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Abstract

Using a notion of real communication complexity recently intro-
duced by J. Kraji¢ek, we prove a lower bound on the depth of monotone
real circuits and the size of monotone real formulas for st-connectivity.
This implies a super-polynomial speed-up of dag-like over tree-like Cut-
ting Planes proofs.
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Introduction

A monotone real circuit is a circuit computing with real numbers in which
every gate computes a nondecreasing binary real function. This class of
circuits was introduced in [8]. We require that such a circuit outputs 0 or 1
on every input of 0’s and 1’s only. Clearly, monotone boolean circuits are a
special case of monotone real circuits.

The depth and size of a monotone real circuit are defined as usual, and we
call it a formula if every gate has fan-out at most 1.

We generalize the lower bounds on the depth of monotone boolean circuits
and the size of monotone boolean formulas for st-connectivity of [6] to mono-
tone real circuits. By the main result of [8], this also implies a superpoly-
nomial lower bound on the size of tree-like Cutting Planes proofs, thereby
separating these from their dag-like counterparts.
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We denote by dr(f) the minimal depth of a monotone real circuit computing
f, and by sg(f) the minimal size of a monotone real formula computing f.
For a natural number 7, [n] denotes the set {1,... ,n}.

Real Communication Complexity

We recall the notion of real games and real communication complexity in-
troduced in [7]. Let U,V be finite sets. A real game on U,V is played by
two players I and II, where I computes a function f; : U x {0,1}* — R and
IT computes a function fry: V x {0,1}* — R. Given inputsu € U, v € V,
the players generate a sequence w of bits as follows:

wo = A
L { w0 if f[(u,wk) > fH(’U,’wk)
Wk+1 =

w1 else

Let I be another finite set, and let R C U x V x I be a multifunction,
ie. VueUVveV Jiel (u,v,i) € R. The real communication complexity
ccr(R) is the minimal number & such that there is a real game on U,V and
a function g : {0,1}* — I such that

VYueUWeV (u,v,g(wg)) €ER.

If this holds then we also say that the game in question solves R in k rounds.

Let f:{0,1}" — {0,1} be a monotone boolean function, let U := f~1(1)
and V := f~1(0), and let the multifunction Ry C U x V x [n] be defined by

(u,v,) e Ry ff w;=1andv;=0.

Then there is a relation between the real communication complexity of Ry
and the depth of a monotone real circuit or the size of a monotone real
formula, similar to the boolean case:

Lemma 1 (Krajicek [7]). Let f be a monotone boolean function. Then
ccr(Ry) < dr(f)  and  ccr(Ry) <loggs sr(f) -

Proof. Let the value at gate g on input u € U be greater than the value at g
on input v € V. As the function computed by g is nondecreasing, the same
must hold for at least one of the gates immediately below g. By playing



the value of, say, the left gate below g on input u and v, respectively, the
players can determine for which of the two gates this is the case. Hence
given a circuit of depth k& computing f, the players can find an input gate ¢
with u; > v; in k rounds. This proves the first inequality.

For the second inequality, let f(z) be a formula of size s with f(u) > f(v).
The players determine a subformula g(z) with %|f(x)| < lg(z)| < %|f(w)|,
then play the values g(u) and g(v), respectively. If g(u) > g(v), they con-
tinue with the formula g(z). Otherwise let f(z) = f'(z,g(z)), then the
players continue with the formula f'(z,c), where ¢ is the constant g(u) for
player I and g(v) for player II respectively. After logs /2 § Tounds, the players
will have found an input ¢ with u; > v;. O

For a monotone boolean function f, let min(f) denote the set of minterms
of f, and max(f) the set of maxterms of f. Since f is monotone, we can
represent these as sets of index sets. We define the relation R} C min(f) x
max(f) x [n] by

(p,q,i) e Ry iff i€epng.

Then as in the boolean case (see [5]), a real game solving Ry can be used to
solve R'", and vice versa, hence we have

cer(RY') = cor(Ry) -
Let stconn, be the monotone function on ("‘2"2) variables, representing the
edges of an undirected graph G on the set of nodes N := [n]U{s, t}, that gives
1 if there is a path in G from s to ¢, and 0 else. As an example, we shall give
a real game for R , giving an upper bound ccg (RY, ) = O(log? n).

gtlconnn stconnn
A minterm of stconn, is a simple path from s to ¢, and a maxterm can be
represented by a coloring of N by two colors 0,1 such that s gets color 0 and

t gets color 1. The aim of the game is to find a bicolored edge in the path.

Let m be the number of the middle node of I'’s path. For [logn| rounds,
player I keeps playing m, while player I1 uses binary search to determine
m. After that, both players know m, and I plays 0 while 11 plays m’s color,
thereby communicating that color to I. If the color is 1, then the players
repeat this procedure with the half of the path from s to m, otherwise with
the half from m to t. After at most [logn]| repetitions, the length of the
current path is 1, hence the players have found a bicolored edge.

We shall show that also ccr (Rftonn, ) = 2(log? n), thus by Lemma 1, mono-

tone real circuits for stconn,, have to have depth Q(log?n), and monotone

real formulas for stconn,, are of size nf{108n)



The Lower Bound

The proof of the lower bound on ccr (RS}, ) follows closely the proof of
the Karchmer /Wigderson monotone circuit depth lower bound as presented
in [2, section 5.2].

Let a game solving R C U XV X I in k+1 rounds be given. Let oy, := fr(u, \)
and B3, := frr(v,)\). W.lo.g. we can assume that o, # a, for u Zu' € U
and B, # By for v # v € V. Now consider a matrix whose columns
are indexed by the «,’s and whose rows are indexed by the (,’s, both in
increasing order, and let the entry in position (e, 8y) be 0 if @, > (8, and 1
else. Then it is easily seen that either the upper right |_|2£|'| X [%]—submatrix

is entirely filled with 0’s, or the lower left [J%L] X [J%L]-submatrix is entirely
filled with 1’s. Hence there are U’ C U and V' C V with |U’| > £|U| and
[V'| > $|V| such that for every input (u,v) € U’ x V', the first bit played is
the same, say b. Hence there is a game that solves R restricted to U’ x V'
in k rounds: pretend that in the first round, the bit b was played, and then

continue as in the original game. This motivates the following definition:

We call a real game an (n,Z4,€,d)-game of length k, if there is a set U of
paths from s to t of length £ + 1, represented as vectors in [n]e, and a set
V C {0,1}[" of colorings with |U| > enf and |V/| > 62" such that the game
solves Rgj.qpy, restricted to U X V' in k rounds. The considerations above
prove the following

Lemma 2. If there is an (n,¥,€,8)-game of length k, then there also is an
(n, 4, 5, %)—game of length k — 1.
The following lemma is the heart of the argument:

Lemma 3. If there is an (n,¢,€,0)-game of length k, and r is such that

%oe <r < 156 and 6 > 2(%)%, then there is an (n — r,%,%, %)—game of
length k.

Proof. Define a set of random restrictions R, as follows: to choose p € R,
first choose a set W, C [n] of size |W,| = r randomly and uniformly, and
then choose a coloring ¢, : W, — {0,1} randomly and uniformly. Let
S, ={zeW,;c(z) =0} and T, := {z € W,; cy(x) =1}. The idea is
that p maps S, to s and T, to ¢, and every other node to itself.

Let Up and Vj be the sets for which the game solves R , with |Up| > en®

m
stconng



and |Vp| > 62". Define

nls

UL ::{ue[n] ;

{u' € [n]%, (u,u’) € Uo}‘ > in%}

and Ug analogously. If (u,u’) € Uy, then either v € Uy, and u' € Ug, or
u ¢ Ug, or v ¢ Ug. Now at most |Ug| - |Ug| elements can be of the first
type, and there can be at most n2 - in% = inz elements of each of the
latter two types. Hence we get en® < |Up| < |Ug|-|Ug| + £n’, and thus
\UL|-|Ug| > £nf. Therefore one of Uz, or Ug has to be of size at least \/gn%
W.lo.g. let it be Ur.

For a restriction p € R,, let

£
U, = {u €eUr;ue ([n]\Wp)% and ' €T} (u,u') € Uo}
‘/,0 = {’U € {0’1}[n]\wﬂ ; (UUCp) [ ‘/b}

We obtain a game solving R restricted to U, x V,, as follows: on input

m
stconnngn

¢
(u,v) € U, x V,, player I computes a vector v’ € T/ such that (u,u’) € Uy,
then the players play the original game on input ((u,u’), (vUc,)). It remains

to show that there is a p € R, with |U,| > %(n — r)% and |V,| > foon-r,

Now the same calculations as in [2, section 5.2] show that each of the in-
equalitites |U,| > %(n — T)% and |V,| > %2”" holds with probability at
least %. Hence the probability that both inequalities hold is at least % ]

Theorem 4. For sufficiently large n, ccr(R§.onp,) > ﬁ log® n.

Proof. Suppose there is a game solving R}, in ﬁ logZ n rounds, for
some large n, and let £ := ni. Then in particular, this is an (n, £, in*ﬁ, 1)-
game. We divide the game in 11—0 logn stages of % log n rounds each.

Lemma 2 applied ll—ologn times then gives us an (n,¥, %n*%,n*%)—game
having one stage fewer. Since n is large, the conditions of Lemma 3 are met
for r = /n, hence we obtain an (n — /n, £, in’%, %n’%)—game having one
stage fewer that the original game.

Repeating this for all the % log n stages yields an (m, ¢/, in_% , n~ % 108n=1 )-
game of length 0, where m := n — {5 logny/n and ¢ = n. Now a game

of length 0 gives the same edge for every pair of inputs. But the number

of paths of length ¢’ in [m] containing one particular edge is at most mt 1,



whereas the game has to solve the problem for a set of size %n*%mel. But
for large n, the latter quantity is strictly larger than the former, hence a
game solving RT. . in 135 log? n rounds cannot exist. O

Lemma 1 now gives us the desired lower bound:

Corollary 5. dgr(stconn,) = Q(log?n) and sg(stconn,) = nSosn),

Cutting Planes

Cutting Planes (CP) are a proof system operating with linear inequalities
of the form ), ; a;z; > k, where the coefficients a; and k are integers. The
rules of C'P are addition of two inequalities, multiplication by a positive
integer and division by a positive integer that evenly divides all coefficients
on the left hand side, whereby the right hand side is divided by that integer
and rounded up.

A CP refutation of a set E of inequalities is a derivation of 0 > 1 from
the inequalities in £ and the axioms z > 0 and —z > —1 for any variable
x, using the rules of CP. It can be shown that a set of inequalities has a
C P-refutation iff it has no {0, 1}-solution.

Cutting Planes can be used as a refutation system for propositional formulas
in conjunctive normal form: note that a clause V;cp ziv Vjcy —; is satisfi-
able iff the inequality 3 ,cp Zi — > ey ; > 1 —|N| has a {0, 1}-solution. It
is also easily seen that C'P can simulate resolutions. For more information
on Cutting Planes, see the references cited below.

A (CP-refutation is called tree-like if every line in the refutation is used at
most once as a premise to an application of a rule, so that the derivation
can be represented as a tree. Exponential lower bounds for tree-like C'P-
refutations were given in [4]. That paper left open the question whether
tree-like C P can polynomially simulate arbitrary C' P, i.e. whether for some
polynomial p(z), every set of inequalities that has a C'P refutation of size s
also has a tree-like C'P refutation of size p(s).

The question was answered for the subsystem C P*, where every coefficient
appearing in a refutation must be bounded by a polynomial in the size of the
original inequalitites, by [1]: they showed that CP* cannot be simulated by
tree-like C P*. We shall show the same for C'P with arbitrary coefficients.

Cutting Planes refutations are linked to monotone real circuits by the fol-
lowing interplation theorem due to Pudlak:



Theorem 6 (Pudldk [8]). Let p,q,T be disjoint vectors of variables, and
let A(p,q) and B(p,7) be sets of inequalities in the indicated variables such
that the variables p either have only nonnegative coefficients in A(p,q) or
have only nonpositive coefficients in B(p,T).

Suppose there is a CP refutation R of A(p,q)UB(p, 7). Then there is a mono-
tone real circuit C(p) of size O(|R|) such that for any vector a € {0,1}I7]

C(a)

C(a)

0 — A(a,q) is unsatisfiable
1 — Bf(a,r) is unsatisfiable

Furthermore, if R is tree-like, then C(p) is a monotone real formula.

The following sets of clauses representing st-connectivity were considered in
[3]: In the set A(p,q), the variables ¢ code a path from s to t in the graph
given by prositional variables py; ;1 with 4,5 € N, where we set s = 0 and
t=n+1:

q0,s, dn+1,t
Qi V Gk for0<i<n+land0<j<k<n+1
g1V ... VQin for1<i<n

G5 V i1,k V P{jk) for0<i<n+1landjk €N with j #k.

In the set B(p,r), the variables 7 code a partition of N into two classes with
s and t being in different classes and no edge between nodes in different
classes. It is given as

Ty, Tt iV opgy vy fori,j € N withi# 5.

Observe that the variables py; ;3 occur only positively in A(p,q) and only
negatively in B(p,7), which makes Theorem 6 applicable. Now the formula
C(p) obtained from a tree-like CP-refutation in this case has to compute
stconny,, and hence has to be of size n(1°6™) which gives:

Theorem 7. A tree-like CP refutation of the (inequalities representing)
clauses A(p, ) U B(p,7) has to be of size nt108™).

On the other hand, it was shown in [3] that the clauses A(p,q) U B(p,r)
have resolution refutations of size O(n?). Hence tree-like Cutting Planes
cannot polynomially simulate (non-tree-like) resolutions, and in particular,
they cannot polynomially simulate non-tree-like Cutting Planes.
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