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Abstract

We introduce a simple technique to obtain reductions between optimization constraint sat-
isfaction problems. The technique uses the probabilistic method to reduce the size of disjunc-
tions. As a first application, we prove the Max NP-completeness of MAX 3SAT without using
the PCP theorem (thus solving an open question posed in Khanna et al. (1994)). Successively,
we show that the “planar” restrictions of several optimization constraint satisfaction problems
admit linear-time approximation schemes (thus improving the results of Khanna and Motwani
(1996)).

1 Introduction

Comparing the complexity of different combinatorial optimization problems has been an extremely
active research area during the last 25 years. Roughly speaking, the question is: given two opti-
mization problems A and B, is solving A more (less, equally) difficult than solving B? Starting from
the deep background in computability theory, researchers first attacked this question by shifting
their attention from the original optimization problems to their corresponding decision versions:
the NP-completeness theory eventually arose and hundreds and hundreds of combinatorial problems
were shown to be equivalently hard to be solved [GJ79]. Almost at the same time, however, it was
noticed that, even though all known NP-complete problems are polynomial-time isomorphic, their
corresponding optimization problems may behave in a drastically different way when dealing with
approximate solutions [Joh74]. As a result, the development of approximation algorithms (that is,
algorithms yielding a solution whose cost is within a multiplicative constant factor from the opti-
mum) immediately revealed itself as a useful tool to cope with the NP-hardness of a combinatorial
optimization problem.

The original question was then refined: given two optimization problems A and B, is approxi-
mately solving A more (less, equally) difficult than approzimately solving B? In order to answer this
question, basically two interleaving approaches have been followed. On the one hand, researchers
have studied which kind of reducibility is suitable to compare the approximation properties of op-
timization problems [ADP80, PM81, OMS&7, Sim&9, CP91, PY91, KMSV94, CT94, CKST95]. It
was clear, indeed, that the many-to-one polynomial-time reducibility could not be used since, not
only a function mapping instances into instances is necessary, but also a function mapping solutions
into solutions. On the other hand, more and more sophisticated techniques to obtain reductions
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were developed passing through the use of expander graphs [PY91] and arriving at the extremely
complicated and powerful toolkit of probabilistically checkable proofs [KMSV94].

Among the different proposals of approximation preserving reducibilities, the L-reducibility
[PY91] can certainly be considered the most popular since, in a certain sense, it is the most simple
and natural. However, more sophisticated definitions are necessary to obtain completeness results
in natural approximation classes [KMSV94, CT94]. Moreover, the simplicity of the L-reducibility
forces the “reducer” to use complicated tools. A complicated reduction between two optimization
problems has several disdvantages. First, (needless to say) it is difficult to be explained and to
be checked. Second, it usually hides the relationship between the combinatorial structure of the
two problems. Third, it rarely can be used on a positive side, that is, in order to obtain improved
algorithmic results.

The aim of this paper is to introduce a simple technique to obtain reductions between optimiza-
tion constraint satisfaction problems. The simplicity of the technique will allow us both to clarify
already known structural results and to obtain new algorithmic ones. Before stating our results,
we recall some previous ones about completeness in approximation classes.

The formal definition of approximation algorithm and performance ratio is due to [Joh74].
Shortly after, several approximation classes were defined, including APX (that is, the class of
problems that are approximable within some constant factor) and PTAS (that is, the class of
problems that are approximable within any constant factor). In a few years the field developed
rapidly on the algorithmic side but only a few, unsatisfying, hardness results came up, until a novel
approach was introduced in [PY91]. In this paper, the authors, instead of searching for complete
problems in natural (that is, computationally defined) approximation classes, focused on natural
problems and found a reasonable class where they are complete. Their starting point was the
logical characterization of NP [Fag74]. They obtained a class of APX optimization problems by
introducing a notion of optimization in this characterization, called this class Max NP, and showed
that several problems, including MAX SAT, belong to it. However, they could not find any complete
problem. A restriction in the definition yields the subclass Max SNP, that still contains interesting
problems such as MaX CUT and MAX 3SAT, and that turns out to have natural complete problems
(including Max CuT and MAX 3SAT themselves). The success of this approach was immediate
and widespread. Other Max SNP-hard problems were soon discovered and other approximation
classes with natural complete problems were introduced [PR93, KT94, KT95]. In [KMSV94] the
logical approach was finally reconciled with the computational one. In fact, by making use of the
PCP theorem [ALM'92], the authors proved that MAX 3SAT is APX-complete. As a corollary
of this result, it follows that MAX 3SAT is Max NP-complete thus answering a question posed in
[PYO91].

Our Results

In this paper, we introduce a reduction technique based on the probabilistic method that allows to
directly prove the Max NP-completeness of MAX 3SAT. In order to obtain this result we make use
of a more powerful reducibility than L-reducibility, called PTAS-reducibility [CT94]. Indeed, our
technique further exploits such additional power and does not seem to work when restricted to the
L-reducibility. As expected, more powerful reducibilities may allow simpler reductions.

The relevance of our new Max NP-completeness proof is due to the fact that it does not use
the PCP machinery (thus solving an open question posed in [KMSV94]). Moreover it has both
structural and algorithmic consequences.

From a structural point of view, the Max NP-completeness of MAX 3SAT means that Max NP



problems are not harder to approximate than Max SNP ones. The definition of Max NP involves
a richer logical structure, that is, one more quantifier than Max SNP. The reduction based on the
PCP theorem does not clearly explain how comes that it is possible to get rid of this additional
quantifier. This is due to the fact that this reduction is global in a very strong sense, and, while
reducing a logical problem to another, it is not clear which variables are mapped to which and which
constraint is mapped to which: in a few words, there is no clear relation between the structure of
the source problem and the structure of the target problem. In contrast, our reduction gives a very
simple explanation of the relation between Max NP and Max SNP. Recall that, roughly speaking,
the only difference between the two classes is that in the logical definition of a Max NP problem
arbitrarily long disjunctions are allowed [PY91]. However, long disjunctions are easy to satisfy (in
a probabilistic sense) and thus they cannot make the problem harder.

From an algorithmic point of view, an approximation-preserving reduction from a problem A
to a problem B can yield an approzimation scheme in the following case. Assume that problem B
admits an approximation scheme when restricted to some subset 7 of its instances, and that it is
possible to find a set Z4 of instances of A such that any such instance is mapped by the reduction
into an instance of Zg. Then, the reduction together with the approximation scheme gives an
approximation scheme for the instances of 74. Our reduction gives indeed an approzimation scheme
for planar restrictions of MAX SAT and MAX GSAT-B that works in linear time (as opposed to a
previous scheme running in time n°(/€) [KMY96]).

Comparison with PCP-based Reductions. Our result would have been impossible to obtain
by using PCP-based reductions for at least two reasons:

1. It is very difficult to characterize the outcome of a PCP-based reduction, and so to understand
which set of instances will be mapped into which.

2. PCP-based reductions always generate instances that are hard to approximate, whatsoever
was the simple structure of the source instance.

The above considerations suggest that a PCP-free proof that Max 3SaT is APX-complete would
have very interesting structural and algorithmic consequences. We show that, unfortunately, at least
a weaker version of the PCP theorem is necessary in order to prove the APX-completeness of MaX
3SAT.

Comparison with Local-Replacement Reductions. The most common technique to reduce
a constraint satisfaction problem to another is the local-replacement one [GJ79]. In particular, the
best known non-approximability results for several problems, including MAX 3SAT and Max Cur,
are derived using reductions of this kind [BGS95, TSSW96, Has96]. Deriving more “efficient”
reductions would imply stronger (possibly tight) non-approximability results. Unfortunately, lower
bounds for the efficiency of local-replacement reductions have been found [TSSW96]. In particular
the reductions yielding the non-approximability results for MAX 3SAT and MAX CUT are optimal
among local-replacement ones. We show that, in some significant cases, our reduction beats the
known lower bounds and is thus provably better than any local-replacement reduction.

2 Preliminaries

We assume familiarity with the basic concepts of computational complexity theory. For the defini-
tions of most of the complexity classes used in this paper we refer the reader to one of the books



on the subject (see, for example, [GJ79, BaG88, BC93, Pap94]).

An optimization problem A counsists of: (1) the set I of instances, (2) for any instance € I, a
set sol(x) of solutions, and (3) for any instance z € I and for any solution y € sol(z), a measure
m(z,y). Solving an optimization problem means to find an optimum solution y for a given an
instance x, that is, a solution whose measure is maximum or minimum depending on whether the
problem is a maximization or a minimization one. In the following opt will denote the function
that maps an instance z into the measure of an optimum solution. The optimization problems we
deal with in this paper are defined in Section 2.1.

Definition 1 (Performance Ratio) Let A be an optimization problem. For any instance x and
for any solution y € sol(x), the performance ratio of y with respect to x is defined as

opt() m(w,y)} _

m(z,y) ' opt(z)

R(z,y) = maX{

For a constant r > 1, we say that an algorithm T is r-approximate for an optimization problem
A if, for any instance x, the performance ratio of the feasible solution T'(z) with respect to  is
at most r. If a problem A admits a polynomial-time r-approximate algorithm for some constant
r > 1, then we will say that A belongs to the class APX. An optimization problem A belongs to
the class PTAS if a polynomial-time approzimation scheme for A exists, that is, an algorithm T
such that, for any fixed rational » > 1, T'(-,7) is a polynomial-time r-approximate algorithm for A.

We refer to [PY91] (see also [KT94]) for a formal definition of Max NP and Max SNP. We here
give informal but equivalent definitions. We say that A is a subproblem of B if Iy C Ig, and, for
any z € Iy, it holds sols(z) = solg(x) and my(z,-) = mp(z, ).

Definition 2 (Max SNP and Max NP) A mazimization problem is in the class Max SNP if a con-
stant k exists such that A can be expressed as a subproblem of MAX k-CSP. A maximization
problem is in the class Max NP if a constant B exists such that A can be expressed as a subproblem

of MAax GSAT-B.

Definition 3 (PTAS-reducibility [CT94]) Let A and B be two optimization problems. A is said
to be PTAS-reducible to B, in symbols A <ptas B, if three functions f, g, and ¢ exist such that:

1. For any rational v > 1, and for any « € 14, f(x,r) € Ip is compulable in time ts(|z|,r).

2. For any rational v > 1, for any x € I4, and for any y € sol(f(z,r)), g(z,y,r) € sol(z) is
computable in time t,(|z|,|y|,r).

3. For any fized r, both t4(-,r) and t,(-,-,r) are bounded by a polynomial.
4. c:(1,00)N QT — (1,00) N Q7 is a computable function.

5. For any rational r > 1, for any x € I4, and for any y € solg(f(z, 7)),

Rp(f(z,r),y) < c(r) implies Ra(z,g(z,y,7)) <7 .

The triple (f,g,¢) is said to be a PTAS-reduction from A to B.



In [CT94] it is shown that if A <ptas B and B € PTAS, then A € PTAS.

Finally, we summarize the main definitions from the theory of probabilistically checkable proofs.

A promise problem is a pair (Y, N) of disjoint sets of strings from some fixed alphabet ¥ (we
can assume without loss of generality ¥ = {0,1}). An algorithm solves a promise problem (Y, N)
if, for any input string z € Y, the algorithm accepts, and, for any input string z € N, the algorithm
rejects. The behaviour of the algorithm can be arbitrary when it receives in input a string from
Y* — (Y UN). A language L can be seen as the promise problem (L, X* — L).

A verifieris an oracle probabilistic polynomial-time Turing machine V. During its computation,
V tosses random coins, reads its input and has oracle access to a string 7 called proof. Let now x be
an input and 7 be a proof. We denote by ACC[V™(z)] the probability over its random tosses that
V accepts z using 7 as an oracle. We also denote by ACC[V (z)] the maximum of ACC[V™(z)]
over all proofs 7.

Definition 4 (PCP Classes) Let (Y, N) be a promise problem, let 0 < s < ¢ < 1 be two constants,
let q be a positive integer and v : Z+ — Zt. Then we say that (Y, N) € PCP.[r,q] if a verifier V
exists for (Y, N) such that

o V uses O(r(n)) random bits, that is, for any inpul x and for any proof m, V tosses al most
O(r(|z])) random coins;

o V has query complexily q, that is, for any input x, V reads at most q bils from the proof;
o V has soundness s, that is, for any x € N, ACC[V (z)] < s;
o V has completeness c, that is, for any z € Y, ACC[V(z)] > c.

Using the above notation, we can state the PCP Theorem as follows.

Theorem 5 (PCP Theorem [AS92b, ALM192]) A constant q exists such that

NP C PCPy 1 5[log, q] .
We shall also use the short-hand notation PCP(r, 1) def Ugs1 PCPy/31/3[r, k. Note that the con-
stants 2/3 and 1/3 are arbitrarily chosen, that is, for any fixed ¢ and s with 0 < s < ¢ < 1, it holds
PCP(r,1) = Usk>1 PCP. q[r, k].

2.1 Definition of the Problems

Recall that a (k-ary) constraint function is a Boolean function f : {0,1}* — {0,1}. A constraint
family F is a finite collection of constraint functions. The arity of F is the maximum arity of the
functions in F. A constraint C' over a variable set {z1,...,2,} is a pair C = (f, (i1,...,)) where
f:{0,1}* — {0,1} is a constraint function and i; € {1,...,n} for j = 1,...,k. The constraint C is
said to be satisfied by an assignment (ay,...,a,) to (zq,...,2,)if C(aq,...,a,) def flagy,...,a;,) =
1. We say that constraint C'is from F if f € F.

For a constraint family F, the constraint satisfaction problem MaX F is the maximization

problem defined as follows:

INSTANCE: A collection ¢ = {Ci,...,C)} of constraints from F over a variable set X =

{z1,...,2,}.



SOLUTION: A truth assignment 7 for the variables in X.

MEASURE: Number of constraints satisfied by 7.

We now give a list of the constraint families used in this paper.

e Forany k> 1, kSAT = {f:{0,1}" — {0,1} : {@ : f(@) = 0} = 1 A h < k}, that is, kSAT

is the set of at-most-k-ary disjunctive constraints.
o SAT = ;51 KSAT

o For any B > 1, GSAT-B consists of all Boolean functions that admit a disjunctive normal
form (DNF') representation where all the conjunctions have no more than B terms.

e For any k > 1, k-CSP consists of all h-ary Boolean functions, for A < k, that is, k-CSP =
{f:{0,1}" = {0,1} : h<E}.

For a polynomial-time computable function k : Zt — Zt we let MAX k(n)SAT be the restriction
of MAX SAT to instances with constraints of arity at most k(n) (where n is the number of variables).
Finally, we will also make use of the MIN BIN PACKING problem defined as follows:

INsTANCE: Finite set U of items, and a size s(u) € @7 N (0, 1] for each u € U.

SoLuTIoN: A partition of U into disjoint sets Uy, Us, ..., Uy, such that the sum of the sizes of the
items in each U; is at most 1.

MEASURE: The number of used bins, that is, the number m of disjoint sets.

3 The Disjunction Shrinking Technique

In this section we introduce the technique to obtain approximation preserving reductions between
constraint satisfaction problems. The basic idea is better explained in the special case of the re-
duction from MAX SAT to MAX 3SAT. Standard reduction techniques based on local replacement
fail to reduce MAX SAT to MaX 3SAT due to the possible presence of large clauses. Large clauses,
however, are easy to satisfy using a simple randomized algorithm (that, in turn, performs poorly
on small clauses). We then combine (in a probabilistic sense) a solution based on standard reduc-
tions and one given by the randomized algorithm, and this mixed solution will be good for any
combination of small and large clauses. The idea of probabilistically combining different solutions
has been used in the design of approzimation algorithms (e.g. in [GW94]) but we use it for the first
time to develop an approximation-preserving reduction.

Theorem 6 (Disjunction Shrinking Theorem) Let p € (0,1/2), B,k € Zt, r,r' > 1 be such
that

S { 1 r! }
r > max )
- 1—(1=pB)H1 7 (1-p)P

Then r-approzimating MAX GSAT-B is reducible to r'-approrimating Max kB-CSP.



ProoF: Let ¢ be an instance of MAX GSAT-B with m constraints, my, be the number of constraints
of ¢ with k or less B-ary conjuncts, and ¢ be the instance of MAX £B-CSP containing these my
constraints. Define m; = m — my and ¢; = ¢ — ¢. Let 7, be an r’-approximate solution for ¢y,
and @ be the number of constraints satisfied by 7. It is immediate to verify that

opt(¢) < r'a 4+ my . (1)

Indeed, any assignment cannot satisfy more than r’a constraints in ¢ (otherwise 7, would not be
r’-approximate) and more then m; constraints in ¢;. We now define a random assignment 7 over
the variables of ¢ with the following distribution:

e If a variable z occurs in ¢y, then
Prirr(z) = m(z)]=1-p.
e If a variable z occurs in ¢ but not in ¢, then
Prirr(z) = true] = 1/2 .

Let us now estimate the average number of constraints of ¢ that are satisfied by 7. Any literal is
true with probability at least p (since p < 1/2, 1 — p > p), thus the probability that a constraint
in ¢ is contradicted is at most (1 — pP)**1. On the other hand, if a constraint is satisfied by 7,
then there is a probability at least (1 — p)B that it is still satisfied by 7r. We can thus infer a lower
bound on the average number of constraints of ¢ that are satisfied by 7g:

E[m(¢,7r)] > (1= p)Pa+ (1 - (1= pP)*)m > (1/r)opt(¢)

where the last inequality is due to (1) and to the hypothesis on p, B, k, r, and r’. Using the method
of conditional expectation [AS92a] (see also [Yan94]) we can find in linear time an assignment 7
such that m(¢,7) > E[m(¢, 7r)]. That is, the performance ratio of 7 is at most r. O

From the proof of the above theorem we have the following result.
Theorem 7 Let p € (0,1/2), k€ Z*, r,v’' > 1 be such that
r>max{1/(1—-(1-p)*™*"), /(1 -p)}.

Then r-approzimating MAX SAT is reducible to r'-approzimating MAX kSAT.

4 The Max NP-completeness Result

As a first application of the technique of the previous section we will now give a PCP-free proof of
the Max NP-completeness of MAX 3SAT. Observe that from our definition of Max NP it is sufficient
to prove that, for any B € Z*t, a PTAS-reduction from MaX GSAT-B to MAX 3SAT exists.

Theorem 8 MAX 3SAT is Max NP-complete under PTAS-reductions.

-~



Proor: The reduction will be the composition of the reduction from Max GSAT-B to
Max EB-CSP given in Theorem 6 and of the standard reduction from MaAX kEB-CSP to MAX
3SAT [PY91]. For any h, the MaX h-CSP problem is in Max SNP, and thus a PTAS-reduction
(fry gh, cr) exists from Max h-CSP to MaX 3SaT. Let ¢ be an instance of Max GSAT-B, and
let 7 > 1 be fixed. We compute values k, r/, p such that

S { 1 r! }
T max .
- 1= (1=pB)t 7 (1-p)B

We then compute ¢y (the subset of ¢ containing constraints that are disjunctions of at most k
conjuncts) that is an instance of MAX kB-CSP. From an r/-approximate solution for ¢ we are
able to reconstruct an r-approximate solution for ¢. The former problem can in turn be reduced
to find a ¢xp(r’)-approximate solution for the instance frp(¢g,r’') of MAX 3SAT. a

Remark 9 We note that, in the proof of the above theorem, the “intermediate” problem
Max kB-CSP is not fized since k depends on the approximation factor that we want to preserve.
This is not in contradiction with the definition of PTAS-reduction. Indeed, we don’t see how to use
our technique in combination with other known reducibilities.

We will now see that, in order to prove the APX-completeness of MAX 3SAT, at least a weak
version of the PCP theorem is necessary. In the following we say that an algorithm T is a non-
constructive PTAS for a maximization problem A if the following properties hold:

1. For any instance z of A and for any rational »r > 1, ¢ = T(z,r) is a real number with the
property that opt(z)/r < a < opt(x).

2. For any fixed r > 1, the running time of T'(+, r) is polynomial.

Non-constructive approximation for minimization problems is defined similarly. Note that if a
problem is in PTAS then it admits a non-constructive PTAS, but the converse is not necessarily
true (see [CT94]).

Lemma 10 PCP(logn,1) = P if and only if MAaX 3SAT admits a non-constructive PTAS.

Proor: The “if” part is a restating of the standard reduction from PCP verifiers to Max 3SAT
(see [ALMT92]).

The other direction is more interesting. We use ideas from [CT94]. For any 1/2 < s < ¢ < 1, let
GAP 35AT. s be the following promise problem: given a 3SAT formula ¢ with m clauses, reject if
opt(¢) < sm and accept if opt(¢) > e¢m. This problem is in PCP, 4[log, 3] (a proof is an assignment,
the verifier picks a random clause and accepts if and ounly if the clause is satisfied by the assignment)
and thus in PCP(logn,1) = P. Then a polynomial-time Turing machine 7, s exists such that, on
input ¢, T, s accepts whenever opt(¢$) > e¢m, rejects whenever opt(¢) < sm, and whose behaviour
is undefined otherwise. Let r > 1 be fixed: we now describe a non-constructive r-approximate
algorithm for MAX 3SAT. Let ¢ be a 3SAT formula with m clauses; its optimum lies somewhere
between m /2 and m. We divide this interval into k£ = [2/log r] subintervals, where the ith interval
(for i = 0,...,k — 1) is [ma;, ma;y1) with a; = .57%/2. For any 7, we run Tois1,0:(¢). Let j be the
largest index such that Ty, o,(¢) accepts. From the definition of T¢ s it follows that opt(¢) > ma;

(since Ty, a;(9) accepts) and that opt(¢) < majia (since Ty, 0,,, (@) rejects). It follows that
a; is a non-constructive r-approximate solution for ¢. a



The following result states that APX-complete problems are unlikely to have non-constructive
PTAS’s. This result has already been proved in [CT94] using the PCP theorem: the novelty of the
proof that we give here is that it is PCP-free.

Lemma 11 If an APX-complete problem A admits a non-constructive PTAS, then NP = co-NP.

Proor: Let (f,g,c) be a PTAS-reduction from MIN BIN PACKING to A; let 7 = ¢(1.4). Let I be
an instance of MIN BIN PACKING such that the total size of the elements is 2; it is easy to see that
the optimum packing of such instance will use either 2 or 3 bins. Distinguishing between these two
cases is NP-hard (it is a restatement of the PARTITION! problem). Let z = f(I,1.4). From the
definition of PTAS-reduction it follows that if y is an F-approximate solution for z, then ¢g(I,y,1.4)
is a 1.4-approximate solution for I (indeed, an optimum solution). An NP algorithm can compute
a non-constructive F-approximate solution » for z, then guess a solution y of measure m(z,y) > v,
compute the solution P = g(I,y,1.4) and accept if and only if m(I, P) = 3. It is easy to see that
this is an NP algorithm for the complement of the PARTITION problem. O

The above two lemmas imply the following theorem.

Theorem 12 If MAX 3SAT is APX-complete under PTAS-reductions, then NP # co-NP implies
PCP(logn,1) Z P.

This result essentially states that any proof of the APX-completeness of MAX 3SAT “contains”
already a proof of the fact that NP # co-NP implies PCP(logn,1) € P. This latter fact is weaker
than the PCP Theorem in two ways: first, the verifier has not completeness 1 (i.e. it has two-sided
error) and, second, the existence of intractable problems in PCP(logn,1) assumes NP # co-NP
instead that P # NP. Nomne of these variations appear to make the PCP theorem easier to be
proved.

5 Linear-time Approximation Schemes

In this section we will consider the planar restriction of MAX GSAT-B and we will use our reduction
technique to develop linear-time approximation schemes for this problem (in particular, for Max
SAT). The approximation schemes we describe are a composition of the reductions of Section 3
and of the linear time PTAS’s for MAX kSAT and MAX k-CSP that are implied by the techniques
of [Bak94, HMR 194, KM96].

To begin, we recall the definition of planar instance of a constraint satisfaction problem.

Definition 13 (Incidence Graph) Let F be a (possibly infinite) constraint family. Let ¢ be an
instance of MAX F over variable set X. The incidence graph of ¢, denoted Gy = (V, E) is defined

as follows:

e V has a v-vertex for each variable © € X and an f-vertex for any constraint C' of ¢.

!Recall that the NP-complete problem PARTITION is defined as follows: given a set U of items and a size function
s:U — Qn(0,1], does there exists a subset U’ C U such that



o For each constraint C' of ¢ and each variable © occurring in C there is an edge belween the
vertex for C' and the vertex for x.

For a constraint family F, MAX PLANAR F is the restriction of MAX F to instances whose in-
cidence graph is planar. We will focus on MaX PLANAR kE-CSP, MAX PLANAR SAT, and MAX
Pranar GSAT-B.

Khanna and Motwani [KM96] prove that the latter two problems have a PTAS that computes
(1 4 €)-approximate solutions in time n®(/€). We will improve the running time to O(n) (the
constant hidden in the O-notation will depend on € and, in the MaX PLANAR GSAT-B case,
also on B). We use the fact that the techniques of Khanna and Motwani yield linear-time PTAS’s
when specialized to MAX PLANAR kSAT and MAX PLANAR k-CSP (we give a sketch of this latter
result). We first give some definitions.

Definition 14 (Tree Decomposition) A tree decomposition of a graph G = (V, E) is a tree
T = (I,F), where each node i € I is labelled by a subset X (i) of V and such that:

o Uer X() = V.
o Forany (u,v) € E, an i € I exists such that u,v € X (1),
o Foranyv eV, the set {i € [ :v € X (1)} induces a sublree of T.

Definition 15 (Treewidth) The width of a tree-decomposition of a graph G is max{| X (¢)| — 1:
i € I}. The treewidth of a graph is the minimum width over all its tree-decompositions.

Theorem 16 ([Kha96]) For fized k and h, Max k-CSP restricted to instances whose incidence
graph has treewidth at most h can be solved in linear time.

Proovr:[Sketch] Given an instance ¢ of MaX k-CSP with m constraints over n variables whose
incidence graph G has treewidth at most kA we first find an optimum tree-decomposition of G.
This can be done in linear time [Bod93]. Then we apply divide and conquer: the root vertex of
the tree-decomposition is a set of h + 1 nodes of G that disconnect GG into two components. If
some of them are f-nodes than we replace them with the v-nodes corresponding to the variables
occurring in them. This gives a separator S with at most k(A + 1) v-nodes. We try all the possible
assignments to the variables of 5, for any such assignment we delete the variables of S from the
incidence graph (thus disconnecting it) and then we recurse on the connected components of the
incidence graph. Removing the root from the tree-decomposition of the incidence graph of ¢ gives
tree-decompositions for all the connected components. The running time is given by the recursion

T(m,n) = 204D (T (! ') + T(m" ") T(1,1) = O(1)

where n = n' 4+ 2" and m = m’ + m". The recursion solves as T(m,n) = O(2¥+D(m 4 n))

O(m+ n). ;

Theorem 17 For fired € > 0, MaX PLANAR k-CSP admits an (1 + €)-approzimate linear time
algorithm,

Proor: It suffices to observe that from the proof of [KM96, Theorem 1] (see also [Bak94, Theo-
rem 1]) and from a result of [Bod88] it follows that (1 + ¢)-approximating Max PraNar k-CSP
reduces to optimally solve MAX k-CSP restricted to instances whose incidence graph has treewidth
O(1/¢). From Theorem 16 the claim thus follows. a
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Theorem 18 For any fized ¢ > 0 and B € Z1, MAX PLANAR GSAT-B admits a linear time
(1 + €)-approzimate algorithm.

Proovr: Let k, p, € be constants (depending only on € and B) such that p € (0,1/2) and

!
1+62max{ 1 1te }

1= (1=pB)H1t7 (1-p)P

Let ¢ be a planar instance of MAX GSAT-B. The construction of Theorem 6 reduces the problem
of (14 €)-approximating ¢ to the problem of (14 ¢')-approximating an instance ¢’ of Max kB-CSP
obtained from ¢ by removing all the constraints with more than k& conjuncts. The reduction runs
in linear time, it doesn’t increase the size of the instance and preserves planarity of the incidence
graph. A (14 ¢)-approximate solution for ¢’ can be found in linear time using Theorem 17. O

Remark 19 (NC Approximation Schemes) Hunt et al. [HMRT 94] proved the following related
result: for any fired € > 0, MaX PLANAR k-CSP admits an (14¢)-approzimate NC algorithm. Since
the reduction in the proof of Theorem 6 can be done in NC using k-wise independent distribution
to do the derandomization, it follows that Max PLaNAR GSAT-B admits a NC approzimation
scheme. This solves an open question in [HMRY 94].

6 Comparison with Local-Replacement Reductions

Local-replacement reductions have played a fundamental role in proving NP-completeness results
(see [GJ79]). In context of constraint satisfaction problems, a local-replacement reduction maps
each constraint of the original problem into one or more constraints of the target, possibly intro-
ducing auxiliary variables.

Unfortunately, in [TSSW96] it has been shown this kind of reductions have inherent limita-
tions. For example, it is shown that it is not possible to use local-replacement techniques to give an
approximation-preserving reduction from Max k(n)SAT to Max [(n)SAT if lim,, k(n)/l(n) = cc.
As a consequence, no local-replacement can show that these two problems have the same approxi-
mation threshold?.

The next result shows that this latter fact is indeed true: its proof uses our disjunction-shrinking
reduction technique (which is not a local-replacement one).

Theorem 20 The approzimation thresholds of MAX SAT and MaX k(n)SAT are equal, provided
k(n) is a monotone non-decreasing unbounded function.

Proor: We prove that for any r and any »’ < r, the existence of an r’-approximate algorithm for
MaX k(n)SAT implies the existence of an r-approximate algorithm for MAX SAT.
There exist p and h such that p € (0,1/2) and

r 2 max{1/(1— (1= p)"*") , ¥/(1-p)} .

Since k(n) is non-decreasing and unbounded, there is some constant ng (depending only on h)
such that k(n) > h for any n > ng. The approximation algorithm for Max Sat follows from

2The approzimation threshold of an optimization problem A € APX is a real number 74 > 1 such that, for any
€ > 0, A admits an (ra + €)-approximate polynomial-time algorithm but A does not admit an (r4 — €)-approximate
polynomial-time algorithm.
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Theorem 7 and from an r’-approximation algorithm for Max ASAT. It remains to be seen that
Max ASAT is r’-approximable. Indeed, the only instances of MAaX ASAT that are not instances
of MaX k(n)SAT have at most ng = O(1) variables. For these instances an optimum solution can
be found in linear time. O

We conclude that our technique for shrinking disjunctions produces reductions that beat the local-
replacement technique, that is, that are provably better than any possible reduction by local re-
placement that fits the framework of [TSSW96]. This encourages to look for simple techniques to
obtain reductions to MAX CUT and MAX 2SAT beating the ones in [BGS95, TSSW96]: a positive
answer would imply improved non-approximability results for these problems.
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