Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97- 033 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Parametrizing Above Guaranteed Values: MaxSat

and MaxCut

Meena Mahajan and Venkatesh Raman
The Institute of Mathematical Sciences,

C. I. T. Campus, Chennai, India 600 113.

{meena,vraman}@imsc.ernet.in

Abstract

In this paper we investigate the parametrized complexity of the problems MaxSat
and MaxCut using the framework developed by Downey and Fellows|[7].

Let G be an arbitrary graph having n vertices and m edges, and let f be an
arbitrary CNF formula with m clauses on n variables. We improve Cai and Chen’s
O(2%m) time algorithm for determining if at least k clauses of of a ¢-CNF formula f
can be satisfied[4]; our algorithm runs in O(|f| 4+ k2¢*) time for arbitrary formulae and
in O(m + k¢*) time for c-CNF formulae. We also give an algorithm for finding a cut
of size at least k; our algorithm runs in O(m +n + k4k) time.

Since it is known that G has a cut of size at least [%]| and that there exists an
assignment to the variables of f that satisfies at least [] clauses of f, we argue that
the standard parametrization of these problems is unsuitable. Non-trivial situations
arise only for large parameter values, in which range the fixed-parameter tractable
algorithms are infeasible. A more meaningful question in the parametrized setting
is to ask whether [%] + k clauses can be satisfied, or [%] 4 k edges can be placed
in a cut. We show that these problems remain fixed-parameter tractable even under
this parametrization. Furthermore, for upto logarithmic values of the parameter, our
algorithms run in polynomial time.

We also discuss the complexity of the parametrized versions of these problems where
all but & clauses have to satisfied or all but & edges have to be in the cut.

1 Introduction

Given a boolean formula in conjunctive normal form (CNF) f with m clauses on n variables,
the MaxSat problem asks for the maximum number of clauses that can be satisfied by any
assignment. The decision version of the problem which asks whether at least k of the clauses
can be satisfied is NP-Complete when k is an integer given as part of the input[11].

Given a graph G = (V, E) on n vertices and m edges, the MaxCut Problem asks for the
maximum number of edges that can be placed in a cut (S, S) for some § C V. (An edge is
in cut (S,8) if it has exactly one end point in S.) Again, the decision version which asks
whether there is a set S C V such that |(S,S)| > k is NP-complete when k is an integer
given as part of the input[11]. (This is equivalent to asking whether 3E' C E : |E’'| > k and
G = (V, E') is bipartite.)

We investigate the parametrized complexity of MaxSat and MaxCut using the framework
developed by Downey and Fellows[7]. In this framework, a parametrized problem is (uni-
formly) fixed-parameter tractable (in the class FPT), if there is an O(g(k)N%) algorithm for
the problem, where g is an arbitrary (could be exponential or worse) function of k, N is the
size of the input, and « is a constant independent of k. Standard polynomial time reductions
do not necessarily preserve parametrized complexity, so to study problems in this framework
we need FPT reductions which preserve independence of the parameter from the input size.
FPT reductions refine and expose a rich structure within the NP-complete degree. For a
formal exposition of parametrized complexity, see [7, 8].

We first show that MaxSat and MaxCut are both fixed-parameter tractable in the sense
described above. In particular, our results mean that for any fixed k, MaxSat and MaxCut
have O(m + n) algorithms.

However, these results are not very exciting because both these problems share an im-
portant property: for & < [Z] the answer is always yes. In other words, [%] is a kind of
“guaranteed value” (see Propositions 5 and 13). Thus non-trivial situations arise only for
large parameter values, in which range the FPT algorithms described above are infeasible.

Consequently, in a parametrized setting, a more meaningful question to ask is: How much
larger than the guaranteed value is the maximum value? In this paper, we show that both
MaxSat and MaxCut are FPT in this sense as well; given integer k, checking satisfiability of
([%'\ + k) clauses or existence of an ([%'\ + k) size cut is in FPT.

Note that even for constant k, polynomial-time algorithms for these versions are not
obvious. Our FPT results imply polynomial-time algorithms for constant k, in fact for values
of k upto logarithmic in input size. For more on logarithmically bounded parametrization,
see [17].

There is another way in which these problems can be parametrized. Consider MaxSat.
Checking if all clauses can be satisfied is NP-complete. What about all but at most one?
All but at most two? All but at most k7 The parameter now specifies the distance from
the value that is “guaranteed to be hard”. However, for any fixed k, we are still looking at
NP-complete problems. (The formula f is in SAT iff all but one clause of f A z A Z can be
satisfied, where z is a new variable not occurring in f. For any k, & new variables can be
added to f in this fashion.) Not surprisingly, we show that this kind of parametrization gives
a problem hard for the class W[2] in the W hierarchy defined by Downey and Fellows[7].

This is evidence that it is unlikely to be in FPT.

For MaxCut, parametrizing in this direction has unexpected implications. At one ex-
treme, checking if all but at most k& edges can be put in a cut is also easy for constant k;
just cycle through all the ('f') subsets of E of size m — k testing bipartiteness. At the other
extreme, checking if 0 <4 < [%] edges can be put into the cut is also easy (the answer is
always Yes). Can the problem really become hard in the middle range? We show that this
“all but at most k” parametrized version of MaxCut is no harder than the corresponding
version of even 2-CNF-MaxSat.

Defining the following parametrized problems, the results of this paper are tabulated
below:

Ly = {(f,k) |3 an assignment satisfying at least k clauses of the formula f }
L, = {(f k) |3 an assignment satisfying at least k + [5] clauses of the formula f }
Ly = {(f,k) |3 an assignment satisfying at least m — k clauses of the formula f }
C: = { (G, k)| 3 acut of size at least k in the graph G }
C; = {(G,k)|3a cut of size at least k4 [F] in the graph G }
Cs = { (G, k)| 3 a cut of size at least m — k in the graph G }
Ly, Cy, Ly, Cy | FPT, in P for logarithmically bound parameters
Ls W[2] hard
Cs reducible to the 2-CNF restriction of L3

Cai and Chen [4] show that the (standard) parametrized versions of all problems in
MaxSNP are fixed-parameter tractable; however MaxSat is not in MaxSNP. Our algorithm
for Ly provides the first proof that L; is fixed-parameter tractable. Since C is in MaxSNP,
it has been known that C is in FPT through the MaxSNP reduction. We give a simpler
direct algorithm for C}.

It has been brought to our notice recently that the hardness of L3, not just for W[2] but
for the entire W hierarchy W[P], is already known [10].

2 Parametrizing MaxSat

We first examine special cases of the maximum satisfiability problem. These are used as
building blocks in subsequent algorithms. In the subsequent three subsections, we investigate
the parametrized complexity of the languages Ly, Ly and Ls.

2.1 Handling Special Cases

For the MaxSat problem, some assumptions routinely made in Sat are not reasonable. One
such assumption is that to begin with, all clauses are distinct; another, that there are no
unit clauses. In our algorithms, we will not make any such assumptions. However, we do
assume, without loss of generality, that within a clause, all literals are distinct. We also
assume, without loss of generality, that no clause contains both a variable and its negation
(no clause is trivially true).

Proposition 1: [If f is a Boolean CNF formula with only unit clauses, then an assignment
that satisfies the maxzimum number of clauses can be found in O(|f]) time.

Proof: The greedy algorithm of assigning true to each variable with more positive oc-
currences than negated, and false to all the remaining variables, clearly gives the optimum
solution. Occurrences of each variable can be counted in a single scan of f, giving a linear
time algorithm. O

Lemma 2: Given a Boolean CNF formula f, if there are k clauses in it that each contain
at least k literals, then there is an assignment satisfying all these k clauses. The assignment

can be found in O(|f|) time.

Proof: Let Cy,C,,...,Ck be a set of “long” clauses, each containing at least k literals.
A satisfying assignment can be found in k stages as follows: At stage 2, pick the first
unassigned literal in clause C;, and set it to true. (There will be one such literal, since only
1 — 1 variables have already been assigned values.) After k stages, the remaining variables
can be set arbitrarily.

The assignment can be found in linear time by maintaining a flag for each variable
indicating whether it has been assigned a value or not. Now, in a single scan, we can identify
the long clauses and satisfy them as described above. a

Corollary 3: Given a Boolean CNF formula f with m clauses, if each clause contains at
least m literals, then f is satisfiable. A satisfying assignment can be found in O(|f|) time.

Lemma 4: [19] Let f be a Boolean CNF formula such that each variable occurs at most
twice in f (f is an instance of Twice-Sat). Then an assignment satisfying the mazimum
number of clauses of f can be found in O(|f]) time.

2.2 The Complexity of L,

Proposition 5: Let f be a Boolean CNF formula with m clauses. An assignment satisfying
at least [3] clauses exists, and can be found in O(|f|) time.

m

Proof: Pick any assignment A. If A satisifes [+] clauses, we are through. Otherwise, the
bitwise complement assignment A satisfies all the clauses left unsatisfied by A (and possibly
some more too); thus it satisfies [Z] clauses.

In fact, this argument shows that at least half of all possible assignments satisfy at least

[%'\ clauses. O

Cai and Chen[4] used this observation to prove that the parametrized Max-c-Sat, where
every clause has at most ¢ variables, is FPT (and hence every problem in MaxSNP is FPT).
Their algorithm relies on the boundedness of the clauses.

We present in Figure 1 a simple algorithm for L, the Branching-SAT algorithm. It has
FPT complexity for any CNF, with no bound on the number of variables per clause. In
particular, for ¢-CNF, it gives a better time complexity than the algorithm of [4].

Theorem 6: Given a boolean CNF' formula f with n variables and m clauses and an
integer k, in O(k?2% + | f|) time, we can find an assignment to the variables that satisfies at

Branching SAT Algorithm B-S-A-1 (f, k)

input CNF formula f with m clauses, parameter k.

output Yes, if there is an assignment which satisfies at least k clauses of f,

No otherwise.

begin

end

1 If & > m then output No and halt.
2 If k <[] then output Yes and halt.

3 Separate the clauses of f into two sets: long clauses (k or more literals per

clause) and short clauses. Let f; and f, be the conjunctions of the long clauses
and the short clauses respectively; f = fi A fs. Let f; have b clauses. If b > k
then output Yes and halt.

4 Construct any binary tree T of the following type: The pair (fs, k — b) is at

the root. In general, each node in the tree is labelled by some formula g and
some non-negative integer 7.

If j exceeds the number of clauses in g, then (g,7) is a leaf node labelled No.
If 7 =0, then (g,7) is a leaf node labelled Yes.

If no variable occurs in g both positively and negatively, then (g,7) is a leaf

node labelled Yes.

Otherwise, pick a variable v which has a positive and a negative occurrence
in g. Let v; be the number of clauses of g that contain the literal v, and let
g» be the simplified formula obtained by setting v to true in g. Similarly, let
vy be the number of clauses of g that contain the literal v, and let gz be the
simplified formula obtained by setting v to false in g. Then (g,7) has two
children, labelled (g,,7 — v¢) and (gz,7 — v¢).

If T has a leaf node labelled Yes then output Yes, else output No.

Figure 1: FPT algorithm for satisfying &k clauses (L)

least k clauses of the formula or discover that no such assignment exists.
For instances of c-Sat, the running time is O(ck2* + | f|).

Proof: Consider first the algorithm B-5-A-1 from Figure 1 for the decision version.

Correctness Steps 1,2,3 tackle simple cases. In step 4, at a node (g,7), the algorithm
tries to find if at least j clauses of g are satisfiable. If the answer is not trivially known (for
trivial cases, the node is a leaf labelled Yes or No appropriately), then any assignment to
g must set each variable to either true or false. Instead of exploring all assignments, the
algorithm explores only carefully chosen partial assignments. It is easy to see that if there is
an assignment satisfying 7 or more clauses of g, then some partial version of this assignment
is constructed along some path from (g,7) to a leaf labelled Yes. And if there is no such
assignment, then all leaves of the subtree rooted at (g,7) are labelled No.

Time Analysis From Proposition 5 and Lemma 2, it follows that the first three steps run
in linear time.

In the fourth step, the binary tree T is constructed. At a node (g,7), the processing
required to find the descriptions of its children, or to discover that it is a leaf node, requires
O(lg|) time. If this is not a leaf node, then its children are labelled by integers strictly smaller
than 7 and by formulae of length less than |g|. Since the root is labelled with (fs,k — b),
the tree is of depth at most k& — b and hence size at most 257, So it can be constructed in
O(|f+]2%?) time. But step 4 is executed only if m < 2k, and f, has only short clauses of
length at most k. So |fs| < 2k?, and T can be constructed in O(k*2*) time.

The modification to tackle the search version is as follows: Search versions of steps 2
and 3 follow from Proposition 5 and Lemma 2 respectively. Step 4 is constructive and gives
a partial assignment satisfying k& — b short clauses. Under this partial assignment (which
assigns values to at most k — b variables), some clauses of f; may already be satisfied. So
there are at most b clauses left in f;, each of reduced length at least & — (k — b) = b, and
Lemma 2 is again applicable.

Further, if the input is a ¢-CNF formula, then at step 4 we know that m < 2k and hence
|fs] < em < 2ck. So the running time is only O(ck2* + |f]). O

In step 4, if the node being processed is not a leaf node, we have to choose a variable
v for branching. Apart from checking that v occurs both positively and negatively, we can
be clever and pick such a variable that appears in the maximum number of clauses. The
idea is to push the integer part of the node label (g,7) to 0 faster. This idea is used in the
algorithm described in Figure 2, which establishes the following theorem.

Theorem 7: Given a boolean CNF' formula f with n variables and m clauses and an
integer k, in O(k?¢* + |f|) time, we can find an assignment to the variables that satisfies
at least k clauses of the formula or discover that no such assignment exists. Here ¢ is the
golden ratio (1 + \/5)/2

For instances of c-Sat, the running time is O(ck¢* + |f|).
Proof: The algorithm B-S-A-2 solves the decision version, and can be modified to solve

the search version as described in the proof of Theorem 6. Its correctness follows from that
of Theorem 6 and Lemma 4.

Modified Branching SAT Algorithm B-S-A-2 (f, k)
input CNF formula f with m clauses, parameter k.

output Yes, if there is an assignment which satisfies at least k clauses of f,
No otherwise.

begin Steps 1,2,3 are as in B-S-A-1.

Step 4: Construct the following binary tree T': The pair (fs, k — b) is at the root. In
general, each node in the tree is labelled by some formula g and some non-negative
integer 7.

If 7 exceeds the number of clauses in g, then (g,7) is a leaf node labelled No.

If 7 =0, then (g,7) is a leaf node labelled Yes.

If no variable occurs in g both positively and negatively, then (g,7) is a leaf node

labelled Yes.

Otherwise, of all the variables that occur in g both positively and negatively, choose
that variable v which occurs the maximum number of times.

If v occurs only twice in g, then (g, 7) is a leaf node whose label Yes/No is determined
as follows: First, set all variables that occur only positively or only negatively in
g to true and false respectively. This satisfies say p; clauses, and simplifies g to a
formula g’ where each variable occurs at most twice. Using the method of Lemma 4,
find p,, the maximum number of clauses satisfiable in g'. If p; + py > 7, then (g,7)
is a leaf node labelled Yes, otherwise (g, 7) is a leaf node labelled No.

If v occurs more than twice, then (g, 7) has two children (g,,j — v:) and (gs,7 — vy),
as in B-S-A-1.

Figure 2: Modified Branching Sat algorithm

To see its time complexity, note that steps 1,2,3 are the same as in B-S-A-1 and hence
run in linear time.

At step 4, the processing at each node (g,7) is of two types: (1) find the labels of the
two children, or (2) label the leaf. The first type of processing is easily seen to be possible
in O(|g|) time, as in B-S-A-1. The second type can also be done in O(|g|) time, using an
appropriate linked list representation for the variables and clauses of g and then using the
result of Lemma 4. So either way, a node can be processed in O(|g|) time.

If node (g,7) is not a leaf, both its children have labels with integers strictly less than
7. Furthermore, since vy + vy > 3, at least one of v; and vy exceeds one, and so at least one
child has a label with integer strictly less than 7 — 1. So the size of the tree constructed
satisfies the Fibonacci recurrence: T(7) < 1+ T(7 — 1) + T(5 — 2). Since its root is labelled
k — b, the number of nodes in the binary tree is bounded by the solution to this recurrence
at k — b, which is ¢*® where ¢ is the golden ratio (1 4+ v/5)/2.

Thus the entire tree can be constructed and labelled in time O(¢*%|f,]). As argued
earlier, |f,| € O(k?) and so the algorithm runs in time O(k*¢* + |f|). For instances of
c-SAT, |fs| = O(ck), and the run time is O(ck¢* + | f|).

O

2.3 The Complexity of L,

Recall that if f is a CNF formula with m clauses, then the pair (f, k) belongs to L, iff at
least [%W + k clauses of f can be satisfied.

Proposition 8: Let f be a Boolean CNF formula with m clauses, of which p clauses are
not unit clauses. An assignment satisfying at least [3] + 2 — 1 clauses exists, and can be

found in O(|f]) time.

Proof: If we set each variable to 0 or 1 uniformly and independently, then the expected
number of clauses satisfied by this random assignment will be at least %:. Something stronger
is true. Since the random assignment satisfies a non-unit clause with probability at least
%, it follows that if f has p non-unit clauses, then the expected number of clauses satisfied
by the random assignment is at least ? + %p = % + %. Thus there is some assignment

satisfying at least [% + g'\ > [%W + § — 1 clauses. O

This argument gives us a randomized algorithm for finding a good assignment, one which
satisfies at least [3] + 2 — 1 clauses. The algorithm can be derandomized using the method
of conditional expectations, to construct a good assignment in O(|f]) time. For details, see
[21].

If f has more than 4k+3 non-unit clauses, the above argument guarantees an assignment
satisfying at least [] 4+ k. So now we can assume without loss of generality that f has at
most 4k + 3 non-unit clauses. An algorithm for the decision version is shown in Figure 3.
(The search version of finding such an assignment is obtained by an easy modification and
by including the derandomization described above.)

Theorem 9: Given a boolean CNF formula f with n variables and m clauses, and an
integer k, we can in O(|f| + k2¢®*%) time find an assignment to the variables that satisfies at
least f%-\ + k clauses or discover that such an assignment does not exist.

8

Large Sat Algorithm L-S-A (f,k)
Input formula f with m clauses on n variables, integer k.
Output Yes, if at least T =[] 4 k clauses of f can be satisfied, otherwise No.

begin
Let U be the set of unit clauses and N the set of non-unit clauses, |U| + |N| = m.

If N =0, solve the pure-unit-clauses instance using the proof of Proposition 1.
Elseif |N| > 4k + 4, report Yes.

Else While there are unit clauses v and v in U, modify f by removing both clauses.
This decreases m by 2 and T by 1.
Now, if U] > [%] + k, output Yes.
Otherwise, report B-S-A-2(f, T).

End

Figure 3: FPT algorithm for satisfying [%] 4 k clauses (L)

Proof:

Correctness If |N| is 0, or exceeds 4k + 4, the correct decision is arrived at following
Propositions 1 and 8. Otherwise, the while loop is executed. This removes clauses of the
form v and v in pairs, since exactly one of these is satisifed by any assignment. Once the
while loop is completed, there are no conflicting clauses within U. So all the clauses in U
can be satisfied by setting the variables occurring in U appropriately. If this number itself is
large enough (|U| > [F]+ k), then there is nothing left to be done. Otherwise, the algorithm
B-S-A-2, whose correctness we have already seen, is invoked.

Time Analysis The first three steps are trivial. Note that when B-S-A-2 is called, |U| <
[%'\ +k,and [N| <4k+3,som = |U|+|N| < ([%'\ +k—1)+(4k+3), hence L%J < 5k +2.
So the number of clauses to be satisfied, T = [%] + k, is bounded by 6k 4 3. The time
bound now follows from Theorem 7.

O

Corollary 10: Given a boolean CNF formula f with n variables and m clauses and an
integer k € O(logmn), we can find an assignment to the variables that satisfies at least
(5] + k clauses of the formula, or discover that no such assignment exists, in polynomial
time.

To decide membership of (f, k) in Ly (where k > [%]), one could use L-S-A(f,k — [F])
instead of using B-S-A-2(f, k). This turns out to be a better option provided k < 3m/5.

2.4 The Complexity of L;

If fis a CNF formula with m clauses, then the pair (f, k) belongs to Ls iff the deletion of
at most k clauses from the formula f makes it satisfiable. That is, at least m — k clauses of
f can be satisfied.

We show that Lj is hard for the complexity class W[2] (see [7] for the definition of the
W-hierarchy). This essentially means that Ls is unlikely to be in FPT. We show the W 2]
hardness of L3 by reducing the W[2]-hard dominating set problem to it. The parametrized
dominating set problem is the following: given a graph G = (V| E) and an integer k, is there
a subset V! C V, |V'| <k, such that Vi € V, 35 € N[i]: 7 € V'? Here NJi] for a vertex ¢
is the closed neighbourhood of ¢ (containing 7 and all its neighbours). The reduction is as
follows: Given G = (V, E), introduce a variable z; for vertex 2 of G, and consider the formula

F=z ANZo N ..Zn A N (VjeN[i] (mj))
=1

It is easy to see that there is a dominating set of size at most k& in G if and only if there is
an assignment to F' that satisfies all but at most k& clauses. Thus we have

Theorem 11: Given a boolean CNF formula and an integer k, the problem of deciding
whether there is an assignment to the formula that satisfies all but at most k of the clauses
is W[2]-hard.

It has been brought to our notice recently that the hardness of L3, not just for W[2] but
for the entire W hierarchy W[P], is already known [10].

We observe that even if the clause sizes are bounded by three, L3z remains hard; the
standard polynomial-time reduction (see for example [11]) from an unrestricted SAT formula
f to a 3-SAT formula f’ has the property that (f, k) € Ls if and only if (f', k) € Ls. Thus

we have

Theorem 12: Given a boolean CNF formula in which each clause has at most three
variables, and an integer k, the problem of deciding whether there is an assignment to the
formula that satisfies all but at most k of the clauses, is W|2]-hard.

However, we do not know the parametrized complexity of the 2-CNF restriction of Ls.

If Ls(k) = {(f, k) | (f,k) € L3} is fixed-paramater tractable for any fixed k, then
P = NP. (This is because Sat can be framed as an L3(k) instance for any k by adding some
clauses.) Therefore, if L3(k) is in Wi], then Wi] in FPT would imply P = NP. Such a strong
consequence of the W-hierarchy collapse appears unlikely; the best known consequence of a
Wi]-complete problem being FPT is that the W hierarchy up to the class Wi] collapses to
FPT. Therefore, even for a fixed k, it appears unlikely that Ls(k) is in any level of the W
hierarchy.

This version of MaxSat, Lz, is somewhat different from most other parametrized problems
in that it remains NP-complete even for a constant k. (It has no known algorithm with run
time |f|*®), where b can be an arbitrary function of k. An algorithm with such a run time
would in fact imply P=FPT=W|[P]|=NP.) The parametrized complexity framework is not
really geared to address such problems.

10

3 Parametrizing MaxCut

m

We start with a well known proposition that every graph has a cut of size [7

] and such a
cut can be found in linear time.

Proposition 13: Given a graph G with n vertices and m edges, a cut in G of size at least

[%'\ can be found in O(m + n) time.

Proof: Pick a random partition (S, S) of V by placing each vertex of V in S uniformly
and independently with probability 1. Each edge (u,v) is in the cut (S, S) with probability

exactly half. So the expected cut size on a random partition is 2. Furthermore, by a
derandomization technique based on conditional expectations, similar to the one used for
MaxSat, we can find a cut of size at least [%'\ in O(m + n) time. O

We now consider the parametrized versions of Maxcut as defined in Section 1.

3.1 The Complexity of C| and Cj

The language C; is the direct decision version of the maximization problem. As the MaxCut
problem is in the class MaxSNP, C is fixed-parameter tractable by the result of [4]. We
propose some simple algorithms which directly place C; in FPT without recourse to the
MaxSNP reduction. We also comment on the complexity of Cs.

First, reduce MaxCut to Max2Sat using the following reduction from [21]: create a
variable v for every vertex v in the graph. For every edge (4,7) in the graph, create two
2-literal clauses {z V 7} and {3 V j}. The formula fg is the conjunction of these 2m clauses
where m is the number of edges in the graph.

The following Proposition follows easily by identifying variables set to true with vertices

msS.

Proposition 14: Given a graph G with m edges, let fg be the corresponding formula
described above. G has a cut of size exactly p if and only if there is an assignment satisfying
exactly m + p of the 2m clauses of fo.

Corollary 15: The parametrized language Cs fized-parameter reduces to the subset of L
where the input formula f is in 2-CNF (it has at most two literals per clause).

Algorithms for C;
Input: A graph G with n vertices and m edges, an integer k.

If £ < [%Z], then the required cut can be found in O(m 4+ n) time using Proposition 13.
Otherwise, any one of the following methods may be used.

Method 1 Construct fg as described in Propostion 14 and call the algorithm L-S-A(fg,k).
From Theorem 9, this algorithm requires O(m + n + k?¢%*) time.

Method 2 Instead of calling L-5-A as in Method 1, note that at this stage m < 2k and so
m + k < 3k. So construct fe and call the algorithm B-S-A-2(fg, m + k) given in the
proof of Theorem 7. The running time is O(m +n + k2¢3k).

11

Method 3 At this stage m < 2k. Without loss of generality, we can remove isolated
vertices, since they do not contribute any edges to any cut. So n < 2m, i.e. n < 4k.
Find the maximum cut in G as follows: cycle through all subsets S C V, for each §,
find the size of the cut (S,5), and keep track of the maximum cut. If this is at least
k, report Yes, otherwise report No. There are at most 2" subsets, and processing each
subset requires O(m) time, so this method requires O(m2") time. Since n < 4k and
m < 2k, this algorithm has a run time of O(m +n + k24k).

Method 4 Cycle through all subsets H C E of size exactly k. For each H, check if the
graph (V, H) is bipartite. If any such subset is found, report Yes, otherwise report No.

There are at most (7:) subsets, and processing each subset requires O(m) = O(2k)

time. Since (T,:) < 2™ < 2%k this algorithm has a run time of O(m+n+ k22k).
The theorem below follows from Method 4.

Theorem 16: Given a graph G with n vertices and m edges, and an integer k, we can in
O(m+n+ k22k) time find a cut of size at least k in G or discover that such a cut does not
exist.

3.2 The Complexity of C,

For Cy, we develop two FPT algorithms: one has the feature that it runs in polynomial time
for logarithmically bounded parameter values, and the other runs in linear (O(m 4 n)) time
when k is a constant.

For the first algorithm, we use the following result [1, 2].

Theorem 17: (Edwards[l, 2]) Given a connected graph G with no self-loops, there exists

a bipartite subgraph of G with at least % + % [712;11 edges.

We use the simpler version: every connected graph without self-loops has a cut of size at
least 3 + "4;1. Consequently, if a graph has ¢ components (and no self-loops), then it has a
cut of size at least % + "4_5.

Figure 4 shows our FPT algorithm for the decision version of C5. Step 1 runs in O(m+n)

time, using any standard connected components algorithm. In step 2, in each G;, the time
spent is O(m;2™), which is at most O(m;2*%). So the total time required is O(m2** +m+n).
For the search version, step 2 already constructs the cut as required. Step 1 (when

k < 22%) can be made constructive by using an O(n®) time implementation of Edward’s
proof, due to Poljak and Turzik [18]. Thus we have the following theorem.

Theorem 18: Given a graph G and a parameter k, in O(n® + m2**) time we can find a
cut of size at least [%'\ +k if one exists in G. The decision version runs in O(n+m+m24k)
time.

Corollary 19: Given a graph G and a parameter k € O(logmn), we can find a cut of size
at least [Z] + k in G, if one exists, in polynomial time.

A different approach, which we describe below, gives an FPT algorithm with run time
O(m + n + e(k)), where e is a function of k alone. For small values of k, this is better,

12

Large Cut Algorithm L-C-A-1 (G, k)

Input A graph G = (V, E) with n vertices and m edges, an integer k. Without loss of
generality, assume that G has no isolated vertices and no self loops.

Output Yes if there is a cut of size [3] + k in G; otherwise No.
begin
Step 1 Find the connected components G, G, ..., G, of G. Let G; have n; vertices

and m; edges. If k < "7, then output Yes and halt.

Step 2 Otherwise, n — ¢ < 4k. For each 1, n; < n — (¢ — 1) < 4k. For each G;,
find the maximum cut size s; using the Method 3 described in the previous
subsection. If 3°7_; s; > [4+ k, then output Yes and halt, otherwise output
No and halt.

end

Figure 4: Algorithm for MaxCut C,

since the O(m) and O(n) terms are additive. However, it does not give polynomial time
algorithms for logarithmic values of k.
For this algorithm, we first note the following stengthening of the proposition that every

graph with m edges has a cut of size at least [%].

Theorem 20: [12] Given a graph G, and an arbitrary matching M in the graph, there
IMIJ
-

We exploit this result in our second FPT algorithm for C,. Figure 5 shows the algorithm
for the decision version.

To see why this is an FPT algorithm, note that Steps 1 and 2 run in linear time. If Step
3 is reached, then we already know that |M| < 2k, so |S| < 4k — 2. Also, since M is a
maximal matching, § forms a vertex cover. And the cut (S,S) is not large enough. Thus
the following inequalities hold:

[%-I +k > size of the cut (S, S)
= m— the number of edges with both end points in S
(no edge has both endpoints in S because M is maximal)

exists a cut in the graph of size at least f%-l + |

> m— (Ig’l)
> m—(2k—1)(4k—3)
Hence [%-I +k < (2k—1)(4k—3)+ 2k

Thus if Step 3 is reached, we know that m, and hence [%] + k, are O(k?). So is n, since
there are no isolated vertices. Using the algorithm for C; at this stage yields a running time
of 0(1922"%2 + m + n) for some constant d.

For the search version, steps 2 and 3 already construct cuts as required. To make Step 1

13

Large Cut Algorithm L-C-A-2 (G, k)

Input A graph G = (V, E) with n vertices and m edges, an integer k. Without loss of
generality, assume that G has no isolated vertices.

Output Yes if there is a cut of size [3] + k in G; otherwise No.
begin

Step 1 Find a maximal matching M in the graph. If |[M| > 2k, then output Yes
and halt.

Step 2 Let S be the set of vertices of the matching M. If the cut (S, S) is of size
at least [%] + k then ouput Yes and halt.

Step 3 Call the algorithm for C; (described in the preceding subsection, Theo-
rem 16), with parameter ([7] + k).

end

Figure 5: Algorithm for MaxCut C,

constructive, one approach is to use a recursive implementation of the proof of Theorem 20.
We give in Figure 6 a bottomup approach of the same construction that takes O(m) time.
For a proof that this produces a cut of the required size, see [12].

Thus we have the following theorem.

Theorem 21: Given a graph G and a parameter k, in 0(1922"1’“2 +m +n) time where d is
a constant, we can find a cut of size at least [T] + k if one exists in G.

In keeping with the philosophy of looking at parameter values over and above the guar-
anteed values, Theorem 17 suggests that the parametrized complexity of C4 defined below
is also of interest. We do not know of any FPT algorithm for this problem.

Cs ={(G,k) | 3 a cut of size at least k + 2 + 1 [ﬂw in the graph G }

2

4 Conclusions

We have investigated the fixed-parameter complexity of the MaxSat and MaxCut problems.
One could also consider the corresponding MinSat and MinCut problems. The MinCut
problem has several polynomial time algorithms[15, 16]. For a recent algorithm not based
on network flows, see [20]. In the MinSat problem the aim is to find the minimum num-
ber of clauses of a given formula that must be satisfied by any truth assignment. Kohli,
Krishnamurti and Mirchandani[13] have shown that the decision version of this problem
is NP-complete. We can easily show (by an appropriate “UnSat” version of the B-S-A-
1 algorithm of Section 2.2, or by using the FPT reduction[14] to Vertex Cover) that the
parametrized MinSat language Ly = {(f, k) | 3 an assignment satisfying at most & clauses

14

Cut Construction including Matching (G, M)

input A graph G = (V, E), a matching in G given as a list of edges
M= <(u17U1)7 (U’QJU?) LR (u|M|7U|M|)>

Output A set § C V such that the cut (S, S) contains all the matched edges and at
least half of the non-matched edges.

begin
Initialise W (the set of vertices already examined) and (S,W — S) (the cut con-
structed so far).

W = {us,v1}, § = {us}.

For 1 = 2 to |M| do
W=Wu {ui,vi}, Sl =S5SU {uz}, SQ =SU {’Uz}
If (51, W — 5) gives a larger cut than (S;, W — S3)
in the subgraph induced by W
then S = 5;
else § = S,.
EndFor
While there is a vertex v € V — W do
W=Wwu{v}, §=85U{v}
If (8", W — §’) gives a larger cut than (S,W — S)
in the subgraph induced by W
then § = §'.
EndWhile

end

Figure 6: Algorithm for Cut Construction

15

of the CNF formula f } is fixed-parameter tractable.
We make some observations based on our investigation which suggests possible directions
to pursue in the area of parametrized complexity.

e In the parametrized versions, < k (or > k) questions and = k questions can have
different parametrized complexity. For instance, consider the MinWtSat problem, on
bounded CNF formulae, which asks for a satisfying assignment with the minimum
weight (the number of “true” variables). The parametrized language

Ls(c) ={(f, k) | f is a c-Sat formula with a satisfying assignment of weight k}

is NP-complete even for ¢ = 2, as witnessed by the following reduction from Inde-
pendent Set. Given a graph G = (V,E) and an integer k, construct the formula
[= Nij)er(Zi V &;). Then there is a weight k assignment satisfying f if and only if
G has an independent set of size k. (What is more, in f every variable appears only
negatively.) Since the Independent Set problem is W/[l]-complete[8], it follows that
Ls(c) is W[l]-hard even for ¢ = 2.

However, the related parametrized language
Lg(c) = {(f, k) | f is a c-Sat formula with a satisfying assignment of weight at most k}

is fixed-parameter tractable. To see this, consider an algorithm which scans the input
for a positive clause (a clause with no negated literals). (If no such clauses exist, setting
all variables to false satisfies all clauses.) On finding such a clause, it branches along
¢ paths, setting one of the variables of this clause to true along each path. The tree
so constructed is not explored beyond depth k, so the algorithm is an FPT algorithm.
When there is no bound on the number of variables per clause, Downey and Fellows|7],
and Cai and Chen[4, 5, 6] have independently shown that the problem is W[2]-complete.

This difference between the complexities of Ls(c) and Lg(c) is in sharp contrast to
the observation by Cai and Chen[4] that Q—k, @<k and @Q>k versions, are all FPT
equivalent for any optimization problem @ if the parametrized questions are of the
form “Is the size of the optimum solution =, < or > k7. Querying the existence of
solutions of a particular size is, in many settings, a more natural decision version than
bounding the optimum value, and in this setting, the Q=x, Q< and Q> versions
require independent analysis.

The natural direction to pursue is whether there are other examples of this type. We
conjecture that the languages Ly, Ly, Cy, Cy we investigated in this paper fall in this
category — i.e. their corresponding “=k” versions are hard for the W hierarchy. In

fact, even if the instance of Ly consists of unit clauses alone, we do not know whether
the “=k” version is in FPT.

e Study of parametrized complexity is useful even to design polynomial algorithms when
the parameter values are bounded. For example, the only way we know that the
languages Li(k), L2(k) and Cs(k) are polynomial time recognizable if k is a constant,
is by observing that they are fixed-parameter tractable.

16

e Even if a problem is fixed-parameter tractable, designing simpler and more efficient al-
gorithms is worth pursuing. As the dependence of run time on k improves, this will give
us feasible algorithms for larger ranges of the parameter. Qur O(m + ¢*k) algorithm
compared to Cai and Chen’s O(2%m) for the standard parameterized Max3Sat, and
the O((1.324718) k% 4 nk) algorithm[3] for vertex cover improving over the straight-
forward O(2Fn) algorithm are clear examples of this direction.

Even more dramatically, an FPT algorithm where dependence on the parameter is
of the form 2 for some constant ¢ gives polynomial-time algorithms for values of k
logarithmic in the input size. Our algorithms for Ly, Ly, C; and the first algorithm for
C, are of this form.

e Invariably, the “at least (at most) k” parametrized version and the “all but k” versions
have complementary parametrized complexity as witnessed by the following examples.

— For Vertex Cover, the “at most k” version is fixed-parameter tractable whereas
the “all but at most k” version is the same as the “at least k” version of clique
and hence is W[1] complete.

— For the irredundant set problem, the “at most k” version is W[l]-Complete
whereas the “all but k” version (called the co-irredundant set problem) is in

FPT[9).

— For the MaxSat problem, the “at least k” version is fixed-parameter tractable
(Section 2.1) whereas the “all but at most k” version is W[2]-hard (Section 2.3).

It would be interesting to explore this property in other parametrized problems.

We end with some specific open problems: What is the parametrized complexity of the
following?

L. Parametrized (all but k) Maz2Sat
Input: A boolean CNF formula in which each clause has at most 2 variables.
Parameter: k > 0.
Question: Is there an assignment that satisfies all but at most k& of the clauses?

2. Parametrized (all but k) MaxCut
Input: A graph G.
Parameter: k > 0.
Question: Is there a set of at most k£ edges whose removal makes the graph bipartite?

3. Parametrized (beyond the large guarantee) MaxCut
Input: A graph G.
Parameter: k > 0.
Question: Does G have a cut of size at least k + % + % F"T_llk

In Section 3.1, we have shown that problem 2 above is no harder than the problem 1.

17

Acknowledgments

We thank Mike Fellows for his comments on an earlier draft, S. Srinivasa Rao for pointing
out references [12] and [18] and for suggesting the version of the algorithm B-S-A-1 for L,
in this paper, and V. Arvind for suggesting an investigation of the parametrized complexity

of MaxCut.

References

[1]

2]

[10]

[11]

C. S. Edwards, “Some Extremal Properties of Bipartite Subgraphs”, Can. J. Math., 25
(1973) 475-483.

C. S. Edwards, “An Improved Lower Bound for the Number of Edges in a Largest
Bipartite Subgraph”, in Recent Advances in Graph Theory (Academia, Prague, 1975),
167-181.

R. Balasubramanian, M.R. Fellows and Venkatesh Raman, “An Improved Fixed Pa-
rameter Algorithm for Vertex Cover,”, to appear in Information Processing Letters.

L. Cai and J. Chen, “On Fixed-Parameter Tractability and Approximation of NP Opti-
mization Problems,” Proceedings of the 2nd Israel Symposium on Theory and Computing
Systems (1993) 118-126; to appear in J. Computer and System Sciences.

[.. Cai and J. Chen, “On the amount of nondeterminism and the power of verify-
ing”, Proceedings of the Mathematical Foundations of Computer Science Conference,

Springer-Verlag LNCS 711 (1993) 311-320.

L. Cai and J. Chen, “On Input Read Modes of Alternating Turing Machines” Technical
Report of the Department of Computer Science, Texas A&M University (1993) TR93-
046.

R. G. Downey and M. R. Fellows, “Fixed Parameter Tractability and Completeness I:
Basic Theory,” SIAM Journal of Computing 24 (1995) 873-921.

R. G. Downey and M. R. Fellows, “Fixed Parameter tractibility and completeness II:
Completeness for W[1]”, Theoretical Computer Science 141 (1-2) (1995) 109-131.

R. G. Downey, M. R. Fellows and Venkatesh Raman, “The Complexity of Irredundant
Sets Parametrized by Size”, Technical Report of the Institute of Mathematical Sciences
IMSc-TR-97/06/24. submitted.

M. R. Fellows, personal communication.

M. R. Garey and D. S. Johnson, “Computers and Intractability, A Guide to the Theory
of NP-Completeness”, Freeman and Company (1979).

18

[12]

[13]

[14]

[15]

[16]

[18]

[19]

[20]

[21]

D. J. Haglin and Shankar M. Venkatesan, “Approximation and Intractibility Results for
the Maximum Cut Problem and its Variants”, IEEE Transactions on Computers 40 (1)
(1991) 110-113

R. Kohli, R. Krishnamurti and P. Mirchandani, “The Minimum Satisfiability Problem”,
SIAM J. Discrete Mathematics 7 (2) (1984) 275-283.

M. V. Marathe and S. S. Ravi, “On approximation algorithms for the minimum satisfi-
ability problem”, Information Processing Letters 58 (1996) 23-29.

H. Nagamochi and T. Ibaraki, “A linear time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph”, Algorithmica 7 (1992) 583-596.

H. Nagamochi and T. Ibaraki, “Computing edge-connectivity in multigraphs and ca-
pacitated graphs”, SIAM Journal of Discrete Mathematics 5 (1992) 54-66.

C. H. Papadimitriou and M. Yannakakis, “On Limited Nondeterminism and the Com-
plexity of the V-C Dimension”, Journal of Computer and System Sciences 53(2) (1996)

161-170. Preliminary version in Proceedings of the 8th Structure in Complexity Theory
Conference (1993) 12-18.

S. Poljak and D. Turzik, “A Polynomial Algorithm for Constructing a Large Bipartite
Subgraph with an Application to a Satisfiability Problem”, Can. J. Math., Vol XXXIV
No 3, (1982) 519-524.

V. Raman, B. Ravikumar and S. Srinivasa Rao, “A Simplified NP-Complete MAXSAT
problem”, Technical Report of the Institute of Mathematical Sciences IMSc-TR-
97/06/23. submitted.

M. Stoer and F. Wagner, “A Simple Min Cut Algorithm”, Proceedings of the Furopean
Symposium on Algorithms, Springer-Verlag LNCS 855 (1994) 141-147.

M. Yannakakis, “On the Approximation of Maximum Satisfiability,” Journal of Algo-
rithms 17 (1994) 475-502.

19

