Thus, we
have ¢ - 2774 . (n/py(n,€)) = 2¢" - m/py(n,27%) random examples in the i*" block, where ¢ is
a constant related to the constant ¢’. With overwhelmingly high probability we’ll obtain at least
¢"m informative bits. For a suitable choice of the constants (¢’ and ¢), this suffices to recover the
i"" seed for every i < £. Observe that the only part in which we have used queries is in the skewing
of the random examples among the various blocks.

We now turn to the lower bound and let i % |log,(1/4¢)|. Considering the i block of Slice I,
we show that, as long as the informative locations in the i block of Slice IT are unknown, too few
queries do not allow to obtain information regarding the i*® seed. This will lead to the failure of
the computational bounded learner, since without such information the " block of Slice I looks
totally random (to this learner). The actual argument starts from the last block (i.e., ™ block)
and proceeds up to the i*" block. Assuming that the learner has no knowledge of the ;™ seed, for
j > 1, we show that he obtains no knowledge of the j — 1°" seed. On top of what is done in the
analogous part of the proof of Lemma 3.2, we need to argue that having no knowledge of the 5
seed puts the learner in the same situation as if it has selected its queries at random: We can think
of it making a query and then having a random biased coin determine if this query (into the Seed
Encoder) carries information. W

5.2 Applications of Lemma 5.2

def n?

ProoF oF THEOREM 1.2. As in the setting for Theorem 1.1, we set pi(n,¢) = CREICTL

pa(n,€) ' 1, where k(n,e€) 2. k(n,e,v). By Item 1 of Theorem 1.6 and Fact 5.1, we have

and
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1Tsc(n, €,7) = O(k(n,¢,7). Invoking Item 2 of Lemma 5.2 for v < 1/4, and Item 1 of Lemma 5.2
for v > 1/4 (i.e., constant 7), we have csc(n,€,7) = O(g(n,€) - k(n, ¢, 7).

Proor oF THEOREM 1.3. The first item follows by setting p;(n,€) o CBEIC] ka(n o+ and pa(n,e€) o
—gg(im). By Item 1 of Theorem 1.6 and Fact 5.1, we have 1Tsc(n,¢,7) = O(k(n,€)/7?). Invoking

Item 1 of Lemma 5.2, we have csc(n, €) = ©(g1(n, €)ga(n, €)-k(n, ¢)). Invoking Item 2 of Lemma 5.2,
we have csc(n,e,7) = O(gi(n, €)ga(n, €)* - k(n,€)/v?), for every v < 1/4.

The second item follows by setting pi(n,¢) L1, and pa(n,e€) L _n? Again, we have

k(n,e)"
1Tsc(n,e,7) = O(k(n,€)/7?), and invoking Items 1 and 2 of Lemma 5.2, we have csc(n,e) =
O(k(n,€)) and csc(n, e,7) = O(k(n,€)*/n*y?)), for every v < 1/4. Actually, we can obtain a more
general result by setting p;(n,€) L p-(d=a=2)¢1-5 554 pa(n,e€) L n=de? for any a € [0,d — 2] and

pe[0,1].
def n def n

ProoF oF THEOREM 1.4, FOR g, > n. Here we set pi(n,e) = PREWL and pa(n,€) = PRI
(The hypothesis ga(n, €) > n guarantees that p;(n, €) < 1 as required by the admissibility condition.)
By Item 2 of Theorem 1.6 and Fact 5.1, we have 1TQC(n,€) = O(k(n,€)) = O(1Tsc(n, €)). Invoking
Item 1 of Lemma 5.2, we have csc(n, €) = ©(g1(n, €)ga(n, €)-k(n,¢)). Invoking Item 3 of Lemma 5.2,
we have cQc(n, €) = O(gi(n,€) - k(n,€)).

5.3 Proof of Theorem 1.4 (for arbitrary g.).

The core class (analyzed in Lemma 5.2) provides a computationally bounded learner that uses
queries an advantage over a computationally bounded learner that only uses uniformly distributed
examples. Whereas the former may focus its queries on the first log,(2/¢) blocks of Slice II, the
latter may not. Thus, typically, using queries entitles an advantage of a factor of n/log(1/¢) in
trying to learn Slice II above. To close this gap (and allow to establish Theorem 1.4 for arbitrary
g2), we modify Slice IT as follows. The basic idea is to randomly permute the locations of the
information fields of the various blocks. Thus the query-learner is forced to look for the bits it
needs in all possible locations (rather than “zoom-in” on the appropriate block).

SLick II (MODIFIED). Let ¢ %€ n/log, n (rather than ¢ = n — log, n). This slice is partitioned into

t-m fields of equal size, F’ Lef L -2"=2 where m is (as before) the length of the encoding of an n-bit

long seed. Unlike the above C(t)TlStl‘llCtiOIl, we do not have a common empty field (instead each field
contains an informative part and an empty part as described below). We use m permutations over
{1,...,t}, denoted 7y, ..., T,,, to determine the correspondence between fields and seed-information.
Specifically, the j™ bit of the i"* seed is “encoded” in field number (j — 1) - ¢ + m;(¢). (The
permutations are part of the description of the concept.) Each field corresponding to one of the
bits of the i*" seed consists of two parts. The first part, containing the first p;(n,27%) - F bits
of the field, carries information about the corresponding bit of the seed; whereas the second part
(the rest of the field’s bits) is uncorrelated to the seed. Loosely speaking, the informative part
contains the results of independent coin flips each with bias ps(n,27") towards the correct value
of the corresponding bit (i.e., the probability that the answer is correct is 0.5 + bias); whereas
the rest contains the results of independent unbiased coin flips. Actually, the random choices are
implemented by a pseudorandom function determined by the i + 1%° seed.

Lemma 5.3 Assume that p% and p% are admissible functions. Then the modified core class has

2

1. computational (noise-less) sample complezxity csc(n,€) = @(m).
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2. computational query complexily cQC(n,¢) = @(#).

Proof: We follow the structure of the proof of Lemma 5.2, indicating the necessary modifications.

Item 1. Considering Slice II, we note that a random example hits an information part of a
field belonging to the i™ seed with probability p;(n,27")/t. Intuitively, ©(ps(n,27")7?) such hits
are required for obtaining reliable information from this field.

For the lower bound, we assume that the learner is given the permutations 7; for free. Still,
the arguments used in Lemma 5.2 imply that it needs Q(ps(n,27%)=2 - m) hits in the fields of the
i™ seed in order to recover this seed. Using ¢, = Q(n), the lower bound follows.

The proof of the upper bound is to be adapted as here we cannot assume that the permutations
7; are known to the learner. For i = 1,...,log,(8/¢€), the learner determines the i™ seed as follows.
For j = 1,...,m, the learner determines the value of the 7 bit in the encoding of the i*® seed. It
considers only examples in the p;(n,27") - F prefix of each of the relevant fields; that is, fields with
indices (j —1)-t+1,...,(j — 1) -t + t. For each such field it estimates the bias of the field. With
high constant probability, the estimated bias of field (j — 1) -m + 7; (%) is approximately ps(n,27°)
and, under our assumption on p,, every other field corresponding to the ;™ bit of an encoding of
some other seed, has significnatly different bias in its pi(n,27"- F prefix. Thus, this bit is obtained
correctly with high constant probability. As usual, this allows to decode correctly the entire seed.
Having the " seed we may determine the i*" pseudorandom function as well as the “encoding” of
the bits of the i — 1°° codeword (i.e., one may efficiently determine the value of each bit in each of
the fields corresponding to the ¢ — 1°" seed). The upper bound follows.

Item 2. The upper bound follows easily by the obvious adaptation of the above learning
strategy (i.e., when trying to determine the j* bit in the encoding of the i"* seed the learner makes
queries only to the pi(n,27%) - F prefix of each of the relevant fields).

For the lower bound we need to modify the argument given above (as here we cannot afford
giving away the permutations w; for free). In fact, the whole point of the modification was to
deprive the learner from such information. Still, when arguing about the i"" seed, for ¢ = log,(4/¢),
we may give the learner 7;(1),...,m;(i — 1) (Vj) for free. We may assume without loss of generality
that the learner does not make queries to these fields (i.e., to field with index (j — 1) -t 4 m;(¢’) for
i < ¢ and any j). Based on our encoding scheme, the learner must infer (m) of the bits in the
encoding of the 7™ seed. For each bit it must discover 7;(7) and make Q(m queries. However,
for every j and ¢ > i, the field corresponding to the ;™ bit of the encoding of the #’th seed has
bias (in its p;(n,27%) - F prefix) that is bounded above by ps(n,27%). Hence, for each j, the learner
must perform Q(n/(ps(n,27%)?) queries to these fields in order to infer the desired bit. The lower
bound follows. W

Theorem 1.4 (in its general form) now follows by setting p; (n, €) < 92(; 5 and pa(n, ) = /Wic(m.
We need ¢t = O(n/logn) so that the additional “concept complexity” (of log,((¢!)”)) is dominated
by k(n,e€) (the desired information-theoretic sample complexity). Alternatively, the theorem will

hold provided k(n,€) = Q(n?logn).

6 Proof of Theorem 1.5

Here we merely use a pseudorandom generator [BM84, Yao82]. Specifically, we need a generator, G,
which stretches seeds of length n into sequences of length p(n). The concept class, C = {C,}, will

correspond to all possible choices of a seed for the generator. Specifically, for every seed s € {0, 1}",

we get a concept f; € C, defined so that fi(z) def o;, where o; is the i"" bit of G(s) and z belongs
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to the i™ subset in a “nice” p(n)-way partition of {0,1}" (e.g., a partition by lexicographic order
in which all parts are of about the same size).

By Occam’s Razor [BEHW8T], the above concept class has Z7SC(n,¢) = O(n/e). On the other
hand, considering a variation of the standard lower-bound distribution (i.e., which assigns proba-
bility 1 — 4¢ uniformly to all instances in a single subset and is uniform on all other instances), we
derive the computational lower bound. Specifically, using 0.1-p(n)/e samples, with overwhelmingly
high probability, the learner only sees p(n)/2 different bits of the pseudorandom sequence. As far
as a computationally bounded learner is concerned, the rest of the sequence is random and so it
will fail with probability at least % when trying to predict any example corresponding to an unseen
bit. Thus, CSC(n,€) > 0.1-p(n)/e.

It is not hard to see that 10 - p(n)/e samples allow efficient learning up to error € (with respect
to any distribution) and so CSC(n,€) < 10 - p(n)/e.
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