t(“ “ he FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97' 040 Email: ftpmail @ftp.eccc.uni-trier.de with subject "help eccc’

All Pairs Almost Shortest Paths *

Dorit Dort Shay Halperin 1 Uri Zwick !

September 10, 1997

Abstract

Let G = (V, E) be an unweighted undirected graph on n vertices. A simple argument shows that
computing all distances in G with an additive one-sided error of at most 1 is as hard as Boolean
matrix multiplication. Building on recent work of Aingworth, Chekuri and Motwani, we describe an
O(min{n32m!/2,n7/3}) time algorithm APASP, for computing all distances in G with an additive
one-sided error of at most 2. Algorithm APASP; is simple, easy to implement, and faster than the
fastest known matrix multiplication algorithm. Furthermore, for every even k& > 2, we describe an
é(min{nz_%m%,nz+ﬁ}) time algorithm APASP; for computing all distances in G with an
additive one-sided error of at most k.

We also give an 6(71,2) time algorithm APASP,, for producing stretch 3 estimated distances in an
unweighted and undirected graph on n vertices. No constant stretch factor was previously achieved in
é(nz) time.

We say that a weighted graph F = (V, E') k-emulates an unweighted graph G = (V, E) if for every
u,v € V we have dg(u,v) < ép(u,v) < dg(u,v) + k. We show that every unweighted graph on n
vertices has a 2-emulator with O(n%/?) edges and a 4-emulator with O(n*/3) edges. These results are
asymptotically tight.

Finally, we show that any weighted undirected graph on n vertices has a 3-spanner with 6(71,3/2) edges
and that such a 3-spanner can be built in é(mnl/z) time. We also describe an 6(n(m2/3 + n)) time
algorithm for estimating all distances in a weighted undirected graph on n vertices with a stretch factor
of at most 3.

Keywords: Graph Algorithms, Shortest Paths, Approximation Algorithms, Spanners, Emulators
AMS Subject Classification: 05C85 68Q25 68R10 05C38

1 Introduction

The all-pairs shortest paths (APSP) problem is one of the most fundamental algorithmic graph problems.
The complexity of the fastest known algorithm for solving the problem for weighted directed graphs,
without negative cycles, is O(mn + n?logn), where n and m are the number of vertices and edges in the
graph (Johnson [Joh77], see also [CLR90]). Algorithms for the APSP problem which work on directed
graphs with non-negative edge weights and whose running times are O(m*n + n? logn), where m* is the
number of edges participating in shortest paths, were obtained by Karger, Koller and Phillips [KKP93] and
by McGeoch [McG95]. Karger et al. [KKP93] also obtain an Q(mn) lower bound on any path-comparison

* A preliminary version of this paper appeared in the proceedings of the 37th Annual IEEE Symposium on Foundations of
Computer Science, Burlington, Vermont, 1996, pages 452-461.

'Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel. E-mail addresses:
{ddorit,hshay,zwick}@math.tau.ac.il

based algorithm for the APSP problem. Takaoka [Tak92], slightly improving a result of Fredman [Fre76],
obtained an algorithm for the APSP problem, whose running time is O(n®((loglogn)/logn)/?). These
algorithms work again on directed graphs with non-negative edge weights.

The special case of the all-pairs shortest paths problem in which the input graph is unweighted is closely
related to matrix multiplication. It is fairly easy to see that solving the APSP problem exactly, even on
unweighted graphs, is at least as hard as Boolean matrix multiplication. Recent works, by Alon, Galil and
Margalit [AGM97], Alon, Galil, Margalit and Naor [AGMN92], Galil and Margalit [GM93],(GM97] and
Seidel [Sei95] have shown that if matrix multiplication can be performed in O(M (n)) time, then the APSP
problem for unweighted directed graphs can be solved in O(y/n3M(n)) time and the APSP problem for
unweighted undirected graphs can be solved in O(M(n)) time (O(f) means O(f polylogn)). The currently
best upper bound on matrix multiplication is M (n) = O(n?3") (Coppersmith and Winograd [CW90]).

While the above results are extremely interesting from the theoretical point of view, they are of little use
in practice as the fast matrix multiplication algorithms are better than the naive O(n®) time algorithm
only for very large values of n. There is interest therefore in obtaining fast algorithms for the APSP
problem that do not use fast matrix multiplication. The currently best combinatorial algorithm for the
unweighted APSP problem is an O(n®/logn) time algorithm obtained by Feder and Motwani [FM95] (see
also [BKM95]). This offers only a marginal improvement over the naive O(n3) time algorithm.

As an algorithm for the APSP problem would yield an algorithm with a similar time bound for Boolean
matrix multiplication, obtaining a combinatorial O(n3~¢) time algorithm for the APSP problem would
be a major breakthrough. Here we obtain such combinatorial algorithms for the all-pairs almost shortest

paths (APASP) problem.

Awerbuch et al. [ABCP93] and Cohen [Coh93] considered the problem of finding stretch ¢ all-pairs paths,
where t is some fixed constant and a path is of stretch £ if its length is at most ¢ times the distance between
its endpoints. Cohen [Coh93], improving the results of Awerbuch et al. [ABCP93], obtains, for example,
an O(ns/z) time algorithm for finding stretch 4 4 ¢ paths and distances in weighted undirected graphs, for
any € > 0 (all weights from now on are assumed to be positive). She also exhibits a tradeoff between the
running time of the algorithm and the obtained stretch factor. For any even t, stretch ¢ 4 ¢ paths between
all pairs of vertices can be found in O(n?t?/*) time. The works of Awerbuch et al. [ABCP93] and Cohen
[Coh93] are based on the construction of sparse spanners (Awerbuch [Awe85], Peleg and Schéffer [PS89]).
A t-spanner of a graph G = (V, E) is a subgraph G' = (V, E’) of G such that for every u,v € V' we have
de(u, v) < tédg(u,v), where dg(u, v) is the distance between the vertices u and v in the (possibly weighted)
graph G.

A different approach all together was employed recently by Aingworth, Chekuri, Indyk and Motwani
[ACIM96]. They describe a simple and elegant O(n®/2) time algorithm for finding all distances in un-
weighted and undirected graphs with an additive one-sided error of at most 2. They also make the very
important observation that the small distances, and not the long distances, are the hardest to approximate.
Based on the ideas of Aingworth et al. [ACIM96], Orlin (unpublished) obtained an O(n7/3) time algorithm
for finding all distances with an additive one-sided error of at most 4.

In this work we improve and extend the result of Aingworth et al. [ACIM96], and of Orlin, and obtain
an O(min{n%/?m'/2 n7/3}) time algorithm, called APASP,, for finding all distances in unweighted and
undirected graphs with an additive one-sided error of at most 2. Algorithm APASP, is just the first in
a sequence of algorithms APASP, for even k > 2, that exhibits a trade-off between running time and
accuracy. For any even k > 2, algorithm APASP, runs in O(min{nz_lcz?m'cz?,n2+ﬁ}) time and has
a one-sided error of at most k. Algorithm APASP,, for example, runs in O(ns/?’ml/s, n11/5) time. All
algorithms described in this paper can be easily adapted to find almost shortest paths whose lengths are
equal to the estimated distances.

In addition, we show that for any & > 2, the stretch of the estimates produced by algorithm APASP,
is at most 3. As k increases, the running time of algorithm APASP;, decreases. For £ = O(logn), the
running time becomes O(n?). We let APASP,, be the algorithm APASP;, with k = 2|logn|. Algorithm
APASP,, produces stretch 3 distances in unweighted, undirected graphs in é(nz) time. As mentioned,
no fixed stretch factor was previously achieved in O(n?) time.

We next introduce the notion of emulators. Emulators may be seen as the additive counterparts of spanners.
We show that any graph on n vertices has a 2-emulator with O (n®/2) edges, and a 4-emulator with O(n*/3)
edges. These can be constructed in O(n%?) and in O(n"/3) time, respectively. We are not able to obtain
sparser emulators. We are able, however, to construct 6-emulators of size O(n*/3) in O(n?) time. The
bounds on the number of edges in 2-emulators and 4-emulators are asymptotically tight. For any ¢ > 0,
there are graphs on n vertices that cannot be 2-emulated by graphs with n3/2-¢
on n vertices that cannot be 4-emulated by graphs with n*/3-¢ edges.

edges, and there are graphs

We are also able to obtain some results for weighted undirected graphs. We show that any weighted graph
on n vertices has a 3-spanner with O(n®?) edges and that such a 3-spanner can be found in O(mn'/?)
time. Finally, we describe an O(n(m?/3 4 n)) time algorithm for finding stretch 3 distances in a weighted
undirected graph on n vertices. Extended and improved results for weighted graphs, including an (j(nz)
time algorithm for finding stretch 3 distances and an O(n3/2m1/2) time algorithm for finding stretch 2
distances appear in Cohen and Zwick [CZ97].

2 Preliminaries

The work of Aingworth et al. [ACIM96] is based on the following simple observation: there is a small set
of vertices that dominates all the high degree vertices of a graph. A set of vertices D is said to dominate
a set U if every vertex in U has a neighbor in D. This observation is also central to our work.

Lemma 2.1 ([ACIM96], see also [AS92], pp. 6-7) Let G = (V, E) be an undirected graph with n ver-
tices and m edges. Let 1 < s < m. A set D of size O((nlogn)/s) that dominates all the vertices of degree
at least s in the graph can be found deterministically in O(m + ns) time.

Note that as s < n, the running time of this deterministic algorithm is always at most O(n?). Picking
each vertex of V independently at random with probability (clogn)/s, for some large enough ¢ > 0, will
yield a desired dominating set of size O((nlogn)/s) with high probability. A deterministic algorithm can
be obtained using the simple greedy approximation algorithm for the set cover problem. See [ACIM96] for
details.

In the subsequent sections, we use an algorithm, called dominate(G, s), that receives an undirected graph
G = (V,E) and a degree threshold s. The algorithm outputs a pair (D, E*), where D is a set of size
O((nlogn)/s) that dominates the set of vertices of degree at least s in G. The set E* C F is a set of edges
of G of size O(n) such that for every vertex u € V with degree at least s, there is an edge (u,u’) € E* such
that ' € D. Once a dominating set D is obtained, the set E* can be easily obtained by adding to E* a
single edge for each vertex of degree at least s.

Another ingredient used by our algorithm is the classical Dijkstra’s algorithm.

Lemma 2.2 (Dijkstra’s algorithm) Let G = (V, E) be a weighted directed graph with n vertices and m
edges. Let s € V. Dijkstra’s algorithm runs in O(m + nlogn) time and finds distances, and a tree of
shortest paths, from s to all the vertices of V. Furthermore, if the weights of the edges are integers in the
range {1,2,...,n} then the algorithm can be implemented to run in O(m + n) time.

Dijkstra’s algorithm appeared originally in [Dij59], though the running time of the version described there
is O(n?). For a more modern description of Dijkstra’s algorithm see [CLR90]. The running time of
O(m+ nlogn) is obtained by using Fibonacci heaps [FT87]. The observation that Dijkstra’s algorithm can
be implemented to run in O(m + n) time if the weights are in the range {1,2,...,n} is a simple exercise.

In all the algorithms described in this paper, except those of Section 7, we start with an wunweighted
undirected graph G = (V, E). We then build many auxiliary weighted graphs and run Dijkstra’s algorithm
on each one of them. The weights of the edges in these auxiliary graphs will always be integers in the
range {1,2,...,n}, so we can use the simple O(m + n) time implementation of Dijkstra’s algorithm.

By running Dijkstra’s algorithm from every vertex of a graph G = (V, E), we get an O(mn+n?logn) time
algorithm for solving the all pairs shortest paths problem (APSP). Our goal in this paper is to reduce the
running time of APSP algorithms to as close to O(nz) as possible. To achieve this goal we are willing to
settle for almost shortest paths instead of genuine shortest paths.

Our algorithms also involve many runs of Dijkstra’s algorithm. Most of these runs, however, are performed
on graphs with substantially less edges than in the original input graph. A typical step in our algorithms
is composed of choosing a vertex u € V, choosing a set of edges F, and then running Dijkstra’s algorithm,
from wu, on the graph H = (V, F). The set of edges F is not necessarily a subset of the edge set E of the
input graph. Furthermore, the set F' varies from step to step. The weight of an edge (u,v) € F is taken
to be the currently best upper bound on the distance between u and v in the input graph G. Bounds
obtained in a run of Dijkstra’s algorithm are used, therefore, in some of the subsequent runs.

In our algorithms, we use a symmetric n X n matrix, denoted {S(u, v) }u,v, to hold the currently best upper
bounds on distances between all pairs of vertices in the input graph G = (V, E). Initially S(u, v) =1, if
(u,v) € E, and S(U, v) = +oo otherwise. By dijkstra((V, F),S, u) we denote an invocation of Dijkstra’s
algorithm, from the vertex u, on the graph (V, F), where the weight of an edge (u,v) € F is taken to be
é(u, v). The edges of F' are considered to be undirected. As mentioned, an edge of F is not necessarily an
edge of E. If (u,v) € F is an edge of the original graph then its weight is 1, otherwise, its weight is greater
than 1. A call to dijkstra((V, F),d,u) updates the row and the column belonglng to u in the matrix §
with the distances found during this run, if they are smaller than the previous estimates. Note that the
matrix {S(u, v) }u,v serves as both input and output of dijkstra.

If the graph (V, F) is a subgraph of the input graph G = (V, E), then a call to dijkstra((V, F),Es, u)
amounts to running a BFS on (V, F) from u. When we want to stress this fact, we denote such a call by
bfs((V, F), s, u). In such a call, the matrix {S(U, v) }u,v is only used for output as the weight of each vertex
in the input graph is assumed to be 1.

It should be clear from the above discussion that at any time during the run of our algorithms and for any
u,v € V we have §(u,v) < é(u,v), where §(u, v) is the distance between u and v in the input graph G.

3 Additive error 2

Aingworth et al. [ACIM96] obtained an O(n%/2) algorithm for approximating all distances in an undirected
and unweighted graph with a one-sided additive error of 2. We describe two faster algorithms that have the
same accuracy. The first algorithm, apasp,, runs in é(n?’/zml/z) time. The second algorithm, apasps,
runs in O(n7/3). The first algorithm is faster if the input graph is sufficiently sparse, namely, if m < n®/3.
By combining these two algorithms we get the algorithm APASP, mentioned in the abstract.

A description of the algorithm apasp, is given in Figure 1. Throughout the paper, we let deg(v) denote
the degree of a vertex v. The algorithm is extremely simple. It starts by partitioning the vertices of the
graph G into two classes, V7 and Vo = V' \ V;. The class V; includes the high degree vertices, i.e., the

Algorithm apasp,:
input: An unweighted undirected graph G = (V, E).
output: A matrix {(u, v)},,, of estimated distances.

51 + (m/n)t/?

Vi {veV|deg(v) > s1}
Ey + {(u,v) € E | deg(u) < s; or deg(v) < s1}
(D1, E*) < dominate(G, s1)

For every u,v € V let S(U, v) { 1 if (u,v) € E,

+o0o otherwise.

For every u € D; run bfs(G, s, u))
For every u € V' \ D; run dijkstra((V, E;U E*U ({u} x D,)),4é,u)

Figure 1: An O(n?’/zml/z) time algorithm for computing surplus 2 distances

vertices of degree at least s; = (m/n)'/2. The class V, includes all the low degree vertices, i.e., the vertices
of degree less than s; = (m/n)'/2. A similar partition is used by Aingworth et al. [ACIM96] and also by
Alon, Yuster and Zwick [AYZ97]. The edge set E, is composed of all the edges that touch a low degree
vertex and therefore |Ey| = O(n-(m/n)*/?) = O((nm)/?). The algorithm proceeds by finding a set D; of
size O(n®/?/m!/?) that dominates the vertices of V; and an edge set E* C E of size O(n) such that for every
u € V; there exists v € D; such that (u,v) € E*. Finally, the main part of the algorithm is composed of two
steps. In the first, a BFS is performed on the graph G from every vertex u € D;. In the second and final
step, Dijkstra’s algorithm is run, from every u € V' \ Dy, on the graph Gy(u) = (V, E2 U E* U ({u}xDy)).
It is important to note that Dijkstra’s algorithm is not run on the input graph G, that may contain too
many edges, and that a slightly different graph is used for each vertex u € V \ D;. The graph Gj(u),
on which Dijkstra’s algorithm is run from u, includes all the edges that touch low degree vertices, edges
that connect each high degree vertex with a vertex of the dominating set, and edges connecting u with
all the vertices of the dominating set. The number of edges in Gy(u) is therefore O((nm)'/?). 1t is also
important to note that the graph Ga(u) is a weighted graph. The weight of the edges in E; U E* is 1, as in
the unweighted graph. The weight of an edge (u,v) € {u}xD;, however, is the distance between u and v
in G. This distance was found by the BFS that started at v € D;.

Theorem 3.1 Algorithm apasp, runs in O(n3/ 2mt/ 2) time, where n is the number of vertices and m is the
number of edges in the input graph G = (V, E), and for everyu,v € V we have é(u, v) < d(u,v) < §(u, v)+2.

Proof: We start with the complexity analysis. Finding the dominating set D; requires, according
to Lemma 2.1, only O(n?) time. As |D;| = O(n®?2/m!/?), the total running time of all the BFS’s is
O(n®/?/m'/?.m) = O(n®/?>m'/?). As the number of edges in each graph on which Dijkstra’s algorithm is
applied is O((nm)'/?), the total running time of all these calls is also O(n-(nm)'/?) = O(n3/?m!/?) and
this is also the running time of the whole algorithm.

We now examine the accuracy of the algorithm. The weights attached to the weighted edges in the graphs

G2(u) are distances in the graph G. This implies that the approximations produced by the algorithm cannot
be too small. In other words, §(u, v) < é(u,v) for every u,v € V. We now prove that é(u,v) < §(u,v) + 2

w' € Dy w' € Dy

C E3(u)

v

w € Hy w € Hj

Case 1 Case 2
Figure 2: (a) Case 1 in the proof of Theorem 3.1. (b) Case 1 in the proof of Theorem 3.2.

for every u,v € V. Let u and v be two vertices in G. We consider the following two (non-exclusive but
exhaustive) cases:

Case 1: There is a shortest path between u and v that contains a vertex from V;.

Let w be the last vertex on the path that belongs to V; (see Figure 2(a)). All the edges on the path from w
to v touch vertices in V, and therefore belong to Ej, and therefore to Ga(u). Let w’ € D; be such that
(w,w') € E*. The edge (w,w’) also belongs to Ga(u). As w’' € D, a weighted edge (u,w’) was added
to Ga(u). The weight of this edge is d(u, w’), the distance between u and w’ in G, found by the BFS from
w' € D;. Note that §(u,w’) < §(u,w) + 1. By running Dijkstra’s algorithm from u, on G(u), we find
therefore that
o(u,v) < O(u,w') + 8(w', w) + é(w, v)
< (0(u,w)+1)+ 14 6(w,v) =8(u,v)+2.

Case 2: There is a shortest path between u and v that does not contain any vertex from V7.

This shortest path is contained in (V, E,) and therefore §(u,v) = é(u, v). O

Algorithm apaspg, described in Figure 3, is similar to algorithm apasp,. Instead of dividing the vertices
into two classes according to their degrees, we now divide them into three classes. Instead of using
the ‘threshold’ (m/n)'/?, we now use the two thresholds n!/3 and n?/3. Another important difference
between apasp; and apasp, is that the graphs on which Dijkstra’s algorithm is run now contain the edges
(D1xV) U (DaxD3y). These edges are weighted. The weight of an edge (u,v) € D;xV is the distance
between u and v in G, found by the BFS from u € D;. The weight of an edge (u,v) € Dax Dy is the
distance between u and v in the graph (V, E3). Note that this distance may be larger then the distance
between u and v in G.

Theorem 3.2 Algorithm apasps runs in (j(n7/ 3) time, where n is the number of vertices in the input
graph G = (V, E), and for every u,v € V we have §(u,v) < é(u,v) < é(u,v) + 2.

Proof: We start again with the complexity analysis. Finding the two dominating sets D; and D, requires
only O(n?) time. As |D;| = O(n'/3), |Dy| = O(n*3), |Es| = O(n®/3) and |Es| = O(n*/3), the BFS’s
from the vertices of D; take O(n!/3-n?) = O(n"/3) time and the BFS’s from the vertices of D, take
O(n?/3-n5/3) = O(n"/?) time. As |[D;xV| = O(n*3) and |DyxDy| = O(n*/?), each graph on which
Dijkstra’s algorithm is run has only O(n4/3) edges. The total time taken by all these runs is therefore
O(n-n*/3) = O(n"/?).

It is again clear that é(u,v) < S(U, v), for every u,v € V. It remains to show therefore that S(u, v) <
d(u,v)+ 2, for every u,v € V. Let u and v be two vertices in G. We consider the following three cases:

Case 1: There is a shortest path between u and v that contains a vertex w from Vj.

Algorithm apaspj:

input: An unweighted undirected graph G = (V, E).
output: A matrix {8(u, v)},,, of estimated distances.

3 3

81 ’I’Lz/ ; S ’I’I,l/

For i < 1to2let V; « {v € V| deg(v) > s;}
For i < 2 to 3 let E; < {(u,v) € E | deg(u) < s;_1 or deg(v) < s;_1}

For i < 1 to 2 let (D;, E}) + dominate(G, s;)
E* « E}UE;
For every u,v € V let S(U, v) { 1 if (u,v) € E,

+o0o otherwise.
For every u € D; run bfs(G, s, u)

For every u € Dy run bfs((V, Es), 4, u))
For every u € V run dijkstra((V, E3UE* U (D; x V)U (D32 x D) U ({u} x D3)), 6, u)

Figure 3: An O(n7/3) time algorithm for computing surplus 2 distances

Let w’ € Dy such that (w,w’) € E (see Figure 2(b)). (Note that we do not require (w,w’) € E*, although
we could.) The edges (u,w’) and (w’, v) belong to the graph on which Dijkstra’s algorithm is run from wu.
The weights of these edges are §(u, w’) and §(w’, v), the distances found by the BFS on G from w’ € D;.
Note that é(u, w’) < §(u,w)+ 1 and é(w’,v) < 1+ é(w,v). By running Dijkstra’s algorithm from u, we
find therefore that

6(u, v) < 8(u, w') + 8(w',v) < 8(u,v) +2.

Case 2: There is a shortest path between u and v that contains vertices from V5 but not from V3.

This case is very similar to case 1 in the proof of Theorem 3.1. Let w be the last vertex on the path that
belongs to V5. All the edges on the path from w to v touch vertices that do not belong to V3 and therefore
belong to the set E3 and to the graph G3(u) on which Dijkstra’s algorithm is run from u. Let w’ € Dy be
such that (w,w’) € E*. The graph G3(u) contains weighted edges connecting u to all the vertices of Dj. It
contains in particular a weighted edge (u,w’). The weight of this edge is the distance d(u, w’) between u
and w' in the graph Gy = (V, Es), found by the BFS from w’ € Dy on G3. As all the edges on the path
from u to w, as well as (w, w') belong to E,, we get that §3(u, w’) < §(u,w) + 1. By running Dijkstra’s
algorithm from u we find therefore that

6(u,v) < 8a(u, w') + 6(w', w) + &(w, v) < 8(u,v)+ 2.

Case 3: There is a shortest path between u and v that does not contain any vertex from V5.

This shortest path is then contained in (V, E3) and therefore é(u, v) = 8(u, v). O

The above proof remains correct even if the edge set Dy X D5 is not added to the graphs on which Dijkstra’s
algorithm is run. We have added it as it may improve the accuracy of the algorithm, in certain cases, and
as it is used in the proof of Theorem 6.3. We can also replace the edge set {u}xD;, in algorithm apasp,,
and the edge set {u}xD;, in algorithm apaspj, by the larger edge set {u}xV without increasing the
running times of the algorithms.

We can easily get a randomized version of algorithm apaspg which has the property that all reported
distances greater than n2/3 are, with high probability, correct. Similarly, we can get a randomized version
of apasp, for which all reported distances greater than n3/2 / m!/2 are, with high probability, correct. We
use the following simple observation (a similar idea is used by Ullman and Yannakakis [UY91]):

Theorem 3.3 Let G = (V, E) be a weighted directed graph with n vertices and m edges. Let 1 < s < n.
There is an O(n3/s) time randomized algorithm that finds, with high probability, the ezact distance between
any pair of vertices connected by a shortest path that uses at least s edges.

Proof: Let D be a random set of vertices obtained by picking each vertex independently with probability
(clogn)/s, for some large enough ¢ > 0. The expected size of D is O(n/s). Run Dijkstra’s algorithm from
each vertex of D in both GG, and the graph obtained from G by reversing the edges. The complexity of
this step is é(nm/s) For every u € D and v € V, we now know é(u,v) and (v, u) exactly. For every
pair of vertices u,v € V, let S(u, v) = ming,ep{d(u, w) + 8(w,v)}. The complexity of this step is O(n/s).
It is easy to see that S(U, v) = é(u,v) if and only if there is a shortest path between u and v that passes
through a vertex of D. If there is a shortest path between u and v of length s, then with high probability,
at least one of the vertices on the path will belong to D. As there are O(n?) pairs of vertices connected
by shortest paths that use at most s edges, and as we can focus on one such path for each pair, we get
that, with high probability, each one of these O(n?) paths will pass through a vertex of D, and the exact
distances between all these pairs will be found. O

It follows that if the set D; in algorithm apaspg is chosen at random, by picking each element with
probability cn=?/3logn, then, with high probability, if §(u,v) > n?/3 then §(u,v) is the exact distance
between u and v. Long distances are therefore easier to compute.

4 Trading time and accuracy

Aingworth et al. [ACIM96] obtained their O(n®/?) algorithm by splitting the vertices into two classes
according to their degree. We obtain our é(n” 3) time algorithm by dividing them into three classes. It
is natural to try to divide the vertices into more classes. In Figure 4 we describe an algorithm apasp,
that divides the vertices into k classes and runs in O(n?~'/*m!/*) time. Algorithm apasp, described in
Figure 1 is a special case of this more general algorithm. We next show that algorithm apasp, has an
additive error of at most 2(k — 1).

Theorem 4.1 For every 2 < k = O(logn), algorithm apasp,, runs in (j(nz_l/kml/k) time, where n is the
number of vertices and m is the number of edges in the input graph G = (V, E), and for every u,v € V we

have 8(u,v) < §(u,v) < &(u,v) + 2(k — 1).

Proof: We start again with the complexity analysis. For every 1 < ¢ < k and u € D;, let E;(u)
be the edge set of the graph on which Dijkstra’s algorithm is run from u. It is easy to check that
|D;| = O(n?~"/*/m'~¥/*), and that |E;| = O(n - (m/n)!~G-0/k) = O(nli-U/kml=(=1)/k) for every
1 < i < k. The cost of running Dijkstra’s algorithm from every u € D;, where 1 < i < k, is there-
fore O(n?~i/k /m1=i/k . p(i=1)/km1=(i-1)/k) — O(n?~1/km!/*). The total running time of the algorithm is
therefore O (k - n?~1/km!/*) = O(n?~1/*ml/*), as k = O(logn).

For every 1 < ¢ < k and u,v € V, let §;(u,v) be the value of S(u, v) after running dijkstra from all
the vertices of D;. We now prove by induction on %, that if u € D; and v € V, then é(u,v) < é;(u,v) <
8(u,v)+2(i—1). Recall that Dy = V. For every u,v € V, we get that §(u, v) = 8 (u, v) < 8(u,v)+2(k—1),
as required.

Algorithm apaspy:

input: An unweighted undirected graph G = (V, E).
output: A matrix {(u, v)},,, of estimated distances.

Fori< 1tok —1let s; + (m/n)l_%

Fori< 1tok—1let V; « {v eV |deg(v) > s;}

For i < 2 to k let E; < {(u,v) € E | deg(u) < s;_1 or deg(v) < s;_1}
For i < 1 to k — 1 let (D;, E}) < dominate(G, s;)

Ei« FE; D+ V; E* + U1§i<kE1-*

1 if (u,v) € E,

F Vet é —
Or every u,v € et &(u, v) { +oo otherwise.

For i+ 1 to k do)
For every u € D; run dijkstra((V, E;U E* U ({u} x V)),4d,u)

Figure 4: An O(n?~/*m!/*) time algorithm for computing surplus 2(k — 1) distances

Let Gi(u) = (V, E;(u)) be the graph on which Dijkstra’s algorithm is run from v € D;. For ¢ = 1, the
claim is clear, as for every u € D; we have G1(u) = G, and therefore é;(u,v) = é(u,v) for every u € D,
and v € V. Suppose therefore that ¢ > 1 and that the claim is true for ¢ — 1. Let u € D; and let v € V.
Consider a shortest path p from u to v. If all the edges on p belong to E;, then é;(u,v) = é(u,v) and we
are done. Otherwise, there must be a vertex from V;_; on the path p. The argument that follows is again
similar to the argument used in case 1 in the proof of Theorem 3.1 and case 2 in the proof of Theorem 3.2.
Let w be the last vertex from V;_; on the path p. Let p’ be the subpath of p that connects w and v. As all
the vertices on p’, except w, do not belong to V;_1, all the edges of p’ belong to F;. Let w' € D;_; be such
that (w,w’) € E*. The graph G;(u) contains the edge (w, w’) and a weighted edge (u,w’) whose weight is
di—1(u,w') = 8;_1 (w', u). By the induction hypothesis, §;_; (w', u) < é(w', u) +2(i — 2) < 6(u, w) + (22— 3).
As a consequence, we get that

8i(u,v) < ioi(u,w') +6(w', w) + é(w,v)
< (O(u,w)+ (2¢—3)) + 1+ é(w, v)
< d(u,v)+2(:i—-1).
This completes the proof of the theorem. O

As in the previous section, we can obtain a slightly better algorithm for denser graphs. Algorithm apasp,
is described in Figure 5. There are two differences between apasp, and apasp,. The first is that the
degree thresholds are now s; = n' /% and not s; = (m/n)l_i/k. The second is that for any 1 < 71,72 < k
such that 14 j; + j2 < 2k 41, the edges of D; xD;, are added to the graph on which Dijkstra’s algorithm
is run from every vertex u € D;.

Theorem 4.2 For every 2 < k = O(logn), algorithm apasp; runs in O(n>t/*) time, where n is the
number of vertices in the input graph G = (V, E), and for every u,v € V we have §(u,v) < §(u,v) <
6(u,v) + 2([k/3] + 1).

Algorithm apaspy:

input: An unweighted undirected graph G = (V, E).
output: A matrix {8(u, v)},,, of estimated distances.

Fori<+ 1tok—1let si<—n1_%

Fori< 1tok—1let V; « {v eV |deg(v) > s;}

For i < 2 to k let E; < {(u,v) € E | deg(u) < s;_1 or deg(v) < s;_1}
For i +— 1 to k — 1 let (D;, E}) < dominate(G, s;)

Ei« FE; D+ V; E*+ U1§i<kEi*

1 if (u,v) € E,

F Vlet é —
Or every u,v € et &(u, v) { +oo otherwise.

For i+ 1 to k do
For every u € D; run dijkstra((V, E;UE*U({u} XV))U(Uitj +i.<2k+1Dj X Dj,)) , 6, u)

Figure 5: An O(n?*'/*) time algorithm for computing surplus O (k) distances

Proof: We start again with the complexity analysis. It is easy to see that all the preparatory steps of the
algorithm take O(nz) time. For every 1 < ¢ < k, and for every u € D;, we then run Dijkstra’s algorithm,
from u, on the graph G;(u) = (V, E;(u)). What is the number of edges in E;(u)? The number of edges
in E; is O(n?~(i-1)/k) as each edge of E; touches a vertex of degree less than n'~(i-1)/k The number
of edges in E* is at most n. This accounts for all the non-weighted edges in G;(u). The graph G;(u)
contains two types of weighted edges. Edges of the first type connect u with all the other vertices of the
graph. There are at most n such edges. Edges of the second type connect vertices of D; and D;, where
1< j1,52 < kand i+ j; + j2» < 2k+ 1. The number of edges in Dj;, x Dj, is ni/k . nd2/k which by the
condition % + j; 4+ j» < 2k + 1, is at most n2~(=1)/k The total number of edges in E;(u), summing over
all valid choices of j; and jj is therefore O(n?~(=1)/k) (we use the fact that k& = O(logn)). For every
1 < i < k, we therefore run Dijkstra’s algorithm O(n*/*) times on graphs with O(n?~(-1)/*) edges. The
total running time of step 4 is therefore é(n2+1/k). This is also the complexity of the algorithm.

We now study the accuracy of the distance estimates produced apasp;,. For every 1 < ¢ < k, we let §;(u, v)
be the value of é(u,v) after running dijkstra from all the vertices of D;. We now define recursively the

0 if 43 <j
eil,j,izz{ 2 if i1—|-j+iz§2k—|—1}

€i,—1,ji, + 2 otherwise

following sequence

and prove by induction the following claim:

Claim: If u € D;, and v € D;, are connected by a path p of length £ in which the vertex of highest degree
belongs to Vj, then &;, (u,v) < £+ e€;, ji,-

To prove the claim we use essentially the same arguments used in the proofs of Theorems 3.1, 3.2 and 4.1.
If 7, < j, then all the edges on the path p are contained in E;, (u) and therefore é;, (u, v) < £, as required.

Suppose now that i; + j 4+ 42 < 2k + 1 and that j < ¢;. This means that D; x D;, C E;,(u). Let w be a
vertex on p that belongs to V;. Let £; be the distance from u to w on the path p. Let £; be the distance

10

from w to v on the path p. Clearly £ = £; + £3. Let w' € Dj such that (w,w’) € E*. It is easy to see
that 8;(u, w') < £; +1 and §;(w’,v) < £y + 1. As (u,w’), (w',v) € E;, (u), we get that &;, (u,v) < £+ 2, as
required.

Finally, suppose that i; + j + 43 > 2k + 1 and that j < 4;. As j < 41, we get that V; C V;,_;. Let w be
the last vertex on p that belongs to V;,_;. Let w’ € D; _; such that (w,w’) € E*. Let £; and £, be, as
before, the distances from u to w, and from w to v on p. Consider the path p’ composed of the edge (w', w)
and the portion of the path p from w to u. The path p’ starts at w’ € D;,_1, ends at u € D;,, and the
vertex of highest degree on it belongs to V;. The length of p' is £; + 1. By applying the claim inductively
to p’, we get that &;, _ (w’,u) < €1 +1+e€;,_1,ji,- As w is the last vertex from v;, _; on p, all the edges on
the portion of p from w to v belong to E; (u). The set E; (u) also contains the edge (w’,w) € E* and a
weighted edge (u, w’) of weight é;, _; (w’, u) = &, _1(u, w’). After running dijkstra from u on (V, E;(u)) we
get &;, (u,v) < (b1 +1+ei—154)+ (1+£2) =€+ (ei,—1,4i, +2) =~£+ e ji,, as required. This completes
the proof of the claim.

Now let e; ; = e; ;i41. It is easy to verify that
0 if i<y
ei—1,; +2 otherwise

It is not difficult to unwind this recursion and get that

0 i i<
min{2(i - j),2(i —k+[1] +1)} otherwise

Finally, we get

0 if j=kF 0 if j=Fk
eMk:{ 2 ifj=1 }:{ 2 if j=1 }.
er—1,; +2 otherwise min{ 2(k — j), 2[3] +2} otherwise

It is now not difficult to verify that for every 1 < j < k, we have e jr < 2(|k/3| +1). As D, =V, this
completes the proof of the theorem. O

To get an additive error of at most k, where £ > 2 is even, we can either use algorithm apasp k/2+1)

-~ 2 2 ~ 2
whose running time is O(n*” ¥2m#+2), or algorithm apasp (3k—2)/2; Whose running time is O(n*Ts%=2),
The combination of these two algorithms is the algorithm APASP; mentioned in the abstract.

Although the additive error of the estimated distances produced by apasp, and apasp, increases as k
increases, we can show that the stretch of the estimated distances produced is always at most 3.

Theorem 4.3 For every 2 < k = O(logn), algorithm apasp,, runs in é(nz_l/kml/k) time, and for every
u,v € V we have 6(u,v) < é(u,v) < min{é(u,v)+ 2(k — 1), 36(u,v) — 2}.

Proof: We only have to show that for every u,v € V we have g(u, v) < 38(u,v) — 2. All the rest follows
from Theorem 4.1. We start with the following claim:

Claim 4.4 Let p be a path of length £ between u and v, where u € D;. If §;(u,v) > £+ 2r, then there are
at least r + 1 edges on the path p that do not belong to E; U E*.

11

We prove this claim by induction on ¢. If ¢ = 1, then é;(u, v) = d(u, v) < £ and there is nothing to prove.

Suppose that the claim is true for every j < i. Let p be a path of length ¢ between u € D; and v, and
suppose that é;(u,v) > £+ 2r. It follows that not all the edges of p belong to E;(u). This completes the
proof if » = 0. Suppose therefore that r > 0. Let e = (w1, w2) be the last edge on p that does not belong
to Ei(u). Let 1 < j < ¢ be such that wy € V;\ V;_1 (where Vo = ¢). As wy ¢ V;_1, we get that e € Ej.
Let w) € D, such that (w,,w)) € E*. Let £; and £, be the distances from u to w; and from w, to v
on p. As §;(u,v) > £+ 2r, on the one hand, and §;(u,v) < é;(wh, u) + 1 + £2, on the other, we get that
dj(wh,u) > (b1 + 1)+ 2(r — 1). Let p’ be the path from w) to u composed of the edge (wj, wz) and the
portion of p from w3 to u. According to the induction hypothesis, there must be at least » edges on p' that
do not belong to E; U E*. As (wj), wz) € E* we get that all these r edges must be edges of p. As e € Ej,
we get that e is not one of these edges. As e ¢ E; U E*, we get that there must be at least r + 1 edges on p
that do not belong to E; U E*, as required. This completes the proof of the claim.

A path p of length £ may contain at most £ edges that do not belong to Ej U E*. Thus, if p is a path
of length £ connecting v € Dy, and v, then it follows from the above claim that é(u,v) < 3£. Note that
Dy = V. This is almost what we wanted to show, but not quite.

Consider again a path p of length £ between two vertices u and v. If at least one of the edges of p belongs
to E U E*, then Claim 4.4 implies that S(u, v) < 3¢ — 2. If the path p is of length one, i.e., £ =1, then
6(u,v) = 6(u,v) = 1 = 3¢ — 2. Otherwise, we know that e; = (u,u') and e; = (v',v), the first and last
edges on the path p, do not belong to Ej U E*. As a consequence, we get that u,v € V1. Let 1 < j; <k
and 1 < j, < k be such that u € V; \ Vj,_1 and v € Vj, \ Vj,_1 (where again Vj = ¢). Assume, without
loss of generality, that j, < j;. For brevity, let j = jo. As u,v & V;_1, we get that e;,e3 € E;. Let w € D;
such that (v,w) € E*. Let p’ be the path from w to u composed of the edge (w,v) and the path p in
reversed order. As the number of edges on the path p’ that do not belong to E; U E* is at most £ — 2, we
get, by Claim 4.4, that §;(w,u) < (£+ 1)+ 2(£ — 2) = 3£ — 3. Thus, d(u,v) < §j(w,u) +1 < 3£ -2, as
required. O

As an immediate corollary, we get that the estimated distances produced by apasp, satisfy §(u,v) <
S(U, v) < (83— %)5(11, v), for every u,v € V. For k = 2, the distances are stretched by a factor of at most 2.
For k = 3, the distances are stretched by a factor of at most 7/3. For any k, the distances are stretched
by a factor of at most 3.

By taking k = ©(logn), we get an O(n?) time algorithm for finding stretch 3 approximate distances. An
extension of this algorithm for weighted graph is presented in [CZ97].

5 Boolean Matrix Multiplication

Let A and B be two Boolean n x n matrices. Construct a graph G4, = (V, F) with

V = {uy,...,un}U{v1,.. ., o} U{wsy,...,wn},
E = {(w,v) | aiw =1} U{(vk, w;) | br; =1} .
The graph corresponding to two 3 x 3 matrices is depicted in Figure 6. Let C = A x B (Boolean matrix

multiplication). Clearly, ¢;; = 1 if and only if d¢(u;, w;) = 2. Furthermore, as the graph G 4 p is bipartite,
ci;j = 1 if and only if ég(u;, w;) < 3. As an consequence we get

Theorem 5.1 If all the distances in an undirected n vertex graph can be approzimated with a one-sided
additive error of at most one in O(A(n)) time, then Boolean matriz multiplication can also be performed

in O(A(n)) time.

12

Figure 6: Boolean matrix multiplication.

By adding a disjoint path of length k& — 2 ending at each u;, we get that, for any fized k > 2, distinguishing
between distance k and k + 2 in graphs with n vertices, i.e., deciding for each pair of vertices u, v whether
0(u,v) < k, or §(u,v) > k+ 2 (if §(u,v) = k + 1, then either decision is fine), is at least as hard as
multiplying two Boolean matrices of size n X n. Note, in contrast, that if £ > n2/3 then by Theorem 3.3, we
can distinguish, with high probability, between distance k and k 4 2 in graphs with n vertices in O(n7/ 3
time, i.e., faster than then the fastest known matrix multiplication algorithm.

Similarly, as any approximation algorithm that finds approximated distances of stretch strictly less than 2
can distinguish between distance 2 and distance 4, we get that getting approximate distances of stretch
less than 2, between all pairs of vertices, is also as hard as Boolean matrix multiplication.

By turning the graph G4 p into a directed graph, where edges are directed to the right, we get that
cij = 1 iff ég(u;,w;) < oo. Approximating distances in directed graphs, to within any multiplicative
factor, not necessarily bounded, is therefore as hard as Boolean matrix multiplication. Note that such
an approximation is equivalent to the computation of the transitive closure of the graph. It is proved in
[AHU74] (see Theorems 5.6 and 5.7) that the computation of the transitive closure of a directed graph is
equivalent to Boolean matrix multiplication. We end this section with another simple observation:

Theorem 5.2 If two n X n Boolean matrices could be multiplied in O(M(n)) time, then for any fized
€ > 0, all the distances in an vnweighted directed graph on n vertices can be estimated with stretch 1 + ¢

in O(M(n)) time.

Proof: Let G = (V, E) be an unweighted directed graph on n vertices. Let A be the adjacency matrix
of the graph with self loops added to all the vertices. Note that dg(u,v) < d, if and only if (49),, = 1.
Let r; = [(1 +¢€)f], for 1 < i < k = [log;,.n]. We compute A™, for 1 < i < k. We let 6(u,v) = rip1
if and only if (A™),, = 0 but (A™+'),, = 1. It is easy to verify that for every u,v € V we have
8(u,v) < 8(u,v) < (1+¢€) - 8(u,v), and that the running time of this algorithm is O (M (n)). 0

6 Distance Emulators

Closely related to the algorithms of Sections 3 and 4 is the notion of emulators.

Definition 6.1 (Emulators) Let G = (V, E) be an unweighted undirected graph. A weighted graph H =
(V, F) 1is said to be a k-emulator of G if and only if for every u,v € V we have d¢(u,v) < ég(u,v) <

dc(u,v) + k.

There is one significant difference, however, between emulators and the auxiliary graphs used in the algo-
rithms of Sections 3 and 4. There, we constructed for each vertex u an auxiliary graph G (u) that supplied
good approximations to the distances from u to all the vertices of the graph. Here we want a single graph

13

that will supply good approximations of all distances. Constructing a sparse k-emulator is therefore harder
than computing surplus k distances.

The definition of k-emulators is related to the definition of k-spanners (Awerbuch [Awe85|, Peleg and
Schéffer [PS89]). Let G = (V, E) be a weighted undirected graph. A subgraph G’ = (V, E’) of G is said to
be a k-spanner of G if and only if for every u,v € V we have dq/(u,v) < k-dg(u,v). As G’ is a subgraph
of G, we always have g (u, v) < dgs(u,v). This definition differs from the definition of emulators in three
respects. We require additive error, not multiplicative error. We do not insist on getting a subgraph
of the original graph and we allow weighted edges. Althofer et al. [ADD%93] also consider Steiner
spanners in which vertices and edges may be added to the graph. Steiner spanners are more closely
related to emulators. Liestman and Shermer [LS93] consider additive spanners. They are able, however, to
obtain sparse additive spanners only for specific graphs such as pyramids, grids and hypercubes. Additive
spanners, unlike emulators, must be subgraphs of the original graph. Emulators may be described as
weighted additive Steiner spanners. The definition of k-emulators is also related to the definition of hop

sets (Cohen [Coh94]).

Implicit in the work of Aingworth et al. [ACIM96] is an O (n?/?) time algorithm for constructing 2-emulators
with O(n3/2) edges. We can get the following slightly stronger result.

Theorem 6.2 Every unweighted undirected graph G = (V, E) on n vertices can be 2-emulated by a sub-
graph G' = (V, F) with O(n®/?) edges. Such a subgraph can be constructed in O(n?) time.

Proof: We start by proving the existence of such an emulator. Split the vertices of G into two classes:
Vi = {v € V| deg(v) > n'/?} and V5 = {v € V | deg(v) < n'/?}. Find a set D of size O(n'/?) that
dominates V; and a set £* of at most n edges such that for every u € V; there exists v € D such that
(u,v) € E*. From every v € D perform a BFS and find its distances to all the vertices of the graph. A
2-emulator of G of size é(n3/2) is then obtained by taking all edges that touch vertices of V3, and weighted
edges between any vertex of D and any vertex of V. Instead of adding these weighted edges, we can simply
take a tree of shortest paths rooted at each vertex of D. The total number of edges is still O(n®/?). Tt is
easy to check that the resulting subgraph is a 2-emulator. The proof is similar to the proofs of Theorems 3.1
and 3.2.

The above construction can be carried out in O(n?/?) time. The most time consuming task is running
BFS from all the vertices of D. To reduce the running time to O(n?), we split the vertices into O(logn)
classes, instead of just two. The resulting algorithm emul, is given in Figure 7. Note that s, the last
degree threshold in emul,, is about n'/2,

The complexity analysis of emul, is straightforward. Note that |D;| = é(n/sz) The graph (V, E;) on
which we run BFS from each vertex of D; has O(ns;_;1) edges. The total running time of all these runs
is therefore O(n? - s;_1/s;) = O(n?). As k = O(logn). The total running time of the whole algorithm is
also O(n?).

It is also easy to check that |F| = O(n®/2). This follows from the fact that |Ej| = O(nsz_1) = O(n%/?), and
from the fact that each tree of shortest paths contains exactly n — 1 edges and the total number of vertices
from which we run BFS, and therefore the total number of shortest paths trees that we use, is O(nl/z).

All that remains is to show that G' = (V, F) is indeed a 2-emulator of G. Note that G' = (V,F) is a
subgraph of G = (V, E). The fact that dg(u,v) < dg/(u, v) for every u,v € V follows from the fact that G’
is a subgraph of G. We have to show that for every u,v € V we have é¢(u,v) < dg/(u,v) < dg(u,v) + 2.
We consider two different cases.

Case 1: There is a shortest path between v and v in G all whose edges are contained in Ep.

In this case, ¢/ (u,v) = da(u, v).

14

Algorithm emulsy:

input: An unweighted undirected graph G = (V, E).
output: A subgraph 2-emulator (V, F) of G.

Let k < [1log, n]
For i + 0 to k let s; < n/2

Fori< 1tok —1let V; « {v eV |deg(v) > s;}
For i <— 1to k let E; < {(u,v) € E | deg(u) < s;_1 or deg(v) < s;_1}

For i < 1 to k — 1 let (D;, E}) < dominate(G, s;)

Fori<1tok—1do
For every u € D; run bfs((V, E;) , 6, u)

The edge set F' is composed of E}, and the edges
of all the shortest paths trees found in all the BFS runs.

Figure 7: An O~(n2) time algorithm for generating a subgraph 2-emulator

Case 2: Every shortest path between v and v in G contains edges that are not contained in FEj.

Consider a shortest path p between v and v in G. Let w be a vertex of highest degree on p. Let 1 < i < k
be such that w € V; \ V;_; (where Vo = ¢). Let w’ € D; be such that (w,w’) € E. As all the vertices
on p do not belong to V;_;, we get that all the edges on p, as well as the edge (w, w’) belong to E;. The
shortest paths tree constructed by running BFS on (V, E;) from w’ contains therefore a path from w’ to u
of length at most dg(u, w)+ 1, and a path from w’ to v of length at most dg(w, v) + 1. It follows that this
shortest paths tree, and therefore G’ = (V, F'), contain a path from u to v of length at most é¢(u, v) + 2.

This completes the proof of the theorem. O

A subgraph 2-emulator is also an additive 2-spanner and a multiplicative 3-spanner. In Section 7 (Theo-
rem 7.3) we show that weighted graphs also have 3-spanners of size O(n3/ 2). We present there an algorithm,
whose running time is O(mn'/2), for finding such 3-spanners. As there are bipartite graphs with Q(n%2)
edges that do not contain cycles of length four [Wen91], this result is tight, up to polylogarithmic factors.
We can also show:

Theorem 6.3 Every unweighted undirected graph G = (V, E') on n vertices has a 4-emulator with é(n4/ 3
edges. Such a graph can be constructed in O(n7/ 3) time.

Proof: It is not difficult to check that the graph G5 = (V, EsUE*U (D1 xV)U(D3xDy)), in the notations
of algorithm apasp, is a 4-emulator of G = (V, E). O

It is tempting to claim that k-emulators, for £ > 4, can be similarly obtained by running apasp, with
k > 4. Unfortunately, this is not true. The fact that all the edges that touch a vertex u are added to
the graph on which distances are found from u seems to be crucial there. We cannot do the same with
emulators as we are supposed to use the same graph for all sources.

15

Algorithm emulsg:

input: An unweighted undirected graph G = (V, E).
output: A 6-emulator (V, F) of G.

Let k < [2log, n]
For i + 0 to k let s; < n/2

Fori< 1tok —1let V; « {v eV |deg(v) > s;}
For i <— 1 to k let E; < {(u,v) € E | deg(u) < s;_1 or deg(v) < s;_1}

For i +— 1 to k — 1 let (D;, E}) < dominate(G, s;)
E* + Ui<i<k E}

1 if (u,v) € E,

F Vet é —
Or every u,v € et &(u, v) { +oo otherwise.

Fori+ 1tok —1do
For every u € D; run bfs((V, E; U E*), 4, u)

Let F < Ex UE* U] D; x Dy_y
The weight of an edge (u,v) € F is §(u, v)

Figure 8: An O(nz) time algorithm for generating a 6-emulator

Let ej, be the infimum of all numbers for which each graph on n vertices has a k-emulator with O(n!*e*)
edges. We have shown that e; < 1/2 and e4 < 1/3. Does e — 0 as k — co0? This remains an intriguing
open problem.

We are not able to construct emulators with o(n*/3) edges. We can, however, construct 6-emulators
with O(n*/3) edges in O(n?) time.

Theorem 6.4 Let G = (V,E) be an unweighted undirected graph of n vertices. A 6-emulator of G
with O(n*/3) edges can be constructed in O(n?) time.

Proof: The required 6-emulator is generated by algorithm emulg given in Figure 8. Algorithm emulg
is similar to algorithm emul,. Note that s, the last degree threshold in emulg, is about nl/3.

The complexity analysis of emulg is almost identical to the complexity analysis of emul, and it is omitted.
It is also easy to check that [F| = 0(77:4/3). This follows from the fact that |E| = O(ns;_,) = O(n*/?), and
that |D;| - |Dyp_1| = O((n/sp_1)?) = O(n*/?), for every 1 < i < k — 1, and from the fact that k = O(logn).

All that remains is to show that H = (V, F) is indeed a 6-emulator of G. We have to show that for every
u,v € V we have d¢(u,v) < ég(u,v) < d¢(u,v)+ 6. The fact that dg(u,v) < dg(u,v) for every u,v € V
is obvious.

Case 1: There is a shortest path between v and v in G all whose edges are contained in Ej.
In this case, ég(u,v) = dg(u, v).

Case 2: Every shortest path between v and v in G contains edges that are not contained in Fj.

16

Consider a shortest path p between u and v in G. The path must pass through at least two vertices
from Vj_;. Let w; and wg be the first and last such vertices on the path (the vertex w; may be u and the
vertex wg may be v). Let wy be a vertex with the maximum degree on the path (the vertex wy may be one
of wy and w3). Let 1 < i < k be such that wy € V;\ V;_1. Let w}, w§ € Di_1 be neighbors of w; and w3
such that (wi, w]) € E* and (ws, wy) € E*. Let w)y € D; be a neighbor of wy such that (w,, wy) € E*.

As w; and wg are the first and last vertices from Vj_; on the path, and as (w;,w}), (ws, w}) € E*, we
get that 8z (u,w}) < dg(u,w1) + 1 and g (ws,v) < dg(ws,v) + 1. As wy is a vertex with maximum
degree on the shortest path from u to v, the shortest path p and the edges (wi,w]), (wa, w}), (ws, ws)
are contained in the graph G; = (V,E; U E*). We get, therefore, that ég (w1, ws) = d¢; (w1, ws) and
dc (w2, w3) = dg; (w2, ws) and thus d¢g, (w], wh) < ég(wi,ws) + 2 and dg; (wh, wy) < dg(w2, ws) + 2. For
every z € D; and y € Dy, we have added to F an edge (z,y) whose weight is at most dg, (z,y). We get
therefore that é (w], w)) < dg(w1, wz) + 2 and g (wh, wh) < ég(wsz, ws) + 2. Combining these bounds we
get
6u(u,v) < du(u, wll) + 6H(w11: wlz) + SH(wéi wll’x) + SH(w:I’n v)

< (bg(u,w1) + 1) + (dg(wr, wa) + 2) + (bg (w2, ws) + 2) + (ba(ws,v) + 1) = d¢(u,v)+6 .
This completes the proof of the theorem. |

It is easy to see that k-emulators are Steiner (k+1)-spanners. It follows easily from the arguments of
Althofer et al. [ADD793] and the constructions of Wenger [Wen91] that there are unweighted undirected
graphs on n vertices for which every Steiner 3-spanner, and therefore any 2-emulator, must have Q(n?’/)
edges, and there are graphs for which every Steiner 5-spanner, and therefore any 4-emulator, must have

Q(n*/3) edges (where Q(f) = Q(f / polylogn)).

7 Stretched Paths and Distances

In this section we describe algorithms for finding stretched paths in weighted graphs. We use the following
result which is part of the folklore.

Lemma 7.1 (Truncated Dijkstra) Let G = (V, E) be a weighted graph on n vertices. Suppose that the
adjacency lists of the vertices of G are sorted according to weight. Let v € V be a vertex of G and let
1 < s < n. Shortest paths from v to s vertices closest to v can be found in O(s?) time.

The set of s vertices returned by the truncated Dijkstra algorithm running from v is not uniquely defined,
as there may be many vertices at the same distance from v. All that we require is that if S is the set of
vertices returned by the algorithm then for every u € S and w € V' \ S we have §(v,u) < §(v, w).

Theorem 7.2 Let G = (V,E) be a weighted undirected graph with n vertices and m edges. We can
preprocess the graph in O(mz/ 3n) time so that given any two vertices u,v € V, we can in O(1) time output
an estimated distance 8(u,v) satisfying é(u,v) < é(u,v) < 3-6(u,v).

Proof: Let s be a parameter to be chosen later. We run the truncated Dijkstra algorithm from every
vertex v € V and find a set N(v) of s vertices closest to v. The time required for finding these sets is
O(ns?®). Next, we find a set D of size d = O(n/s) so that for every v € V, there is u € D such that
u € N(v). Such a set can be found in O(ns) time. For every vertex v € V, we keep a pointer to a vertex
u = P(v) such that u € DN N(v). We now run the full Dijkstra algorithm from all the vertices of D. The
time required is O(nm/s). We keep an d x n matrix with the distances from the vertices of D to all the

17

other vertices of the graph. The time used so far is O(ns? + nm/s). This is minimized by taking s = m!/3,

The total time is then O(m?/3n).

Given a pair of vertices u and v, we first check whether v € N(u). If so, we output the exact distance
d(u,v) computed during the truncated Dijkstra from u. Otherwise, we let w = P(u) € D N N(u) and
we output the estimated distance §(u,v) = &(u, w) + 8(w,v). The distance &(u, w) was found during the
truncated Dijkstra from u. The distance é(w, v) was found during the full Dijkstra from w.

Clearly 8(u,v) < §(u,v). If v € N(u), then §(u,v) = (u,v). If v € N(u), then §(u,w) < §(u,v) and the

estimate é(u, v) satisfies

0(u,v) = 6(u,w)+é(w,v) < 6(u,w)+ (6(w,u) + 8(u,v)) < 26(u,w)+6(u,v) < 36(u,v),
as required. O

Using essentially the same algorithm we can get:

Theorem 7.3 Every weighted undirected graph G = (V, E) on n vertices has a 3-spanner with O(n3/?)
edges. Such a 3-spanner can be constructed in O(mn'/?) time.

Proof: Let s be a parameter to be chosen later. Run the truncated Dijkstra algorithm from every vertex
and find for every vertex v € V a set N(v) of s vertices closest to v. Find a set D of size O(n/s) such
that for every v € V, there is u € D N N(v). We then run a full Dijkstra from every vertex of D. The
3-spanner will be composed of the shortest paths trees found in all the truncated and full runs of Dijkstra’s
algorithm. The total number of edges will therefore be O(ns + n?/s). We choose s = n'/2. The number
of edges in the 3-spanner is then O(n3/2) and the total running time is O(ns? + nm/s) = O(n? + mn'/?).
Note however, that if mn'/2 < n? then m < n%/2 and the original graph is the required 3-spanner. O

Cohen and Zwick [CZ97] extend the techniques presented here and obtain, among other things, an é(nz)
time algorithm for finding stretch 3 distances, and an O(n3/2m1/2) time algorithm for finding stretch 2
distances in weighted undirected graphs with n vertices and m edges.

8 Concluding remarks and open problems

We have shown that surplus 2 estimates of all distances in an unweighted undirected graph on n vertices
can be computed in O(n7/3) time, i.e., faster than the fastest known matrix multiplication algorithm.

Many open problems still remain. We end by mentioning some of them:
1. Is it possible to find surplus 2 estimated distances between all pairs of vertices in a graph on n vertices
in O(n"/3~¢) time, for some € > 0?

2. Is it possible to find surplus k estimated distances between all pairs of vertices in a graph on n
vertices, for some fixed constant k > 2, in O(n?) time?

3. Do there exist fixed constants & > 2 and € > 0 such that every graph on n vertices has a k-emulator
with O(n*/3-¢) edges?

4. Is it possible to find the ezact distances between all pairs of vertices in an unweighted directed graph
on n vertices in O(M(n)) time, where M (n) is the time needed to multiply two n X n matrices?

18

Acknowledgment

We would like to thank Howard Karloff for many helpful discussions and for comments on an earlier version
of this extended abstract, and Edith Cohen and David Peleg for some clarifications regarding their papers.

References

[ABCP93]

[ACIMO96]

[ADD*93]

[AGM97]

[AGMN92]

[AHU74]

[AS92]
[Awe85]
[AYZ97]

[BKMO5]

[CLRYO]

[Coh93]

[Coh94]

[CW90]

B. Awerbuch, B. Berger, L. Cowen, and D. Peleg. Near-linear cost sequential and distributed
constructions of sparse neighborhood covers. In Proceedings of the 34rd Annual IEEE Sympo-
stum on Foundations of Computer Science, Palo Alto, California, pages 638-647, 1993.

D. Aingworth, C. Chekuri, P. Indyk, and R. Motwani. Fast estimation of diameter and short-
est paths (without matrix multiplication). To appear in SIAM Journal on Computing. A
preliminary version appeared in the Proceedings of the 7th Annual ACM-SIAM Symposium
on Discrete Algorithms, Atlanta, Georgia, pages 547-553., 1996.

I. Althofer, G. Das, D. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry, 9:81-100, 1993.

N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pairs shortest path problem.
Journal of Computer and System Sciences, 54:255-262, 1997.

N. Alon, Z. Galil, O. Margalit, and M. Naor. Witnesses for boolean matrix multiplication and
for shortest paths. In Proceedings of the 33rd Annual IEEE Symposium on Foundations of
Computer Science, Pittsburgh, Pennsylvania, pages 417-426, 1992.

A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of computer algorithms.
Addison-Wesley, 1974.

N. Alon and J.H. Spencer. The probabilistic method. Wiley, 1992.
B. Awerbuch. Complexity of network synchronization. Journal of the ACM, 32:804-823, 1985.

N. Alon, R. Yuster, and U. Zwick. Finding and counting given length cycles. Algorithmica,
17:209-223, 1997.

J. Basch, S. Khanna, and R. Motwani. On diameter verification and boolean matrix multi-
plication. Technical Report STAN-CS-95-1544, Department of Computer Science, Stanford
University, 1995.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to algorithms. The MIT Press,
1990.

E. Cohen. Fast algorithms for constructing ¢-spanners and paths with stretch ¢ (extended
abstract). In Proceedings of the 34rd Annual IEEE Symposium on Foundations of Computer
Science, Palo Alto, California, pages 648-658, 1993.

E. Cohen. Polylog-time and near-linear work approximation scheme for undirected shortest
paths. In Proceedings of the 26th Annual ACM Symposium on Theory of Computing, Montréal,
Canada, pages 16—26, 1994.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions. Journal
of Symbolic Computation, 9:251-280, 1990.

19

[CZ97]

[Dij59]

[FMY5]

[Fre76]

[FT87]

[GMO3]

[GMO7]

[Joh77]

[KKP93]

[LS93]
[McG95]

[PS89]
[Sei95]

[Tak92]

[UY91]

[Wen91]

E. Cohen and U. Zwick. All-pairs small-stretch paths. In Proceedings of the 8th Annual ACM-
STAM Symposium on Discrete Algorithms, New Orleans, Louisiana, pages 93-102, 1997.

E.W. Dijkstra. A note on two problems in connexion with graphs. Numerische Mathematik,
1:269-271, 1959.

T. Feder and Rajeev Motwani. Clique partitions, graph compression and speeding-up algo-
rithms. Journal of Computer and System Sciences, 51:261-272, 1995.

M.L. Fredman. New bounds on the complexity of the shortest path problem. SIAM Journal
on Computing, 5:49-60, 1976.

M.L. Fredman and R.E. Tarjan. Fibonacci heaps and their uses in improved network optimiza-
tion algorithms. Journal of the ACM, 34:596-615, 1987.

Z. Galil and O. Margalit. Witnesses for boolean matrix multiplication. Journal of Complezity,
9:201-221, 1993.

Z. Galil and O. Margalit. All pairs shortest paths for graphs with small integer length edges.
Journal of Computer and System Sciences, 54:243-254, 1997.

D.B. Johnson. Efficient algorithms for shortest paths in sparse graphs. Journal of the ACM,
24:1-13, 1977.

D.R. Karger, D. Koller, and S.J. Phillips. Finding the hidden path: time bounds for all-pairs
shortest paths. SIAM Journal on Computing, 22:1199-1217, 1993.

A L. Liestman and T.C. Shermer. Additive graph spanners. Networks, 23:343-363, 1993.

C.C. McGeoch. All-pairs shortest paths and the essential subgraph. Algorithmica, 13:426-461,
1995.

D. Peleg and A.A. Schaffer. Graph spanners. Journal of Graph Theory, 13:99-116, 1989.

R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of
Computer and System Sciences, 51:400-403, 1995.

T. Takaoka. A new upper bound on the complexity of the all pairs shortest path problem.
Information Processing Letters, 43:195-199, 1992.

J.D. Ullman and M. Yannakakis. High-probability parallel transitive-closure algorithms. STAM
Journal on Computing, 20:100-125, 1991.

R. Wenger. Extremal graphs with no C*’s, C®’s and C'%’s. Journal of Combinatorial Theory,
Series B, 52:113-116, 1991.

20

