Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97- 036 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Determinant: Combinatorics, Algorithms, and Complexity™

Meena Mahajan'
Institute of Mathematical Sciences,
Chennai 600 113, INDIA.

meena@imsc.ernet.1in

V Vinay
Department of Computer Science and Automation,
Indian Institute of Science,
Bangalore 560 012, INDIA.

vinayOcsa.iisc.ernet.in

August 1, 1997

Abstract

We prove a new combinatorial characterization of the determinant. The characteriz-
ation yields a simple combinatorial algorithm for computing the determinant. Hitherto,
all (known) algorithms for determinant have been based on linear algebra. Our combin-
atorial algorithm requires no division and works over arbitrary commutative rings. It
also lends itself to efficient parallel implementations.

It has been known for some time now that the complexity class GapL characterizes
the complexity of computing the determinant of matrices over the integers. We present
a direct proof of this characterization.

1 Introduction

The determinant has been a subject of study for over 200 years. Its history can be traced
back to Leibnitz, Crammer, Vandermode, Binet, Cauchy, Jacobi, Gauss and others. Given
its importance in linear algebra in particular and in geometry in general, it is not surprising
that a galaxy of great mathematicians investigated the determinant from varied viewpoints.

The algorithmic history of the determinant is as old as the mathematical concept itself.
After all, the determinant was invented to solve systems of linear equations. Much of the

* A preliminary version of this paper appeared in Proc. Eighth Annual ACM-STAM Symposium on Discrete
Algorithms SODA 97, 730-738.

tPart of this work was done when this author was visiting the Department of Computer Science and
Automation, 11Sc, Bangalore.

initial effort was expended on proving the so called “Cramer’s Rule”, “Laplace Expansion”
and the “Cauchy-Binet Theorem”, and these led to a variety of interesting algebraic identities.
The first definitions of determinant used inversions as a means of computing the sign of a
permutation. Cauchy realized that the sign of a permutation may be more easily computed
by considering the cycle decomposition of the permutation: if k is the number of cycles in
the decomposition of a permutation over S,, he showed that (—1)"=* computes the sign. In
a sense, Cauchy appears to have started the combinatorial approach to determinants.

The so-called “Gaussian Elimination” is a standard procedure to calculate the determ-
inant. It converts a given matrix into an upper triangular matrix using elementary row
operations, which maintain the value of the determinant, and uses O(n®) operations. It can
be shown that the sizes of numbers in the intermediate steps are small and this gives rise to
a polynomial time algorithm. This algorithm, however, appears to be sequential. And, the
algorithm, in its present form, would require division, that renders it useless over arbitrary
rings. To use this method over a ring, one considers a field extension (eg for computing
the determinant over integers, compute using rationals). This procedure, while theoretically
correct, often introduces a computational problem. For instance, over integers, because of
the divisions involved, this method may needlessly introduce floating point errors. Thus, in
several situations, a division-free method which still has polynomial bit-complexity would be
preferable to Gaussian elimination.

Numerical Analysts have looked quite closely at the problem of computing the determ-
inant and also the associated problem of computing the characteristic polynomial of a given
matrix. An authoritative book on this subject is due to Fadeev and Fadeeva [FF 63]. The
book lists more than half a dozen methods for the computation of the characteristic poly-
nomial. The most important among them seem to be (1) Krylov’s Method, (2) Leverier’s
Method, and (3) Samuelson’s Method. Csanky [Cs 76] observes that Leverier’s method may
be implemented in NC?. However, Leverier’s method uses division and hence is unsuitable
over arbitrary fields. (The method is applicable only over fields of characteristic zero, or
over fields with characteristic greater than the dimension of the matrix. So the algorithm
cannot be used, in general, over finite fields.) Berkowitz [Be 84] observes that Samuelson’s
method [Sa 42] is division-free and may be implemented in NC?. Valiant [Va 92] analyzes the
nature of monomials that result from Samuelson’s method. Independently, Chistov [Ch 85]
uses arithmetic over polynomials to come up with a division-free NC* algorithm. Thus the
Samuelson-Berkowitz algorithm as well as Chistov’s algorithm can be used over any com-
mutative ring.

Vinay[Vi 91], Damm[Da 91] and Toda[To 91] observed independently that DET (as a
complexity class) has an exact characterization. They showed that over integers, DET is
exactly GapL. That is, any function that is log-space reducible to computing the determinant
of a matrix over integers can be computed as the difference of two #L functions. Here, #L
corresponds to the number of accepting paths in an NL machine. These results establish a
telling parallel between the complexity of the two major algorithmic problems: complexity
of the Permanent vs the Determinant. While Valiant [Va 79] has shown that computing the
Permanent is GapP complete, the Determinant is complete for Gapl.; both are complete for
counting versions of nondeterministic classes. An interesting feature of the three independent
proofs cited above is that they all rely on Samuelson’s method to convert the problem of

computing the determinant to iterated matrix multiplication. In this paper, we present a
direct and self-contained proof of this theorem.

We give the first combinatorial algorithm for computing the determinant. We do this by
extending the definition of a permutation to a clow sequence. A combinatorial proof estab-
lishes that all clow sequences that are not permutations cancel each other, leaving precisely
the permutations. We then show how clow sequences may be realized in a simple graph-
theoretic model. The model is described by a tuple (G, s,14,1_), where (¢ is a directed acyclic
graph (DAG), and s, ¢4, {_ are distinguished vertices in . Let paths(G,s,t) compute the
number of paths from s to ¢ in G. Then the integer function computed by (G, s,t4,t_) is
paths((, s, t4) — paths(G,s,t_). The model yields a polynomial time algorithm via simple
dynamic programming techniques (see Table 1). It characterizes GapL exactly and also has
characterizations in terms of arithmetic skew circuits [Ve 92, To 91] and arithmetic branching
programs, yielding NC? and GapL algorithms (see Table 2 and Table 3). The result stands
out in contrast with Nisan’s result [Ni 91] which shows that determinant cannot be computed
by a polynomial size branching program over a non-commutative semi-ring.

The size of the DAG we construct is about O(n*), with O(n®) edges. This may be
implemented on an arithmetic skew circuit with O(n®) wires. This compares rather favourably
with the O(n'®) implementation of Toda. (In [To 92], Toda noted that Samuelson’s method
can be implemented on arithmetic skew circuits of size n'®.)

Our combinatorial proof is inspired by Straubing, who gave a purely combinatorial inter-
pretation and very elegant proof of the Cayley-Hamilton theorem [St 83].

Various other parallel algorithms for computing the determinant (including Chistov’s
method and the Samuelson-Berkowitz method) can also be interpreted combinatorially, and
correctness can also be proved using purely combinatorial techniques. The objects gener-
ated by these algorithms turn out be variations of clow sequences. [MV 97] describes such
interpretations for some algorithms.

Of course, the combinatorial approach cannot replace the algebraic one altogether. But
it can, as we feel it does in this case, offer interesting insights into the nature of a seemingly
purely algebraic problem.

2 The Combinatorics

We will start with the definition of the determinant of an n dimensional matrix, A.

4i(A) = 5 sonto) It
gES, 7

The summation is over all permutations on n elements. The sign of a permutation is defined

in terms of the number of inversions.

sgn(o) = (_1)number of inversions in o

To move to a combinatorial setting, we interpret the matrix A as a weighted directed
graph (G4 on n vertices, where the weight on the directed edge (i, 7) is a;;. A permutation
in S, now corresponds to a cycle cover: the cycle decomposition of the permutation, when
interpreted as a graph, induces a partition on the vertex set into disjoint cycles.

This definition cannot be directly converted into an efficient algorithm for the determin-
ant, as the number of monomials in the above definition is n!. Since enumeration is out of
question, any algorithm should therefore implicitly count over all monomials. The bottleneck
in doing so directly is that these permutation are not easily “factorizable” to allow for a
simple implementation. We will get around this problem by enlarging the summation from
cycle covers to clow sequences.

A clow (clow for clo-sed w-alk) is a walk (w, ..., w;) starting from vertex w; and ending
at the same vertex, where any (w;,w;;1) is an edge in the graph. w; is the least numbered
vertex in the clow, and is called the head of the clow. We also require that the head occurs
only once in the clow. This means that there is exactly one incoming edge ({w;, w;)) and one
outgoing edge ((w1,ws)) at w; in the clow.

A clow sequence is a sequence of clows W = (C1,...,C}) with two properties.

The sequence is ordered: head(Cy) < head(C3) < ... < head(Cy)
The total number of edges (counted with multiplicity) adds to exactly n.

A cycle cover is a special type of clow sequence. We will now show how to associate a
sign with a clow sequence which is consistent with the definition of sign of a cycle cover. The
sign of a cycle cover can be show to be (=1)"** where n is the number of vertices in the
graph and k is the number of components in the cycle cover. The sign of a clow sequence is
defined to be (—=1)"** where n is the number of vertices in the graph and k& is the number of
clows in the sequence.

We will also associate a weight with a clow sequence which is consistent with the contribu-
tion of a cycle cover. The weight of a clow C', w(C'), is the product of the weights of the edges
in the walk while accounting for multiplicity. For example, w((1,2,3,2,3)) = ai1z2a35a32a3;.

The weight of a clow sequence W = (C4,...,Cy) is w(W) = 1, w(C5).

Theorem 1
det(A) = > sgn(W)w(W)

W: a clow sequence

Proof:

We prove this by showing that the contribution of clow sequences that are not cycle covers
is zero. Consequently, only the cycle covers contribute to the summation, yielding exactly
the determinant.

Our proof defines an involution on a signed set. An involution ¢ on a set is a bijection
with the property that p? is the identity map on the set. The domain is the set of all clow
sequences, and their signs define a natural partition of the domain into two.

We will now define an involution on this signed set. It has the property that a clow
sequence that is not a cycle cover is paired with another clow sequence over the same multi-
set of edges but with opposing sign. The fixed points of the involution are precisely the cycle
covers. This would establish the theorem.

The desired involution is the following. Let W = (C4, ..., Cy) be a clow sequence. Choose
the smallest ¢ such that C41 to Cy is a set of disjoint (simple) cycles. If ¢ = 0, the involution
maps W to itself. These are obviously cycle covers and the only fixed points. Otherwise,
having chosen 1, traverse (; starting from the head until one of two things happen.

head head

CASE 1 CASE 2

Figure 1: Pairing clow sequences of opposing signs

1. We hit a vertex that touches one of Ci1q to Cy.
2. We hit a vertex that completes a simple cycle within (.

Let us call the vertex v. Given the way we chose i, such a v must exist. Vertex v cannot
satisfy both of the above conditions: If v completes a cycle and it touches cycle C;, its
previous occurrence (which exists, or else there can be no cycle at v) also touches C; and the
traversal would have stopped at that occurrence.

Case 1: Suppose v touches C;. We map W to a clow sequence
W, = <Ol, ey Oz'_l, Czl, Cz'_|_1, ey Cj—l; Cj_|_1, P Ok>

The modified clow, C} is obtained by merging C; and C; as follows: insert the cycle C}
into C; at the first occurence (from the head) of v. For example, let C; = (8,11,10, 14)
and C; = (9,10,12). Then the new clow is (8,11,10,12,9,10,14). Figure 1 illustrates the
mapping.

The head of C/ is clearly the head of C;. The new sequence has the same multi-set of
edges and hence the same weight as the original sequence. It also has one component less
than the original sequence.

In the new sequence, vertex v in cycle C7 would have been chosen by our traversal and it
satisfies case 2.

Case 2: Suppose v completes a simple cycle C' in ;. By our earlier argument, cycle C' can-
not touch any of the later cycles. We now modify the sequence W by deleting C' from C; and
introducing €' as a new clow in an appropriate position, depending on the minimum labeled

vertex in C, which we make the head of C. For example, let C; = (8,11,10,12,9,10, 14).

Then C; changes to (8,11,10,14) and the new cycle C' = (9,10, 12) is inserted in the clow
sequence.

To show that the modified sequence continues to be a clow sequence, note that the head of
(' is greater than the head of C; and hence C occurs after C;. Also, the head of €' is distinct
from the heads of C; (+ < j < k). In fact, C' is disjoint from all cycles C; (1 < 7 < k).
Further, the new sequence has the same multi-set of edges and hence the same weight as the
original sequence. It also has one component more than the original sequence.

Figure 1 illustrates the mapping. In the new sequence, vertex v in cycle C! would have
been chosen by our traversal and it satisfies case 1.

In both of the above cases, the new sequence constructed maps back to the original
sequence. Therefore the mapping is a weight-preserving involution. Furthermore, the number
of clows in the two sequences differ by one, and hence the signs are opposing. This completes
the proof. []

Corollary 1.1

det(A) = 3 sgn(W)w(W)
W: a clow sequence with head of first clow 1

Proof: In the involution defined above, the head of the first clow in the clow sequence remains
unchanged. And the head of the first cycle in any cycle cover must be the vertex 1. []

3 The Sequential Algorithm

Given an n x n matrix A, we define a layered directed acyclic graph H, with three special
vertices s, 14 and {_, having the following property:

det(A) = > w(p) — > w(n)

p: 8 ~ t4 path n: § ~ t_ path

Here the weight of a path is simply the product of the weights of the edges appearing in it.
The idea is that s ~ {4 (s ~ {_) paths will be in one-to-one correspondence with clow
sequences of positive (negative) sign.

The vertex set of Hy is {s,ty,t_} U {[p,h,u,2] | p € {0,1},h,u € {1,...,n},i €
{0,...,n — 1}}. If a path from s reaches a vertex of the form [p, h,u,1], this indicates that
in the clow sequence being constructed along this path, p is the parity of n + the number of
components already constructed, h is the head of the clow currently being constructed, u is
the vertex which the current clow has reached, and ¢ edges have been traversed so far (in this
and preceding clows). Finally, an s ~ {4 (s~ {_) path will correspond to a clow sequence
where n + the number of components in the sequence is even (odd).

The edge set of H4 consists of the following types of edges:

L. (s,[b,h,h,0]) for h € {1,...,n}, b=n mod 2; this edge has weight 1.

2. ([p, h,u,i], [p,h,v,i+ 1]) if v > h and 7 + 1 < n; this edge has weight a,,,

3. {[p, h,uyi], [p, A", R, i 4+ 1)) if A" > h and i 4+ 1 < n; this edge has weight a,p,
4. ([p, h,u,n —1],ty) if p = 1; this edge has weight ayp,
5. {[p, h,u,n —1],t_) if p = 0; this edge has weight a,p.

Theorem 2 For an n dimensional matriz A, let Hy be the graph described above. Then

dei(A)= Y wlp)- Y w()

p: §~ ty path n 8~ 1_ path

Proof: We will establish a one-to-one correspondence between s ~ {4 (s ~ {_) paths and
clow sequences of positive (negative) sign, preserving weights. The result then follows from
Theorem 1.

Let W = (C4,...,C%) be a clow sequence of positive sign (i.e., n 4+ k is even). We will
demonstrate a path from s to ¢4 in H4. Let h; be the head of clow C;, and let n; be the
number of edges in clows C4,...,C;_;. The path we construct will go through the vertices
[p, hiy hiyng], where p = 0 if n 41 is odd and p = 1 otherwise. From s, clearly we can go to the
first such vertex [n mod 2, hy, hy,0]. Assume that the path has reached [p, h;, hi,n;]. Let the
clow C; be the sequence (h;, vy, ..., v_1), a closed walk of length [. Starting from [p, h;, h;, ny],
H 4 has a path through vertices [p, by, v1,n; + 1], [p, hi, va,ni + 2], <. o, [py hiyvi—1,ni + (L= 1)],
and finally [p, ki1, hip1,ni + (] which is the vertex [P, hiy1, hiz1,nip1]. At the last clow,
starting from [1, hg, hg,ni], H4 will have a path tracing out the vertices of clow Cj and
finally making a transition to 4. Clearly, the weight of the path is identical to the weight of
the clow sequence. See Figure 2.

Conversely, let p be an s ~» ¢, path in H4. In the sequence of vertices visited along
this path, the second component of the vertex labels is monotonically non-decreasing and
takes, say, k distinct values hq, ..., hg. Also, the first component changes exactly when the
second component does, and is n mod 2 at hy and 1 at hy (to allow an edge to t1), son 4+ k
must be even. Consider the maximal segment of the path with second component h;. The
third components along this segment constitute a clow with leader 2; in G4. When this clow
is completely traversed, a new clow with a larger head must be started, and the parity of
number of components must change. But this is precisely modelled by the edges of H4.
Therefore, p corresponds to a clow sequence in G4 of positive sign.

A similar argument shows the correspondence between paths from s to {_ and clow se-
quences with negative sign, preserving weights.

|

Now, to evaluate det(A), we merely need to evaluate the weighted sums of paths. But
this can easily be done by simple dynamic programming techniques; we give a polynomial
time algorithm which evaluates this expression and hence computes det(A).

We say that a vertex [p, h, u,i| is at layer ¢ in H4. ¢4 and ¢_ are at layer n. The algorithm
proceeds by computing, in stages, the sum of weighted paths from s to any vertex at layer ¢
in Hy. After n stages, it has the values at {4 and {_, and hence det(A). See Table 1.

This algorithm processes each edge in H, exactly once, and for each edge, it performs
one addition and one multiplication. The total number of vertices in Hy is 2n” + 3. However
H, is quite a sparse graph; the total number of edges is at most 4n*. The overall running

11

parity of number of components

head of current clow
current vertex
edges seen so far

110,1,1,0]

[1,3,3,6] 610,66,

Figure 2: From a clow sequence to a path

Initialise values to 0
For u,v,1 € [n], p € {0,1} do V([p,u,v,i—1]) =0
V(ty) =0
V(it_)=0
Set selected values at layer 0 to 1
b=n mod 2
For u € [n], do V([b,u,u,0]) =1
Process outgoing edges from each layer
Fori1=0ton—2do
For w,v € [n] such that u < v, and p € {0,1}, do
Forw e {u+1,...,n} do
V([p, u, wvi -I_ 1]) = V([p, u, wvi -I_ 1]) -I_ V([p, u,v, Z]) * Oy
V({p. w1+ 1)) = V([0,0, 4 1))+ V([pyt,0,1]) - o
For u,v € [n] such that u < wv, and p € {0,1}, do
V(ty) = V() + V(L u,o,n —1]) - ay,
V(o) =V([io)+ V([0,u,v,n —1]) - ay,
Compute the determinant
Return V(t4) — V(12)

Table 1: A sequential algorithm for the determinant

time is therefore O(n*). In fact, if G4 has m edges, then H4 has only O(mn?) edges, so for
sparse matrices, the algorithm is faster.

The number of operations, addition or multiplication, is O(n*). The largest partial product
at any stage is m”|amax|”, Where amax is the largest entry in A, m is the number of edges in
(G4, and m” is an upper bound on the number of clow sequences. This can be represented
with N = nlog m+nlog |amax| bits, so each operation needs at most M(N) time, where M (¢)
is the time required to multiply two ¢ bit numbers. Clearly, even in terms of bit complexity,
the algorithm needs only polynomial time.

The space used in this implementation is also polynomial; however, it is only O(n?), since
at any stage, the values at only two adjacent layers need to be stored. (Again, there are
O(n?) values to be stored; each may require upto N bits.)

4 Computing the Characteristic Polynomial

Our technique can be used as easily to compute all coefficients of the characteristic polynomial
Da(N) =det(A], — A) = c, A" + o A7 4 Lo 4 A + ¢ of the matrix A. In fact, we will
show that the graph defined in the previous section already does so. Rewriting det(A 1, — A)
in terms of cycle covers and regrouping terms, we see that the coefficient of A" in ®4(}),
¢q, can be computed by summing, over all permutations o with at least r fixed points, the

weight of the permutation outside these fixed points.

b= 3 > sgn(o) [[(=air)

SC[1,...,n]:|S|=r oc€Sn:j€S=0(j)=J iZS

If o has only fixed points in S, let sgn(c|S) denote the parity of the number of components
of o, not counting the fixed point cycles of S (+1 if the parity is even, and —1 otherwise).

Then
o= 3 3 sgn(o|S) [T (aio ()

SC[1,..,n):|S|=r cE€Sn:j€S=0(i)=] igs
But each term here is the weight of a partial cycle cover, covering exactly n — r vertices. To
compute this sum, not surprisingly, we look at partial clow sequences! An [-clow sequence is
a sequence of clows (ordered by strictly increasing head) with total number of edges exactly [,
accounting for multiplicity. Tts sign is (=1)*, where k is the number of clows in the sequence.
The involution on the set of [-clow sequences is defined in the same fashion as in Section 2,
and shows that the net contribution of sequences which are not partial cycle covers is zero.
So now instead of Hy4, we construct H4(r) with n — r layers, with paths corresponding to
(n — r)-clow sequences. We then compute the weights of s ~ t4 and s ~ {_ paths in this
reduced graph, and report the difference as c,.

Actually all coefficients can be computed using the single graph H4, by introducing n
copies of ¢4 and {_, one for each coefficient. Further, in this graph, if the sth layer reports a
non-zero value, we can immediately conclude that the matrix has rank at least 2. However,
we do not know how to infer small rank from this construction.

Note that our graphs Hu, or H4(r) for computing the coefficient ¢,, have a very regular
structure: the edge connectivity across layers is identical. By dropping layer information
from the vertices, we can construct a graph (finite-state automaton) with O(n?) vertices.
Then to compute ¢,, we find the contribution of s ~ ¢4 or {_ paths in this graph of length
exactly n —r.

5 Improving the algorithm

The algorithm of section 3 can be made more efficient if the number of vertices and edges
in the graph H4 can be pruned. One simple saving is obtained by noting that we do not
really need two copies of each vertex [p,u,v,1] for the two values of p. Instead, we can
keep one copy, and where in the original H4 this component was to be changed via an edge
([p,u,v,1], [P, x,y,7+ 1]) of weight w, we now have an edge from [u,v,1] to [z,y,7+ 1] with
weight —w. This reduces the number of vertices by a factor of 2. More crucially, it allows
the dynamic programming algorithm to do subtractions and cancellations at earlier layers.
So the sizes of partial products, and hence the bit complexity, reduces.

Another pruning which also results in a saving by a constant factor (but with a larger
constant than above) follows from this simple observation: paths going through vertices of
the form [p, h, u,t] with > ¢+ 1 cannot correspond to cycle covers. This is because in a cycle
cover, all vertices are covered exactly once, so at layer ¢, with n —1 vertices still to be covered,
the head (minimum element) of the current cycle cannot be greater than ¢. Alternatively,

10

once h becomes the head, at least h — 1 edges should have been seen in preceding cycles. We
can require our clow sequences also to satisfy this property. We formalize the prefix property:
a clow sequence W = (C1, ..., Cy) has the prefix property if for 1 < j < k, the total lengths
of the clows C,...,C;_; is at least head(C;) — 1.

It is easy to verify that the involution defined in Section 2 also works on such restricted
clow sequences: (W) has the prefix property if and only if W does. So we may instead
construct a pruned version of H,4 which generates only such clow sequences. (Consider the
induced subgraph of H4 obtained by deleting all vertices [p, h, u,i] where h > i+ 1.) This
will lead to an algorithm with essentially the same complexity, but smaller constants. But
pruning is not without its drawbacks: we can no longer directly extract the coefficients of
the characteristic polynomial.

Interestingly, clow sequences with the prefix property are precisely the terms computed
by Samuelson’s method for computing the determinant. As observed by Valiant! in [Va 92],
the correctness of Samuelson’s algorithm gives a proof, based on linear algebra, that such
sequences which are not cycle covers “cancel” out. Our involution gives a combinatorial
proof of this fact (for details, see [MV 97]).

Of course, if the algorithm is to be used to compute the coefficient ¢, of the characteristic
polynomial, then we cannot use this kind of prefix property. The right prefix property for
computing ¢, would be that in the clow sequence W = (C4,...,Cy), for 1 < 5 < k, the
total lengths of the clows C,...,C;_; is at least head(j) — 1 — r. The graph H4(r) can be
pruned consistent with this property. However, if a single graph is to be used to compute all
coefficients, then we must work with the unpruned version.

6 Parallel Algorithms: Gapl. and NC implementations

In this section, we describe two different approaches towards obtaining parallel algorithms
which exploit the combinatorial Theorem 1. The first approach is to apply the standard
divide-and-conquer technique to compute the contributions of all clow sequences, and so
directly obtain an NC or PRAM algorithm. The second approach is indirect; we show how
our algorithm places integer determinant in the class of functions Gapl., and then appeal
to standard parallelizations of Gapl. functions. This approach is particularly interesting
from the complexity-theory point of view, since the Gapl. implementation gives a very good
instance of how to effectively use nondeterminism in a space-bounded computation.

6.1 PRAM and NC algorithms

The signed weighted sum of all clow sequences can be evaluated in parallel using the standard
divide-and-conquer technique, giving an NC? algorithm for the determinant. We describe the
algorithm below. We first show how to construct an arithmetic SAC! circuit for computing
the determinant (an arithmetic polynomially sized circuit with O(logn) depth where the +

!There is a minor technical error in Valiant’s formulation. He claims that Samuelson’s algorithm generates
all clow sequences, referred there as loop covers. However his preceding discussion makes it clear that clow
sequences without prefix property are not generated.

11

gates have unbounded fanin but each X gate has constant fanin). We then show how to
implement this circuit as an EREW PRAM algorithm requiring O(log® n) parallel time. We
also analyze the bit complexity of the algorithm, and show an implementation in Boolean
NC?,

The goal is to sum up the contribution of all clow sequences at the output gate of the
circuit. The output gate is a sum, over all 1 < k& < n, of C}, where C}, is the sum of the
contributions of all clow sequences with exactly k& clows. To compute C}, we use a divide-
and-conquer approach on the number of clows: any clow sequence contributing to C can be
suitably split into two partial clow sequences, with the left sequence having 2M°8*1-1 clows.
The heads of all clows in the left part must be less than the head of the first clow in the
rightmost part. And the lengths of the left and the right partial clow sequences must add up
to n. We can carry this information in the gate label. Let gate g[p, [, u,v] sum up the weights
of all partial clow sequences with p clows, [edges, head of first clow u, and heads of all clows
at most v. (We need not consider gates where | < p or v > v.) Then Cy = glk,n,1,n],
Dy = (=1)"**Cy, and the output is 7_, Dy. Further,

> g2t ryu,w—1] - glp — 29,1 — r,w, v] ifp>1
glp,Lu,v) =3 FEr 2 ow)
gll, u] ifp=1

where ¢ = [logp] — 1, i.e. 29 < p < 2771 The gate g[l,u] sums up the weights of all clows
of length [with head u. This gate is also evaluated in a divide-and-conquer fashion. A clow
with head u is either a self-loop if [= 1, or it must first visit some vertex v > u, find a path
of length | — 2 to some vertex w > u through vertices all greater than w, and then return to
u. So

g[l7 u] = Zu>u Ay * Aoy, ifl =2
Zu,w>u Aoy C[l —2,u,v, w] - otherwise

The gate ¢[l, u, v, w] sums the weights of all length [paths from v to w going through vertices
greater than u. The required values can be computed in O(log n) layers as follows:

[l u,v,w] = agy,
o2 i u,v,w] = s, 2% w0, 2] - i, u, x, w] for s =0to [logn] —1,1 <¢<2°

The final circuit description is summarized in a bottom-up fashion in Table 2.

Assigning a gate to each variable ¢[l, u, v, w] or g[l, u] or g[p, [, u,v] or Dy in this algorithm,
we obtain an arithmetic circuit with O(n*) gates and depth O(log n). Each + gate has fanin
at most O(n?), and each x gate has fanin at most 3. Therefore this is an arithmetic SAC!
circuit.

To obtain an EREW PRAM implementation, we must first eliminate the large fanin and
large fanout gates. Suppose we replace each 4 gate having fanin f by a binary tree of + gates
(i.e. a bounded-fanin subcircuit). The number of edges only doubles, and the depth increases
by log f. To handle fanout, we reverse the process: we introduce an inverted binary tree
of “copy” gates above each gate (a bounded-fanout subcircuit). Again, the number of edges

12

Initialise values for paths of length one
For u,v,w € [n] : v,w > u do in parallel
e[l u, v, w| = ayy
Evaluate values of paths of lengths upto 2°
For s =0 to [logn] — 1
For 1 <i < 2% and for u,v,w € [n]: v,w > u do in parallel
2 i, u,v,w] =30, 2% u, v, 2] - i, u, z, w]
Evaluate values of single clows
For [, u € [n] do in parallel
If I =1 then g[l,u] = ay,
If I =2 then g[l,u] = 3 su Guw * Gyu
If I > 2 then g[l,u] = 3, oy Guv - €[l = 2,u,v, 0] - Gy
Initialise values of partial clow sequences with one clow
For [,u,v € [n] : u < v do in parallel
oll o] = gll,u]
Evaluate values of partial clow sequences with upto 2° clows
For s =0 to [logn] — 1
For 1 < <2*% and for [,u,v € [n] : (u <wv)A(l>2°+1) do in parallel
9[23+i,l,u,v]: Z 9[287T7u7w_1]'g[ivl_r7wvv]
28<r<l—1; u<w<w
Evaluate the sum of clow sequences
For k € [n] do in parallel
Dk = (_1)n+kg[k’ n, 17 n]
Evaluate the determinant

Return det(A) = >7_, Dy

Table 2: An arithmetic SAC" algorithm for the determinant

only doubles. Note that in the SAC' circuit described above, the maximum fanin of any +
gate is O(n?). So the total number of edges in the circuit is O(n®). So this procedure applied
to the circuit gives a bounded-fanin bounded-fanout circuit of depth O(log”n) with O(n®)
edges. Now the standard technique of placing a processor on each edge gives an EREW
PRAM algorithm requiring O(n®) processors and running in O(log® n) parallel time. And
the equally standard technique of reusing processors across layers will give an EREW PRAM
algorithm performing O(n®) work and running in O(log” n) parallel time.

Now let us consider the bit complexity of the above algorithm. (In the PRAM model, each
addition and each multiplication was considered to be a unit cost operation.) All operations
in the SAC! circuit are on N-bit numbers; recall that N = nlogn + nlog |amax|, where amax
is the largest entry in A. Fach operation in the above algorithm involves either adding n?
numbers or multiplying 3 numbers, and can be performed in NC!. Plugging in these Boolean
circuits at each gate gives a Boolean NC? circuit computing the determinant.

13

6.2 Integer Determinant and GapL

In this section we demonstrate how #I. functions (first studied in [AJ 93]) can be used to
compute the determinant. In particular, we show that the determinant can be expressed as
the difference of two #L functions. This, coupled with the fact that functions in #L can be
computed in Boolean NC? (and subtraction is in NC'), gives us another approach towards
building small-depth circuits for the determinant.

To place things in perspective, we first sketch the history of research efforts directed
towards the connections between the determinant and the function class #1.. We denote by
Det the function which, given a matrix with integer entries, evaluates to the determinant of
the matrix.

Cook [Co 85| introduced NC'-reductions; he used NC'-Turing reductions to formally
define and study many parallel complexity classes. The decision to use reductions with
oracle gates as opposed to many-one NC'-reductions is deliberate; in Cook’s view oracle
reductions are more suitable for the study of functions than many-one reductions. Among
the parallel complexity classes introduced, Cook defined DET* to be the class of functions
NC!-reducible to Det. Cook also listed many complete problems for DET*; the most import-
ant of them was Iterated Matrix Product (over integers). He observed that the Samuleson’s
method in fact establishes an NCl-reduction from Det to IterMatProd. In the other dir-
ection, IterMatProd< MatrixPowering < MatrixInversion < Det. (All reductions are
NC' reductions.)

Unfortunately, the relation NC'C DLOG does not relativize [Wi 87]. This caused some
confusion earlier on in many papers dealing with the determinant as a complexity class.

In particular, Damm’s claim that the logspace many-one reduction closure of Det is equi-
valent to L#, and Vinay’s claim that DET* is equivalent to L#!, are both in error. Also,
Immerman and Landau erroneously claimed in the conference version of their paper [IL 95]
that the quantifier-free-projection closure of Det, qfp(Det), equals DET™.

Buntrock et al [BDHM 92] show L#L is contained in DET*. Vinay and Damm use the

following chain to establish their results: IterMatProd < DiffL. C L#: C DET".
Wilson’s results [Wi 87] imply that “IterMatProd is complete for DET*” is inadequate to
show “DET* equals L#L”. And the proof technique of Buntrock et. al. [BDHM 92] fails when
DET* is replaced with the weaker logspace many-one reduction closure of determinant.

In fact, the correct statement should be: [Vi 91a, To 91]

Theorem 3 DET*= NC' (#L).

Immerman and Landau [II. 95] and Toda [To 91] observe that the Samuelson-Berkowitz
algorithm is in fact a (first-order) projection from Det to IterMatProd. Consequently, by
defining (a possibly new class) DET as the logspace many-one closure of the determinant,
and by defining GapL as the difference of two #L functions, one can hope for the following
theorem:

Theorem 4 Gapl.=DET.

This result was essentially discovered independently by Vinay, Damm and Toda (see
[Vi 91, Vi9la, Da 91, To 91, To 92]) around the same time. The proofs are somewhat differ-
ent, though. Damm, inspired by Babai and Fortnow’s [BF 91] characterization of #P, used

14

Nondeterministically choose head € {1,...,n}.
current = head
count = 0
If n is odd, then parity = 1 else parity = 0
|[parity, head, current, count]is the vertex traced out in a clow sequence
of Gyoran s~ 1ty or s~ t_ path in Hy.
While count < n —1 do
Nondeterministically choose next € {head,...,n}.
count= count + 1
Branch l-ways, where [= A[current,next].
If next > head then current = next
else Nondeterministically choose newhead € {head + 1,...,n}.
parity = (parity + 1) mod2
head = newhead
current = head
At this point, count = n — 1.
Branch [-ways, where [= A[current, head).
parity = (parity + 1) mod2
If parity = 0 then accept, otherwise reject.

Table 3: A GapL algorithm for the determinant over non-negative integers

(positive) arithmetic straight line program with restricted multiplications ((P)ARM model)
to characterize #1.. These programs are equivalent to skew arithmetic circuits; in fact, in the
#P setting, this equivalence was already known (see [BF 91]). Toda and Vinay show how
Det is equivalent to the difference between the number of (s,t) paths in two directed acyclic
graphs. All the proofs rely on the Samuelson-Berkowitz algorithm. We will now present a
complete proof of this theorem.

Proof: In one direction, the result can be seen in a particularly direct way from our sequential
implementation of clow sequences in section 3. Observe that given A, the construction of H4
is logspace-uniform, and tracing out s ~» ¢ or s ~ t_ paths can be done by an NL machine.
(We must be careful here: the partial products along a path can be too large to be stored
in logspace. The NL machine, to traverse an edge of weight |w|, should simply branch into
w paths and remember only the sign. This way, a path of weight w in H, will generate |w]
accepting/rejecting paths of the NL machine.) Essentially, H4 gives us a uniform polynomial
size polynomial width branching program, corresponding precisely to Gapl..

Table 3 gives the code for an NL machine computing, through its gap function, the
determinant of a matrix A with non-negative integral entries. (Negative integers can be
accomodated by appropriately updating the parity variable.) Most steps are easily seen to
be possible on an NI machine. The [-way branching is the only step which has to be done
carefully. Since [could be n bits long, it cannot be stored on the worktape. Instead, the NL
machine has to step through the bit description of [on the input tape and branch accordingly.

15

Input: & bits ag_1,..., a1, a specifying the number [= Zf;ol 2ia;
Goal: To produce exactly [paths ending in some prespecified configuration C';
any extra paths produced should be rejecting.
NL algorithm
7=0
While 5 < k£ do
Branch 3-ways
On Branch 1, if a; = 0 then reject and exit loop
otherwise enter configuration C' and exit loop
On Branches 2 and 3, increment j

Endwhile

Table 4: NL code to produce [accepting paths, given [in binary.

The details are shown in Table 4.

In the other direction, we follow Toda, who follows Valiant [Va 79]. Tt suffices to show that
counting s ~+ ¢ paths in an acyclic graph G can be reduced to computing the determinant
of a matrix. We first replace each edge in (G; by a path of length 2, add edges (¢, s) and
{(u,u) | u & {s,t}}. Now an s ~ ¢ path in (4 corresponds exactly to a cycle cover in this
new graph 3. And all cycle covers in GGy have positive sign. So the number of s ~ ¢ paths
in G4 equals det(adj(G>)) equals perm(adj(G3)) (by adj(G3) we mean the adjacency matrix
of the graph G5).]

What is striking is a complexity theoretic analog of the classical Det vs Perm problem: they
are complete for GapL. and GapP respectively. A corollary of the the proof above shows that
for every integer matrix A, there is an integer matrix B whose dimensions are polynomially
related to the dimensions of A, such that the determinant of A is the permanent of B. Of
course, we do not know if Perm can be reduced to Det in logspace/polynomial time.

The future of the class DET* is not clear. Allender and Ogihara [AO 94] note that there is
no reason to believe that NL is a subset of GapL,(=DET). (We mean subset in the following
sense: a language is in GapL if its characteristic function is in Gapl.) This is because
the 0-1 valued functions in DET must differ in at most one accepting path. (However, a
recent result of Reinhardt and Allender [RA 97] shows that the inclusion is true in a non-
uniform setting.) On the other hand, notice that NL is contained in DET*. In fact, Allender
and Ogihara [AO 94] consider AC°(Det) and show that AC%(Det) corresponds to a certain
counting hierarchy (LH) that may be defined on #L. They also claim (without proof) that
if AC°(Det) and DET* coincide, LH collapses.

Two nice applications of the Gapl. characterization in Theorem 4 have been in the drastic
simplification of Jung’s theorem on PL (see [AO 94]) and in characterizing the complexity of
computing the rank of a matrix (see [ABO 96]).

16

Acknowledgments

We thank Eric Allender for setting us on the track of pursuing the determinant problem, and

for supplying us with several interesting references.

References

[ABO 96]

[AO 94]

[AJ 93]

[Be 84]

E. Allender, R. Beals and M. Ogihara. The Complexity of Matrix Rank and
Feasible Systems of Linear Equations, Proc. 28th ACM Symposium on Theory
of Computing (STOC) (1996), 161-167.

E. Allender and M. Ogihara. Relationships among PL, #L, and the determinant,
RAIRO Theoretical Information and Applications, 30 (1996), 1-21. Conference
version in Proc. 9th IEEE Structure in Complexity Theory Conference (1994),
267-278.

C. Alvarez and B. Jenner. A Very Hard Log-space Counting Class, Theoretical
Computer Science, 107 (1993), 3-30.

S. J. Berkowitz. On Computing the Determinant in Small Parallel Time Using
a Small Number of Processors, Information Processing Letters, 18 (1984), 147—
150.

[BDHM 92] G. Buntrock, C. Damm, U. Hertrampf and C. Meinel. Structure and Importance

[BF 91]

[Ch 85]

[Co 85]

[Cs 76]

[Da 91]

[FF 63]

[11. 95]

of Logspace MOD-classes, Math. Systems Theory, 25 (1992), 223-237.

L. Babai and L. Fortnow. Arithmetization: A New Method in Structural Com-
plexity Theory, Computational Complexity, 1(1), (1991), 41-66.

A. L. Chistov. Fast Parallel Calculation of the Rank of Matrices over a Field of
Arbitrary Characteristic, Proc Int. Conf. Foundations of Computation Theory,
LNCS 199 (1985), 63-69.

S. Cook. A Taxonomy of Problems with Fast Parallel Algorithms, Information
and Control, 64 (1985) 2-22.

L. Csanky. Fast Parallel Inversion Algorithm, SIAM J of Computing, 5 (1976),
818-823.

C. Damm. DET=L®#Y_ Informatik—Preprint 8, Fachbereich Informatik der
Humboldt—Universitat zu Berlin, 1991.

D. Fadeev and V. Fadeeva. Computational Methods in Linear Algebra, Freeman,
San Francisco (1963).

N. Immerman and S. Landau. The Complexity of Tterated Multiplication, Inform-
ation and Control, 116(1) (1995), 103-116. Conference version in Proc Structure
in Complexity Theory 1989.

17

MV 97]

Ni 91]

[RA 97]

[Sa 42]

[St 83]

[To 91]

[To 92]

[Va 79]

[Va 92]

[Ve 92]

[Vi 91]

[Vi 91a]

(Wi 87]

M. Mahajan and V Vinay. Determinant: Old Algorithms, New Insights. Tech-
nical Report of the Institute of Mathematical Sciences, IMSc-TR97/08/.

N. Nisan. Lower Bounds for Non-Commutative Computation, Proc. 23th Annual

Symposium on Theory of Computing (STOC), (1991), 410-418.

K. Reinhardt and E. Allender. Making Nondeterminism Unambiguous, to appear
in Proc. 38th IEEE Foundations of Computer Science Conference (FOCS), 1997.

P. A. Samuelson. A Method of Determining Explicitly the Coefficients of the
Characteristic Polynomial, Ann. Math. Stat., 13 (1942), 424-429.

H. Straubing. A Combinatorial Proof of the Cayley-Hamilton Theorem, Discrete
Maths., 43 (1983), 273-279.

S. Toda. Counting Problems Computationally Equivalent to the Determinant,
manuscript.

S. Toda. Classes of Arithmetic Circuits Capturing the Complexity of Computing
the Determinant, IEICE Trans. Inf. and Syst. , E75-D (1992), 116-124.

L. G. Valiant. The Complexity of Computing the Permanent, Theoretical Com-
puter Science, 8 (1979), 189-201.

L.. G. Valiant. Why is Boolean Complexity Theory Difficult? , in Boolean Func-
tion Complexity, ed M. S. Paterson, London Mathematical Society Lecture Notes
Series 169, Cambridge University Press, 1992.

H. Venkateswaran. Circuit Definitions of Nondeterministic Complexity Classes,

SIAM J. on Computing, 21 (1992), 655-670.

V Vinay. Counting Auxiliary Pushdown Automata and Semi-Unbounded Arith-
metic Circuits, Proc. 6th Structure in Complexity Theory Conference, (1991),
270-284.

V Vinay. Semi-unboundedness and complerily classes, doctoral dissertation, In-
dian Institute of Science, Bangalore, July 1991.

C. B. Wilson. Relativized NC, Math. Systems Theory, 20 (1987), 13-29.

18

