Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97- 029 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

On the Power of Las Vegas
for One-way Communication Complexity,

Finite Automata, and Polynomial-time Computations”

Pavol Duris' and Juraj Hromkovié?tand José D. P. Rolim? and

Georg Schnitger?

August 20, 1997
"Department of Computer Science, Comenius University,
Mlynska dolina, 842 15 Bratislava, Slovakia

*Lehrstuhl fiir Informatik I, RWTH Aachen,
Ahornstr. 55, 52 074 Aachen, Germany

3Centre Universitaire d’ Informatique, Université de Geneve,

1211 Genéve 4, Switzerland

“Fachbereich Informatik, Johann Wolfgang Goethe-Universitat Frankfurt,
Robert Mayer Strasse 11-15, 60054 Frankfurt am Main, Germany

*Extended abstract of this paper has been presented at STACS’97.
tThe work of this author has been supported by DFG Project HR 14/3-1.

Abstract

The study of the computational power of randomized computations is
one of the central tasks of complexity theory. The main goal of this paper
is the comparison of the power of L.as Vegas computation and determinis-
tic respectively nondeterministic computation. We investigate the power
of Las Vegas computation for the complexity measures of one-way commu-
nication, finite automata and polynomial-time relativized Turing machine

computation.

(i) For the one-way communication complexity of two-party protocols
we show that Las Vegas communication can save at most one half of

the deterministic one-way communication complexity.

We also present a language for which this gap is tight.

(i) For the size (i.e., the number of states) of finite automata we show
that the size of Las Vegas finite automata recognizing a language
L is at least the root of the size of the minimal deterministic finite
automaton recognizing L. Using a specific language we verify the
optimality of this lower bound.
Note, that this result establishes for the first time an at most poly-
nomial gap between Las Vegas and determinism for a uniform com-

puting model.

(iii) For relativized polynomial computations we show that Las Vegas can
be even more powerful than nondeterminism with a polynomial re-
striction on the number of nondeterministic guesses.

On the other hand superlogarithmic many advice bits in nondeter-
ministic computations can be more powerful than Las Vegas (even

Monte Carlo) computations in a relativized word.

Keywords: computational and structural complexity, Las Vegas, determin-

ism, nondeterminism, communication complexity, automata

1 Introduction and Definitions

The comparative study of the computational power of nondeterministic, deter-
ministic, and randomized computations is one of the central tasks of complexity
theory. In this paper we focus on the relationship between Las Vegas and deter-
minism and between Las Vegas and nondeterminism.

The relationship between the complexity classes P and Z PP, the class of lan-
guages accepted by polynomial-time Las Vegas Turing machines, is unresolved.
The two classes coincide for two-party communication [12] and for the combina-
tional complexity of non-uniform circuits and PRAMs [5].

Generally, for fundamental complexity measures one believes that the costs
of Las Vegas computations are closer to the costs of deterministic computations
than to the costs of nondeterministic ones. For time complexity this hypoth-
esis suggests that P is a proper subset of NP, but ZPP is equal to P. We
do not solve this central problem of complexity theory here, but we prove this
hypothesis for two further complexity measures. An exponential gap between
determinism (Las Vegas) and nondeterminism, and a quadratic gap between Las
Vegas and determinism have been proved for the communication complexity of
two-party protocols in [14, 12]. An at most polynomial gap between Las Vegas
and determinism is known for the combinational complexity of circuits too.

We consider the P versus Z PP problem, respectively the “Z PP versus N P”

problem for the following three complexity measures:

(i) message length in one-way communication complexity,
(ii) the size (i.e., the number of states) of finite automata, and

(iii) the time complexity of relativized polynomial-time Turing machine compu-

tations.

To define Las Vegas computations we follow [3]. In particular we consider

self-verifying nondeterminism (introduced for communication complexity in [7]).

3

A self-verifying nondeterministic machine M is allowed to give three possible
answers yes, no, I do not know. M 1is not allowed to make mistakes: If the
answer is yes, then the input must be in L(M). If the answer is no, then the
input cannot be in L(M). For every input there is at least one computation that
does not finish with the answer “I do not know.”

We say that M is a Las Vegas machine recognizing a language L if and only if
M is a self-verifying nondeterministic machine recognizing L and for each input
the answer “I do not know” is given with probability at most %

Obviously, the difference between self-verifying nondeterminism and nonde-
terminism is that the negative answer of a nondeterministic machine gives no
information about the relationship of the input in L(M). The answer no only
means that the machine has not succeeded to prove that the input is in L(M).
For self-verifying nondeterminism the answer no means that M has proved in
this computation that = ¢ L(M).

We observe that the concept of selfverification is general and can be applied
to almost all computing models. Selfverification allows a natural definition of Las
Vegas computation and even the difference between Las Vegas- and Monte-Carlo
computation is is comparable to the difference between self-verifying nondeter-
minism and standard nondeterminism.

Self-verifying nondeterminism is of independent interest, since it provides a
natural concept for a comparative study of the complexities of solution verifica-

tion, search for a solution and proving the nonexistence of solutions:

1. The complexity of deterministic computations is the maximum of {complexity
of the search for a solution, complexity of the proof of the nonexistence of

any solution}.

2. The complexity of nondeterministic computations is the complexity of ver-

ifying that a guessed candidate for a solution is a correct solution.

3. The complexity of self-verifying nondeterminism is the maximum of {complexity
of verification of a guessed candidate, complexity of a proof of the nonexis-

tence of any solution}.

As a byproduct we also compare deterministic and nondeterministic com-
putations with not just Las Vegas computations, but also general self-verifying

nondeterministic computations. The main results of this paper are as follows:

(i) One-way communication complexity

We consider the one-way version of two-party protocols as introduced by
Yao [15] for a fixed partition of the input. Computer C; receives the first half
of the input and computer C';; receives the rest. Informally, a deterministic
one-way protocol P determines first the message sent from computer C} to

computer Crr and then decides, whether Crr accepts or rejects.

The one-way communication complexity of P, ccy(P), is the length
of the longest message sent by C;. Finally for a a Boolean function f,
cci1(f) denotes the one-way communication complexity of the best proto-
col computing f. Let necey(f) [resp. svneei(f), lvee;(f)] denote the
one-way nondeterministic [resp. self-verifying, Las Vegas| communication
complexity of f.

In our main result of this part we show that

lveey (f) > ceq(f)/2

for every Boolean function f. This result is quite surprising, because there is
a quadratic gap between Las Vegas and determinism for the general (two-
way) model of communication complexity [12]. Moreover, for a specific
language L C {0,1}*, we show that cci(h,(L)) = 2 - Iveey(hy(L)), where
h,(L) is the Boolean function of n variables defined by h,(L)(a) = 1iff a €

!For formal definitions and details see the monographs on communication complexity [9, 10].

LN{0,1}" and hence our relationship between Las Vegas and deterministic

one-way communication is best possible.

It is well known that there exist languages A with an exponential gap be-
tween ccq(h, (L)) and nceq(hy,(L)). Here, we show that there is a language
L with an exponential gap between ccq(h, (L)) and svncey(h,(L)). Thus,
self-verifying nondeterminism may be much more powerful than determin-
ism. As a consequence we have found another substantial difference between
one-way and two-way communication complexity, where self-verifying non-

determinism is polynomially related to determinism [1, 7].

Finite automata

We consider the model of one-way finite automata. In the following L(A)
denotes the language accepted by the computing device A. We also consider
self-verifying nondeterministic finite automata (SNFA) as nondeterministic
automata whose states are partitioned into three disjoint groups: accept-
ing states, rejecting states, and neutral states. An input word is accepted
(rejected) by an SNF'A if there exists a computation finishing in an ac-
cepting (rejecting) state. Moreover, for no input there exist computations
finishing in both accepting and rejecting states and for each input at least

one computation is accepting or rejecting.

We introduce a Las Vegas finite automaton (LVFA) as a SNFA A which for
any ¢ € L(A) reaches an accepting state with probability at least { and
which for any = ¢ L(A) reaches a rejecting state with probability at least
%. (The probability of a computation of a LV F A is defined through the
transition probabilities of the automaton.)

For any regular language L we define s(L), ns(L), svns(L) and lvs(L)

respectively as the size of a minimal deterministic, nondeterministic, self-

verifying nondeterministic and Las Vegas finite automaton for L.

(i)

The main result of this part shows that
lvs(L) > /s(L)

for every regular language L. The optimality of this lower bound on lvs(L)
is verified by constructing a language L' with s(L') = Q((lvs(L’))?). Note,
that this is the first result showing a polynomial relation between Las Vegas

and determinism for a uniform computing model.

It is well known that there are regular languages with s(L) ~ 275, Here,

we show that for some regular languages A,B there are exponential gaps

between s(A) and svns(A), and between svns(B) and ns(B).

Relativized polynomial-time computations

It is well known that Las Vegas may be more powerful than determinism in
a relativized world. We strengthen this result by showing that Las Vegas
computations may be even more powerful than nondeterministic computa-
tions with at most f(n) advice bits (nondeterministic decisions) for any f
bounded by a polynomial. This shows the existence of a relativization for
which any polynomial restriction on the number of nondeterministic guesses
(advice bits) essentially decreases the power of polynomial-time nondeter-

ministic computations.

On the other hand, for any polynomial-time constructable function h grow-
ing asymptotically faster than log, n, there exists an oracle B such that
polynomial-time nondeterministic computations with oracle B and at most
h(n) advice bits are more powerful than polynomial-time two-sided error
Monte Carlo computations with oracle B. Thus, there exists a relativiza-
tion for which a small (i.e., superlogarithmic) number of nondeterministic
guesses gives more power than Monte Carlo (Las Vegas) computations with

any number of random bits. The last result solves an open question stated

in [6].

This paper is organized as follows. Section 2 is devoted to the formal presen-
tation of the results and proofs that are not too technical. In Section 3 we give
the technical proofs of the four main results (i.e., lveei (f) > cei(f)/2 for every f,
lvs(h, (L)) > y/s(h,(L)) for every regular language L, and the two relativization

results).

2 Results

We present the results in the sequence (i), (ii), (iii) as in Introduction.

2.1 One-way Communication Complexity

In this section we consider one-way Las Vegas protocols with a public! ran-
dom source [13]. Note that this strengthens the lower bound results because
the lower bounds on randomized protocols with public random sources are also
lower bounds on randomized protocols with private random sources. Let, for any
Boolean function f: {0,1}*" — {0,1}, M(f) = [Gup)uwefoyr With ay, = f(uv)
be the communication matrix representation of f.

First, we present our main result whose proof is given in Section 3.1.
Theorem 2.1.1 For every Boolean function f

Iveer(f) = ea(f)/2.

To show that the lower bound of Theorem 2.1.1 cannot be improved we con-

sider the language
L={zye{0,1}||z| = |y| and if y = 012, then x4, = 1}.

Theorem 2.1.2 For every positive inleger n,

!called also common random source in some papers

(i) cci(han(L)) = 2n,
(11) lveey(han(L)) = n, and
(iit) [log,2n]| < svncey(han(L)) < [log, 2n] + 1.

Proof: It is well-known, that for every Boolean function f cci(f) is equal to
the logarithm of the number of different rows in M(f) (see [1, 9]). Since there
are no two identical rows in M (h4, (L)) and M(ha,(L)) has 22" rows, the result
(z) follows.

We obtain a Las Vegas protocol for hy,(L) exchanging n bits as follows. The
first computer flips an unbiased coin and sends accordingly the first respectively
the second half of its input. Obviously the second computer is now able to
determine the result with probability]5 Because of (¢) and Theorem 2.1.1 there
is no better protocol.

The fact svneey(han(L)) > [log, 2n] is obvious because svncey(ha, (L)) >
[log,(cci(f))] for every f [14]. On the other hand, [log,2n] + 1 bits suffice for
a self-verifying protocol, if processor C; guesses a position j € {1,...,2n} and
sends the binary code of j and the bit z; to Cy;. Cpr knows the crucial bit
position and gives a binding answer if position j matches. 2

Thus, Theorem 2.1.2 shows not only the optimality of the lower bound of
Theorem 2.1.1, but also a surprising exponential gap between determinism and
self-verifying nondeterminism. Note, that this exponential gap cannot be im-
proved because nce; (f) < 2910 for every Boolean function f. To show also an
exponential gap between nondeterminism and self-verifying nondeterminism, it

suffices to consider the language IDY = {zy € {0,1}* | = # y, || = |y|}.
Observation 2.1.3 For every posilive inleger n,
(i) ncey(han(IDY)) < [logyn] + 1, and

(ii) svncey (hy,(IDR)) = n.

Proof: (i) is obvious because C can guess a position j in which the inputs
of Cr and Cyy differ. So, the message consists of the binary code of 7 and of the
J-th bit of the input of Cf.

Obviously, for even input lengths the identity language ID = {zz | = €
{0,1}*} is the complement of ID®. Since it is well-known that nce; (he,(1D)) = n

(see, for instance [9, 10]) and

svneey (f) > max{nce(f), HCCl(fC)}

for every function f, the equality (27) follows. 2

2.2 Finite Automata

First we give our main result showing a quadratic gap between Las Vegas and

determinism. The proof of this theorem is given in Section 3.2.

Theorem 2.2.1 For every reqular language L

lvs(L) > y/s(L).

The language Ly = {w € {0,1}" | w = ulv and |v] = k — 1} is a well known
example of a language producing an exponential gap between s(L) and ns(L) [11].
We use Ly to show that Theorem 2.2.1 cannot be improved. But first we give
the following useful observation expressing the typical property of self-verifying

nondeterminism.

Observation 2.2.2 For any regular language L:
maX{ns(L),ns(LO)} <svns(L) <1+mns(L)+ ns(LC).

Proof: Every SNFA A can be changed to an NFA B by adding the neutral
states to the set of rejecting states. Obviously L(A) = L(B) and s(A) = s(B).
If one takes the rejecting states of A as accepting ones of an NFA (', and the

10

accepting and neutral states as the rejecting ones of C, then L(C) = (L(A))°.

So, svns(L) > max{ns(L),ns(L%)}.

Let E, and F be NFAs such that L(E) = (L(F))°. A SNFA D can be
constructed as follows. D connects a new initial state via e-moves to the initial
states of £ and F. Finally D chooses as accepting states the set of accepting
states of F, as rejecting states the set of accepting states of F, and makes the

remaining states of £ and F neutral. Then obviously L(FE) = L(D). 2

Theorem 2.2.3 For every positive integer k,
(i) (L) = 2,
(ii) Tvs(Ly) < 4-252 = O(,/s(Ly)),
(iii) svns(Ly) < 2k + 3, and
(iv) ns(Ly) =k+ 1= ns(Lg).

Proof: (i) and (:v) are well-known facts. (i2¢) follows immediately from Ob-
servation 2.2.2 and from (:v). To show (u7) we consider the following strategy of
a LVFA A. A randomly guesses whether the important bit (the k-th bit from the
end) is on an even or odd bit position. Now, one can easily construct a deter-
ministic FA of 2¥/2+1 states accepting L2% = {w € {0,1}* | w = ulv, |v| = k —
1, and |u| is odd} or LY = {w € {0,1}* | w = ulv,|v| = k—1, and |u|is even}.
2

Again we see that self-verifying nondeterminism may be much more powerful
than determinism (resp. Las Vegas). If one wishes to demonstrate a large dif-
ference between self-verifying nondeterminism and nondeterminism, one has to
choose a regular language with a large difference between sn(L) and sn(L%). We

consider for every m € N the language
Uy = {ulvlw,ulvlw | jv] = m — 1,uvw € {0,1}"}.

11

Observation 2.2.4 For every m € N

(i) ns(Uy,) < 2m + 2,
(ii) ns(U,%) > 2™, and

(iit) svns((U,,)) > 2™.

Proof: (i) is obvious. Since {zz | = € {0,1}"} = UZ N {0,1}*" every
NFA accepting US must be in different states after reading two different words
y,z € {0,1}™. Since [{0,1}™| = 2™ we obtain (2z). (z4¢) is a direct consequence

of (¢2) and Observation 2.2.2. 2

2.3 Polynomial-time Turing Machines

Here we consider nondeterministic and probabilistic polynomial-time bounded
complexity classes as defined in [2]. To be exact in the formulation of the results

we start with some formal definitions [3].

Definition 2.3.1 A probabilistic Turing machine is a nondeterministic Tur-

ing machine such that

(i) the local degree of nondeterminism is bounded by two (for each arqument
at most two different actions are possible), and in every step the machine

takes a choice from exactly two possibilities,

(ii) the machine is clocked by some constructible function, and the number of
steps in each compulation is exactly the number of steps allowed by the

clock, and

(iit) every compulation ends in a final state, which can be either accepling, re-

jecting or the T do not know state.

12

Thus, the computation tree of a probabilistic Turing machine on any given
input is a complete binary tree. In particular, all paths of the computation tree
leading from the root to a leaf have the same probability to be a computation on

the given input.
Definition 2.3.2 A probabilistic Turing machine M is a Las Vegas Turing

machine if

(i) for every x € L the computation tree of M for x contains only accepting
and 1 do not know states and at least half of the leaves contain accepling

states, and

(ii) for every x ¢ L the computation tree of M for x contains only rejecting and

I do not know states and at least half of the leaves contain rejecting states.

A one-sided error Monte Carlo Turing machine M is a probabilistic Turing

machine such that

(i) for every x € L at least half of the leaves of the computalion tree of M for

x contain accepling states and

(it) for every x ¢ L all leaves of the computation tree of M on x conlain reject-

ing states.

A two-sided error Monte Carlo Turing machine M is a probabilistic Turing

machine such that

there exists € > 0 such that for every x € L (x ¢ L), al least % + € of all
leaves contain accepting (rejecting) states (i.e. for any inpul the probability

to give the right answer is al least % + €).

In what follows we consider the following complexity classes:

o ZPP ={L | L= L(M) for a polynomial-time Las Vegas Turing machine
M3}

13

e R={L| L = L(M) for a polynomial-time one-sided error Monte Carlo

Turing machine M} and

¢ BPP ={L| L= L(M) for a polynomial-time two-sided error Monte Carlo

Turing machine M }.

For any function f : N — N, we define the class 3y = {L | L = L(M)
for a polynomial-time nondeterministic Turing machine using at most O(f(n))
nondeterministic guesses of inputs of length n}.

For any language A and any complexity class X, X4 is the complexity class
X relativized by the oracle A. For any language class X, co-X = {L | LY € X }.

The following inclusion between complexity classes are well-known:
PC/ZPP=RNco— RCRCNP.

Diaz and Toran [6] have asked for the relation between f3; and the classes
between P and N P in the relativized world, i.e., whether limited nondeterminism
can be more powerful than Las Vegas (resp. Monte Carlo) or whether Las Vegas
(resp. Monte Carlo) can be more powerful than limited nondeterminism. The

answer for this question is given in the following two theorems.

Theorem 2.3.3 For every function f: N — N bounded by a polynomial, there

exists a language L and an oracle B such that
L e ZPP® — 3P,
Corollary 2.3.4 For every function f: N — N bounded by a polynomial, there
exists a language L and an oracle B such that
L€ BPP? — 3,5 and I. € R? — 3,°.
Theorem 2.3.3 shows the existence of a relativization in which any polyno-
mial restriction on the number of nondeterministic guesses strongly decreases

the power of polynomial-time nondeterministic Turing machines (even Las Vegas

may be more powerful than limited nondeterminism).

14

Theorem 2.3.5 Let f : N — N be a polynomial-time constructible function
bounded by a polynomial such that the function 270" majorizes each polynomial

for almost all n. Then there exist a language L and an oracle B such that
L€ B® -~ BPPP,

Corollary 2.3.6 For every [fulfilling the assumptions of Theorem 2.3.5, there

exist languages L and B such that
Lep® —RP and L € 3% — ZPPP,

Thus, there exists a relativization for which a relatively small (but superloga-
rithmic) number of nondeterministic guesses gives more power than Monte Carlo

(resp. Las Vegas) computations with any number of random bits.

3 Proofs

3.1 The Proof of Theorem 2.1.1

First, we give an informal idea of the proof. Let f : {0,1}*" — {0,1} be a Boolean
function. We represent [by a 2" x 2" Boolean matrix M(f) = [duw]uve{o1}n
with a,, = f(uv). Then the number of different messages of an optimal one-way
protocol P computing f is exactly the same as the number r(M(f)) of different
rows of M(f), i.e. ccr(f) = [log,(r(M(f))] [1]-

Any one-way Las Vegas protocol P’ may be considered as a collection of (say)
m deterministic one-way protocols Pp,..., P, with probabilities p;,...p,!. For
any input «, P; may compute the results 0,1 or 2 (i.e., I do not know). Since P’
is a Las Vegas protocol, no protocol P; ever errs and for every (u,v) € {0,1}" x
{0,1}", the protocols Py, ..., P, produce the output 2 with probability at most

1. To any protocol P; (i =1,2,...,m), one can assign its 0/1/2 communication

!This follows, since we consider Las Vegas protocols with a common random source.

15

matrix M(P;) = [b},]u.0e{0,13», Where bl = a,, if P; does not give output 2 and
b = 2 otherwise.

Our goal is to find one protocol P; such that M(FP;) has at least \/r(M(f))
different rows. In order to reduce the number of different rows a deterministic
protocol will smartly replace certain entries of M(f) by a 2. Obviously, “twoing”
certain entries of M(f) will help reduce the number of different rows far more
than twoing other entries: For the identity matrix the diagonal entries play this
helper role. For instance we can reduce the number of different rows to two by
setting the upper left and the lower right quarter to 2. Observe that this radical
reduction in the number of different rows is obtained after twoing only one half
of the entries! On the other hand, any significant reduction in the number of
different rows has to involve the diagonal entries and any such entry has to stay
untouched with probability at least one half. Hence one deterministic protocol
exists with at least N/2 different rows (if we consider the N x N identity matrix).

In the above example the diagonal entries form a fooling set and any Las
Vegas computation has to send at least @ messages for a fooling set F'. However
we cannot expect to find large fooling sets in general. In particular, the n xlog, n
communication matrix M*, whose ¢th row contains the binary representation of
¢, possesses only fooling sets of logarithmic size, but it can be shown that any
Las Vegas one-way protocol has to exchange \/n mesages.

Our proof will introduce a new notion of fooling sets. Set M(f)=M and
assume that M has r pairwise different rows and ¢ pairwise different columns.

Our new notion of fooling sets is based on a real-valued weight assignment
weight : {1,...,r} x{1,...,¢} = R

for M. Let I = {1,...,r}. We define the function weight iteratively, processing
column after column. We begin with column 1.

Case 1: Column 1 is monochromatic for all rows in /. Then set
weight(z,1) =0

16

for all rows 1.
Case 2: Column 1 is not monochromatic for the rows in 7. In particular assume

that ¢ - |I] rows have a 0 in column 1 (and (1 — ¢) - |I| rows have a 1 in column
1). We set

log. (1 i Mi 1] =0
weight (i, 1) = o8a(z) it ML, 1]

log, () otherwise.
We repeat this procedure for column 2, but now with the subsets Iy = {7 €
I'|M[i,1]=0}and I, = {s € I | M[i,1] = 1} replacing the set I. The procedure
stops if the row sets are singletons (since then all columns will be monochromatic).

We begin our analysis with the following technical fact.
Fact 3.1.1 For any x,y > 0 and c € (0,1),
T y
z-logy — +y - logy, 77— = (z +y) - logy(z +y).

Proof of the Fact 3.1.1 We start by equivalently transforming the claimed

inequality. The first transformation

x
$-10g2;+y-10g2%2($+y)-10gz(x+y)@

T rox+y Y Y
-lo + -lo > log,(z +
iy o e Yo, g$+y1_ 8:(z +y)
is trivial. Moreover observe that — log2 xiy xjy = I+y -log, m Z+ m log,(z+

y). Thus the term log,(z+y) on the rlght hand side can be cancelled, since we also
obtain the term —- log2(:1: + y) on the left hand side. And we get the equivalent

inequality

x x 1 Y Y 1
-1 — - >0
r+y Og2x+yc+x+y 0g2:v+y1—c_

But this inequality is correct, since the informational divergence

sz log, py_
=1

Z

(for any two probability distributions p and ¢) is always nonnegative [4]. 2

17

For a subset R C {1,...,r} set
differ(R) = {y | Jt1,00 € R: M[iy, 5] # M2, 5]}

Now, we are ready to analyse the properties of our weight assignment.

Lemma 3.1.2 (a) For each (¢,7) € {1,...,r} x {1,...,¢},

weight(z,) > 0.

(b) For eachi (1 <i<r)

> weight(i, j) = log, r.

i=1

(¢) For any R C {1,...,r},
> > weight(i,5) > |R| - log, |R|.
jediffer(R) i€R

Proof of Lemma 3.1.2 (a) is immediate by construction. We verify (b)
by induction on 7. The basis for r = 1 is trivial. For the inductive step we can
assume without loss of generality that column 1 is not monochromatic. Let I
(resp. I1) be the set of those rows with a zero (resp. one) in column 1 and assume
that |lo| = ¢ - r.

We apply the induction hypothesis to the rows in Iy and I;. For a row ¢ € I

we obtain

Z weight (i, 7) = log,(c - r).

i=2

But weight(i, 1) = log,(+) and

[

. o 1
> weight(i,j) = log,(=) + logy(c - r) = log, 7.

i=1 ¢
The claim follows with a symmetric argument for the rows in I.
We apply induction on the size of R to verify part (¢). The basis for |R| = 1
is again trivial. We assume for the inductive step that column 1 is not monochro-

matic for the rows in R. Hence R splits into the subsets Ry and R; of those rows

18

in R with value zero (resp. one) in column 1. Since we can apply the induction

hypothesis to Ry and R, we obtain

Z Z weight(z, 7)

j€differ(R) 1€R

= Z weight(z, 1) + Z Z weight(, 7)

i€R jediffer(R),j#1 i€R
1 1
> |Ro| -logy (=) + | Bil - logy(——) + [Ro| - logy (| Rol) + | Ri| - logy(| Fal)
Thus the claim follows from Fact 3.1.1. 2

Assume we have a one-way Las Vegas protocol P’ for a Boolean function f
represented by the matrix M(f) with r pairwise different rows. Let the function
weight be defined for M(f) with the above three properties. Then we obtain a

deterministic one-way protocol P € {Py, Py, ..., P, } such that

(*) the sum of all weights of entries of M(P) with value 2 is at most one half
of the sum of all weights (i.e., at most 3 -3i_; 35, weight(s,j) = £ -log,r
with property (b) of the weight assignment).

This follows, since for every input the output of P’ is equal to 2 with probability
at most one half. The deterministic protocol partitions the set of all rows of
M(f) into classes Ry, ..., Ry of identical rows (after twoing). By property (c) of
the function weight we obtain for any class R;
> 2 weight(i,j) > |Ra| - log [Ri|.
jediffer(R.) i€Rs

The quantity on the left hand side is a lower bound for the weight of all entries
of M(R,) with value 2. Moreover observe that, for x = % | 2;,

k

Z z;logy x; > xlogy © — xlog, k.

i=1
(The convex function ylog,y is minimized for z; = --- = z; = {, assuming
z =% 2;.) And hence the sum of weights of entries of M(P) with value 2 is

19

at least

k
Z |Ri|log, |Ri| > rlogyr — 1 - logak.

=1

But with (*)

rlog,r

k
> Z |R;|logy |R;| > rlogyr — 1 - logak

=1
and hence k > /r. In other words, M(P) has at least \/r different rows (resp.

the deterministic protocol P has to consist of at least \/r messages).

3.2 Proof of Theorem 2.2.1

The 1dea of the proof is to find a strong connection between the number of
messages of one-way protocols and the number of states of finite automata in
such a way that Theorem 2.1.1 can be applied. This kind of connection for
one-way protocols and finite automata has been observed already in [8] in the
form
ccr(hn(L)) < [logy(s(L))]

for every regular language I C {0,1}* and every n € N. Obviously this relation
holds in the nondeterministic and randomized cases too. More precisely, the
number of different messages of the best one-way protocol is a lower bound on
the number of states of finite automata. Unfortunaly the difference between
these two complexity measure may be arbitrarily large because communication
complexity is a non-uniform computing model, whereas automata form a uniform
computing model: Consider, for instance unary languages L where we always
have ccy(hn(L)) < 1. To overcome this difficulty we introduce one-way uniform

protocols:

Definition 3.2.1 Let ¥ be an alphabet and let I, C ¥*. A one-way uniform

protocol over X is a pair D = (®,p), where:
(i) ®:¥* — {0,1}* is a function with the prefiz freeness property, and

20

(ii) ©* : {0,1}* x {0,1}* — {accept,reject} is a function.
We say that D = (®, @) accepts L, L(D) = L, if for all x,y € ¥*:
oy, ®(z)) = accept <= zy € L.
The message complexity of the protocol D is
me(D) = [{&(z) | = € X7}
and we define the message complexity of L as
mc(L) = min{mc(D) | D is a one-way uniform protocol accepling L}.

Finally we introduce communication matrices:

Definition 3.2.2 Let X be an alphabet and let L C X*. We define the infinite

Boolean matriz My, = (ayy)uypexr so thal
Gy =1 <= uv € L.

Let row be the number of different rows of My,.

Now, we can formulate the crucial observation.

Lemma 3.2.3 For every reqular language L over an alphabet ¥,
s(L) = mc(L) = rowy,.

Proof: The equality s(L) = rowy, is just the Myhill-Nerode theorem, because
rowy, is exactly the index of the right invariant relation on ¥* according to L.

The fact that the number of different rows of a communication matrix is equal
to the number of different messages used by the best one-way protocol computing

this matrix is well-known (see [1, 9]), and thus mc(L) = rowy,. 2

21

Now, we are ready to complete the proof of Theorem 2.2.1. Let L be a
regular language over an alphabet Y. Since rowy, is finite, one can easily find
a finite submatrix M of My, with rowr = s(L) different rows. In the proof of
Theorem 2.1.1 we have shown that every Las Vegas one-way protocol computing
M uses at least \/rowy = \/S(T) different messages. Since M is a submatrix of
M, computing M, cannot be any easier. So, every Las Vegas one-way uniform
protocol' D accepting L satisfies me(D) > \/S(T) Since for every LVFA A with
s(A) states one can easily construct an equivalent Las Vegas one-way uniform

protocol using exactly s(A) different messages we obtain that lvs(L) > y/s(L).

3.3 Proofs of Theorems 2.3.3 and 2.3.5

Here we give full proofs of our two theorems about relativized Turing machine
computations.

Proof of Theorem 2.3.3 Let M,, M,, M3, ... be a sequence of all oracle
Turing machines such that the running time of machine M; on each input of
length n is bounded by p;(n) = n' + 4, and M; on each input of length n can
make at most ¢f(n) binary nondeterministic choices. Let f(n) be bounded by
the polynomial n™ + m for some m > (0. Choose a sufficiently large k£ > 0 so

that
(1) 2% > logi + (2™ +m) +i% +3

for each i > 1. Let p(n) = n*.
To construct the desired language I and the oracle B, first we set a natural
number n; and define B; for each ¢ > 0. Let By = 0 and let n; = 2° for each

t > 0. Having defined B;_;, we introduce B; as follows. Let

U; = {0%ulu € {0,1}7™) 0™y is not queried

'We omit the formal definition of Las Vegas uniform protocols here because it is a straight-
forward extention of Definition 3.2.1. One requires for every z,y € ¥* that the membership of

zy in L is decided with probability at least 1/2.

22

B
by J\/[J-UK] "“on 0™ for each j < i},
and, let

Vi = {0™v]v € {0,1}P")F 0"y is not queried

by M]-UKJ P on 0™ for each j <i}.

If 0™ is accepted by MZ-U

s<i P then set B; = V; else set B; = Uj.
Let B = |U; B; and let L = {0™
L¢ ,8}5

Now, let us show that L € R® N co-RP. To do so, we need the following claim

¢ > 1,0™ is not accepted by MP1}. Hence,

and we also need to bound the cardinality of the U;’s and the V;’s.

Claim 1. 0™ is accepted by M-UK"

k3

B‘
" if and only if 0™ is accepted by MP for

each 1> 1.

Proof: Since each By is either U; or V, there is no computational path of

M

k3

on 0™ with a query in B; for [> i (see the definition of U; and V;
above). 2

Let X be any oracle. One can easily observe that the number of queries of

JWJ-X on input 0" 1s at most ij(”)pj(n). Thus, we have by (1) for each ¢ > 1

(recall p(n> = nk’ n; = Qja pj(”) = nj +.] and f(n> S n™ + m)a

|UZ| > 2p(ni)_22jf(n])pj(nj>
7=1

>

7=1
> 22ik . i2i(2im+m)<2i2 + l)
> 22“€ B 210gi2i(2im+m)2z’2+1
> 3222

(3/4)2r(m),

23

Similarly, one can show that |Vi| > (3/4)2¢(")*! for each i > 1.

Now we are ready to prove that L € RB. Let us consider a probabilistic oracle
Turing machine M operating on input z as follows. If z is not of the form 07,
then M rejects z. If z = 0™ for some i > 1, then M guesses a string y € {0, 1}7(%)
and asks the oracle whether 0™y € B. M accepts z if and only if 0™y € B. Now
our goal is to show that M accepts inputs in I with probability at least 3/4, and
that there is no accepting path of M? on inputs not in L. Choose an arbitrary

input x. There are three cases to be considered.

Case 1. z = 0™ € L. By the definition of L above, 0™ is not accepted by MP.

By Claim 1, 0™ is not accepted by M~Uj<i BJ. By the definition of B; above,

B; = U;. Each string 0™y queried by M® on input 0™ belongs to U; = B; C B
with probability at least 3/4, since |U;| > (3/4)219(”") and y 1is arbitrarily chosen
string in {0, 1}7(%) (see above). Thus, each input 0™ is accepted by M® with
probability at least 3/4.

Case 2. z = 0™ ¢ L. One can prove as in Case 1, that B; = V. Any string
0™y queried by MP on input = cannot belong to B; (= V;), since the length of
0™y is n; + p(n;), but V; contains only strings of length n; + p(n;) + 1 (see the
definition of V; above). Similarly, 0"y cannot belong to any B; with j # ¢, since
the length of 0™y is n; + p(n;) = 2° + 2%, but each B; with j # i is either U; or
V;, and hence it contains only strings of length either n; + p(n;) = 27 + 27% or
n; —{—p(nj) +1 =2 42k 41, Thus, 0™y cannot belong to B = U; B;. Hence,
there is no accepting computational path of M® on z.

Case 3. 7 is not of the form 0. In such a case, MP rejects = (see above).

This completes the proof that I € R”.

The proof that L € co-RP is similar and we omit details here. Note that
instead of M one can use a machine M’ that accepts any input not of the form
0%, and M’ guesses a string y € {0,1}?(")+! on input 0" and accepts it if and
only if 0™y € V.

24

This completes the proof of the theorem. 2

Proof of Theorem 2.3.5 Let dy,d,,ds,... be an enumeration of all possible
triples (M, p,¢€), where M is a probabilistic oracle Turing machine with polyno-
mial time clock p and 0 < ¢ < 1/2 is a rational number. To construct the desired
language L and the oracle B, first we define a natural number n; and a set B;
for each integer ¢+ > 0.

Let ng = 0 and By = (. Having defined n;,_; and B;_;, we define n; and B;
as follows. Let d; = (M;, p;, €;). Choose a sufficiently large n; so that

(1) ni > ni_n,
(ii) n; > maxj<7;{pj(nj)},

(i) (€:/2)270) > pi(n;).

To construct B;, there are two cases to be considered.

U]<z'B

Case 1. The number of accepting computations of M; ” on input 07 is less

than 27i(ni)=1,

Claim 2. There is a string y € {0,1}70%) such that the string 0™y occurs (as a

.. By
query) in at most (¢;/2)27 (") computations of]\/I'Z-UJ<Z " on input 0%.

U

.. B
Proof: Recall that there are exactly 2°7¢(™) computations of M;7’<""" on 0™,

For each [= 1,2,...,27/%) let S; be the set of all queries occuring in the I-th

B
computation of MZ-UK’ " on 0". Clearly, |S)| < p;(n;) for each . Hence,

pi(n;) (n;
(2) oS < 2 ().

If each string of the form 0™y with y € {0,1}/0%) belongs to at least (e;/2)2?i(")

9pi(n;)

sets S)'s, then S0 [S)] > (e;/2)2pi ()28 () opitnidyy () by (iii), but this

contradicts (2) 2

Choose any y satisfying Claim 2 and set B; = {0™y}.

25

Case 2. The number of accepting computations of M,L-UK" . on 0™ is at least
2wi(m)=1 Set B; = 0.

Let B = |J; B; and let L be the set of all inputs 0™, 2 > 1, such that the
number of accepting computations of MZ-UKi " on 0™ is less than 27:(n)=1,

L can be recognized by a machine M® in polynomial time with f(n) non-
deterministic steps on inputs of length n as follows. M rejects each input not in
0*. On input 07, M first guesses a string y € {0,1}/") and then asks the oracle
whether 0"y € B. M® accepts 0" if and only if 0"y € B.

To show that L ¢ BPP®, we proceed as follows. Let us choose any ¢ > 1.
Let d; = (M;, pi,e;). Our goal is to prove that L cannot be recognized by MP
with error probability ;. Suppose that the input 0™ is accepted [rejected] by MP
with probability 1/2 + ¢;. FEach computation of JW}JJQB] on input 0™ remains
unchanged after replacing the oracle U;<; B; by the oracle B, since each query

produced by JWU

i

s<i B on input 0™ is of length at most p;(n;) < n; < f(n) + n
for [> 4 (see (ii) above), and hence it cannot belong to J;5; B;. Thus, the input
0™ is accepted [rejected] with probability 1/2+¢; by MU

i

J<¢BJ .
= 7, too. By Definition

UJ <i B

2.3.1, the number of accepting [rejecting] computations of M, on 0™ is at

least (1/2+ ei)Qpi(”i). Since each computation of 7\/[U

<i Bi .
77t 7 on 0™, that does not

contain any query in B;, remains unchanged after replacing the oracle U;,; B;
by the oracle U;<; Bj, we have by Claim 2 and by the fact that B; = {0™y}
(if © meets the assumption of Case 1 above) and by the fact that B; = () (if s
meets the assumption of Case 2 above), that the number of accepting [rejecting]
computations of MZ-UKi " on 0% is at least (1/2 + €)27(") — (¢/2)2pi(n) >
2pi(")=1 " Thus, by the definition of L above, 0" ¢ L [0™ € L]. But we have
assumed above, that 0™ is accepted [rejected] by MP with probability 1/2 + ;.

Thus, L cannot be recognized by MP with error probability e. 2

26

References

1]

2]

El

[4]

[5]

[10]

[11]

[12]

[13]

[14]

Aho, A.V., Hopcroft, J.E., Yannakakis, M.: On notions of information trans-
fer in VLSI circuits.In: Proc. 15th Annual ACM STOC, ACM 1983, 133-139.

Abelson, H.: Lower bounds on information transfer in distributed computa-

tions. In: Proc. 29th Annual IEFE FOCS, IEEE 1978, 151-158.

Bovet,D.P., Crescenzi,P.: Introduction to the Theory of Complexity. Pren-
tice Hall 1994.

Csiszar, 1., Korner, J.: Information theory: coding theorems for discrete
memeoryless systems, Academic Press, 1986.

Dietzfelbinger, M., Kutylowski, M., Reischuk, R.: Exact lower bounds for
computing Boolean functions on CREW PRAMs. J. Computer System Sci-
ences 48, 231-254.

Diaz, J. Toran, J.: Classes of bounded nondeterminism. Mathematical Sys-

tems Theory, 23 (1990), 21-32.

Hromkovie, J., Schnitger, G.: On the power of the number of advice bits in
nondeterministic computations. Proc. ACM STOC’96,ACM 1996, pp. 551-
560.

Hromkovi¢, J., Relation between Chomsky hierarchy and communication

complexity hierarchy. Acta Math. Univ. Com. 48-49 (1986), 311-317.

Hromkovi¢, J.: Communication Complexity and Parallel Computing.

Springer-Verlag 1997.

Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge Univer-
sity Press 1997.

Meyer, A.R., Fischer, M.J.: Economies of description by automata, gram-
mars and formal systems. In: Proceedings 12th SWAT Symp. 1971, 188-191

Mehlhorn,K., Schmidt,E.: Las Vegas is better than determinismin VLSI and
distributed computing. Proc. 14th ACM STOC’82, ACM 1982, pp. 330-337.

Newman, 1., Private us. Common random bits in communication complexity.

Information Processing Letters 39 (1991), 301-315.

Papadimitriou, Ch., Sipser, M.: Communication complexity. J.Comput.

Syst. Sci. 28 (1984), 260-269.

27

[15] Yao, A.C.: Some complexity questions related to distributed computing. In:
Proc. 11th Annual ACM STOC, ACM 1981, 308-311.

28

