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Razborov [5] recently proved that polynomial calculus proofs of the pigeon-
hole principle PHP™ must have degree at least [n/2] + 1 over any field. We
present a simplified proof of the same result (Section 2). For more background
on the problem refer to [1, 2, 5].

The main idea of our proof is the same as in the original proof of Razborov:
we want to describe explicitly the vector space of the polynomials derivable in
a low degree polynomial calculus refutation of the pigeonhole principle, and the
description uses the pigeon dance as before. We are able to avoid some of the
technical machinery, due to the simple counting argument which shows that the
set of polynomials, which generates the vector space of consequences, forms its
basis.

Furthermore we show a matching upper bound on the polynomial calculus
proofs of the pigeonhole principle for any field of sufficiently large characteristic
(Section 3), and an [n/2] +1 lower bound for any subset sum problem over the
field of reals (Section 4).

We show that the degree lower bounds also translate into lower bounds
on the number of monomials in any polynomial calculus proof, and hence on
the running time of most implementations of the Groebner Basis Algorithm
(Section 5).

The results in Sections 3 to 5 were obtained independently of Razborov’s
work in [5], while the degree lower bound for arbitrary field from Section 2 was
obtained later, and uses the principal ideas from Razborov’s paper.
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1 Preliminaries

Definition 1.1 ([3]) Given a field K and o set of variables, a polynomial cal-
culus refutation of the set of axioms P is a sequence of polynomials such that
the last line is the polynomial 1 and each line is either an axiom or is derived
from the previous lines using the following inference rules:

f g
af + By
and
f
z-f
where a, B € K are any scalars and x is any variable. The refutation has degree
d if all the polynomials in it have degree at most d.

We assume that polynomials 22—z are included in the axioms for all variables
. Then the axioms fi, ..., fr are refutable if and only if the system f; = fo =
-++ = fr, = 0 has no 0-1 solutions. The question we are interested in is whether
there exists a refutation of a small degree.

The special case of Nullstellensatz refutations can be viewed as polynomial
calculus refutations where all multiplication inferences precede all addition in-
ferences.

The set {1,...,4} is denoted by [i]. For a polynomial f, let f be the unique
multilinear polynomial equal to it modulo the ideal generated by all the polyno-
mials 22 — 2. In this paper, all the lower bounds show that in fact any refutation
of some initial polynomials has to contain a polynomial f with large degree of
f-

Now we define the pigeonhole principle, in the usual form used for lower
bounds in propositional calculus. The variables are x;;, ¢ € [m], j € [n]. The
assignment z;; = 1 represents the fact that the pigeon ¢ is sitting in the hole j.

Definition 1.2 Let
Q;i=1- Z Tij-
]

j€[n

The (negation of the) pigeonhole principle ~PH P is the following set of poly-
nomaials:

Q; for i € [m]
TijTij forie[m], j,5 €n],j#j'
LT forii' € [m],j€(n],i#4

2 A lower bound for PHP over any field

For this section we fix m, n, and an arbitrary field K.



Definition 2.1 Let T be the set of all monomials ;, ;, - - - x4, j, such that all i,
are distinct and all j; are distinct, and let Ty be the set of monomials in T of
degree at most d.

Using the identities z;;z;; = 0, ;;2,+; = 0, and xfj = x;;, We can represent
any polynomial as a linear combination of terms from 7', without increasing
the degree. Therefore any polynomial calculus refutation of ~PHP]* can be
transformed into a refutation which uses only the axioms @); and simplifications
by the previous identities (which is equivalent to the use of the corresponding
axioms). This is equivalent to computing in the ideal I generated by the poly-
nomials @, T 5, and 7; — x5, which has a basis T as a vector space over
K. From now on we assume that this transformation is performed, hence all
the polynomials are in span(T'), and all the computations are modulo the ideal
1.

Our goal is to construct a base By of the vector space generated by Ty such
that the basis elements are products of some variables and some axioms @);
(e.g., £3,1253Q2Q4). If we express all the lines of the proof in this basis, it will
become clear that 1 cannot be derived from the initial polynomials @;. More
precisely, we give an explicit subset of B, such that its linear closure contains
(exactly) all low degree consequences of the axioms @);, but not 1.

The definition of the basis B, uses the pigeon dance, which was introduced
by Razborov [5]. The proof that B, spans the whole space is based on rewriting
the terms using the pigeon dance, as in [5, Claim 3.4]. To prove that the
elements By are linearly independent, we exhibit a one-to-one map from By
into T, which can be viewed as a generalized pigeon dance. This part of the
proof is new, and avoids the more complicated parts of the original proof in [5].

We now proceed to define a convenient common notation for the elements
of the old and new bases. Elements of Ty correspond to the partial one-to-one
mappings from [m] to [n] of size at most d. We extend this representation, so
that the product of some variables z;; and axioms @); is represented by a partial
mapping from [m] to {0,...,n}, where the value 0 on ¢ corresponds to @Q; in
the product. Since we allow more axioms ); in the product, we require the
mapping to be one-to-one only on the part of domain not mapped to 0.

Definition 2.2 Let

A = {a|a is a partial function from [m] to {0,1,...,n} such that
Vi(a(i) =a(i') #0=>i=14)}.

Ag={aeA|la <d}

Fora ={(i1,51),.--, (K, Jr), (41,0),...,(i},0)} € A such that ji,..., 5% # 0 we
define

a= {(il’jl)a ey (ik’jk)}

Lo = Tiyjy  Tigg Qay -+ Qat-



(If a is the empty function, x, = 1. Clearly for any a € A the degree of x, is
equal to |a| = |dom(a)|.)

Given the assignment of pigeons to holes a € A we define the pigeon dance
as the following procedure. We take the first pigeon and move him to some
currently unoccupied hole larger than the one he is sitting in, then do the same
with the second pigeon, and so on, until the last one. This procedure in general
is not unique, and sometimes it is impossible to finish a pigeon dance at all.
Intuitively, the best strategy for the pigeon dance is to move always to the
closest unoccupied hole. After the formal definition we indeed prove that this
is the case.

Definition 2.3 Let a € A be given. We define a pigeon dance on a to be any
sequence by = a, by, ..., b,, of elements of A with the same domain as a such
that for 1 <t < m, by (i) = by_1(2) for any i € dom(a) — {t} and by(t) > b;_1(t)
if t € dom(a). (In particular, by = by—1 if a(t) is undefined.)

Let a € A, t € [m]. We define Di(a) to be a function b € A such that
dom(a) = dom(b), b(i) = a(i) for i € dom(a) — {t}, and if t € dom(a) then
b(t) = j where j is the smallest number such that a(t) < j < n and j &€ rng(a);
if mo such j exists, Di(a) is not defined. We define the minimal pigeon dance
on a to be

D(a) = Din(Dm—1(...D1(a)...)).
Lemma 2.4 ([5]) If there exists a pigeon dance ona € A, then D(a) is defined.

Proof. Let by = a, by, ..., b,, be a pigeon dance on a such that the first t — 1
steps are the same as in the minimal dance, i.e., for 1 <4 < ¢, b; = D;(b;—1)-
We prove that then D;(b;—1) is also defined and there exists a pigeon dance
c =a, 1, ..., Cy such that the first ¢ steps are the same as in the minimal
dance. By induction, this is sufficient to conclude that D(a) is defined.

Let j be the minimal j > b;—1(¢) such that j & rng(b:—1), and let j' = b.(¢).
Such j exists and satisfies 7 < j', since b; is a step in a pigeon dance, and thus
bi—1(t) < be(t) = j' & rng(bi—1). If j = 7', we are done. Otherwise j < 5/ and
we define the new dance as follows. For ¢ < t, ¢; = b;. For i > t,

J it b)) =y
a(i')y=< 7 it b@{)=3j
bi(i") otherwise.

Note that the first possibility, b;(¢") = j', is true if and only if ¢ > ¢ and ' = ¢.
It is easy to verify that c is a pigeon dance and the first ¢ steps are the same as
in the minimal dance. L]

Definition 2.5 (The basis By)

By ={z,|a € Ay and there exists a pigeon dance on i}



From the definition of By it is obvious that B4_1 C By, and z,Q; € By if
and only if 2, € Bg—1 and i & dom(a). This monotonicity is very important
later in the proof. The fact that a basis with a similar property does not exist
for other principles, like the counting principles or onto pigeonhole principle,
makes it difficult to prove lower bounds in those cases by similar technique.

Next we proceed to prove that the minimal pigeon dance D is defined on
whole By for a small degree d (i-e., for every a € A4, D is defined on a whenever it
is defined on a), and maps it one-to-one into T (in fact, its inverse is essentially
the minimal dance with the holes numbered in the opposite direction).

Lemma 2.6 If d < [n/2] and a € Ay there exists a pigeon dance on a if and
only if there exists a pigeon dance on a.

Proof. Let x = |al, let y be the number of pigeons assigned to the hole 0 by a.
If y = 0, there is nothing to prove. Otherwise y + 2z < n. Fix any pigeon dance
on a. It uses at most 2z different holes, hence there are at least y holes among
{1,...,n} that are not used at any time during the dance on a. The pigeon
dance on a proceeds as follows: on its turn each pigeon sitting in the hole 0 is
moved to one of the y unused holes which is still empty; all other pigeons move
as in the dance on a. The other direction is trivial. (]

Lemma 2.7 The minimal pigeon dance D is a one-to-one mapping on its do-
main.

Proof. It is sufficient to prove for any ¢ € [m] that D, is one-to-one on its
domain, as D is a composition of these mappings. Suppose D;(a) = D(a’) = b
are both defined. Then according to the definition of D;, dom(a) = dom(b) =
dom(a’) and a(i) = b(¢) = a'(i) for any ¢ # t in the domain. It cannot be
the case that a(t) < a'(t), since then the hole a'(t) is unoccupied in a and
(D¢(a))(t) < a'(t) < (D¢(a"))(t). The case a(t) > a'(t) is symmetric. Assuming
Dy(a) = Dy(a') we proved that a = a’. Hence D, is one-to-one. ]

Proposition 2.8 For any d < [n/2], the set By is a basis of the vector space
generated by Ty.

Proof. By Lemma 2.6, D(a) is defined for any z, € By. Clearly, zp(a) € Ta,
since after any pigeon dance no pigeon is sitting in the hole 0. By Lemma 2.7,
D is one-to-one, and hence |By| < |T4|. Since Ty is a basis of Ay, its elements
are linearly independent. It remains to prove that any x, € Ty can be expressed
as a linear combination of elements of By. This is established in [5, Claim 3.4];
we include the proof for completeness.

We define a variation of the lexicographic ordering on Ty: for z,,z, € Ty
we put a < b if and only if dom(a) C dom(b) or (dom(a) = dom(b) and for the
largest ¢ such that a(i) # b(¢) we have a(i) < b(:)). (Note that this is not a
linear ordering, since we do not compare elements with incomparable domains.)

Suppose that for all o’ < a, z, € span(By). We want to prove that z, €
span(Bg). If there exists a pigeon dance on a, z, € By and we are done.



Otherwise let P; be the set of all possible results of the first ¢ steps of the pigeon
dance on a. We prove by induction on ¢ that

z, € span(Bg) iff Z xp € span(By).
beP;

This proves that z, € span(B,), since there is no complete dance on a and
hence P,, = (. The basis of the induction holds, since Py = {a}. If t & dom(a)
then P, = P;_; and the step is trivial. Otherwise for each b € P;_; we express
Ty as T;x. and rewrite it as

oy = (1= Q= Y @y )e = Te — TeQr — Y TejrTe — D Tyjric.

J'#3 J'<3 3'>3

If j' € rng(c), then the corresponding term is 0. All the remaining terms except
those in the last sum are in span(B;) by the induction assumption: for the
second term we use the fact that . € span(By_1) implies that z.Q; € span(By),
and for j' < j we use the fact that b(i) = a(i) for ¢ > ¢ and hence x5z, < z,.
The last term corresponds to all possible t¢th steps of the pigeon dance on a,
and hence summing over all b € P;_; we obtain that ), @ € span(By) if
and only if )3, _p @y € span(By). m

Theorem 2.9 PHP™ has no polynomial calculus refutation of degree d <
[n/2].

Proof. We prove by induction on the length of the proof that any polynomial
derivable from the polynomials @; in degree d is a linear combination of poly-
nomials in By — Ty (i-e., it is a linear combination of such elements of By that
are multiples of some axiom ;). This finishes the proof, since 1 € Ty, and
hence it cannot be derived (here we use the fact that By is a basis and hence
the representation of 1 is unique).

For the axioms the claim is true, since Q; € By — Ty for any i. The case of
the addition rule is trivial. For the multiplication rule we need to prove that
for any z,;; and z, € Bq — T4, |a| = d — 1, the polynomial z;;z, is a linear
combination of elements from By —T,;. From the definition of By it follows that
Z, can be written as xz, = x,Q for some b € By_» and i’ € [m]. Now express
Z;;Zp as a linear combination of elements x., from the basis B;_;. Multiply
this expression by @) to obtain a linear combination of elements z., Q;; all
these elements are either 0 if i’ € dom(c, ), or are in B, otherwise. ]

3 Upper bounds over the reals
In this section we prove a matching upper bound of [n/2] + 1 for the proofs

of PHP in all the cases where the field is large enough. First we show that a
refutation with this degree exists for the polynomial m — Z]n':1 ¥;, and then we



reduce PHP to it. Note that this formula is also a special case of subset sum,
for which we prove a lower bound in the next section.

Lemma 3.1 Suppose that there exists a derivation of g from a set of polynomi-
als P such that every non-zero monomial in the derivation has at most b distinct
variables. Then there exists a derivation of g from P of degree max(b+ 1,d),
where d is the mazimal degree of g and P. In particular, if g is any consequence
of P and N is the total number of variables, there exists a derivation of g from
P of degree max(N +1,d).

2

Proof. For any polynomial f, we can derive f — f using the axioms z? — z
in degree equal to the degree of f. We modify the original refutation so that
each line f is replaced by f. The inferences by linear combinations are still
valid. When f is multiplied by z in the original proof, we first multiply z - f,
and then adding a result of an auxiliary derivation of z - f — z - f we obtain
z-f =z f. Also, at the axioms and at the end of the proof we add auxiliary
derivations of f — f as needed. The degree is as claimed, since the degree of
any multilinear polynomial in the new derivation is at most b, and the largest
degree of a polynomial z - f is thus b + 1. The second assertion follows since
polynomial calculus is complete, and clearly every monomial has at most N
variables. L]

Theorem 3.2 Assuming m > n and m is larger that the characteristics of the
giwen field, the polynomial m — 22'121 y; has a refutation of degree [n/2] + 1.

Proof. Let Y = E]r’__L/Iﬂ y;. The refutation starts by deriving the polynomials
p and ¢ defined below; intuitively p asserts that the sum of the first half of
the variables is between 0 and [n/2] and ¢ asserts that the sum is between
m — |n/2| and m:

p = YY-1)-2)--(Y—[n/2])
g = Y-m¥ -m+1)--- (Y —m+|n/2])

The polynomial p is a consequence of the axioms y7 — y; for the first [n/2]
variables, and hence by Lemma 3.1 it has a proof of degree [n/2] + 1.

The polynomial ¢ is derived similarly using the second half of the variables.
More precisely, let Z = m — 272—11 v, The polynomial Z? — Z can be derived
from the axiom m — 22:1 y; and y2 — y,. Now ¢ can be rewritten as the
following polynomial in the [n/2] variables Yy, 2141, - -, Yn—1, Z:

n—1 n—1 n—1
(2= 3 w)=Z- > g+ (=Z—- Y yi+In/2])
j=[n/2]+1 j=[n/2]+1 j=[n/2]+1

This asserts that the sum of the variables is in {0,1,..., |n/2]|}, which follows
from the axioms. Hence by Lemma 3.1, g has a proof of degree [n/2] +1 <



[n/2] + 1. The degree of the proof is the same in the original variables, as the
substitution for Z is linear.

From the assumption on m it follows that m ¢ {0,1,...,n} in the given field,
and hence the polynomials p and ¢ are contradictory. Therefore there exists a
refutation from them, and by Lemma 3.1 it has degree [n/2] + 1. L]

Theorem 3.3 Assuming m > n and m is larger that the characteristics of the
given field, then ~PHPM™ has a refutation of degree [n/2] + 1. In particular,
-~ PHP™ has a refutation of degree [n/2] + 1 over the reals for any m > n.

Proof. Denote y; = Y i, ;;, j € [n]. The refutation of PHP is constructed
as follows. First, using the axioms z;;zy; and &7, — x;; we derive y7 — y; for
all j € [n]; this part has degree 2. Then we derive m — Z?zl y; as the sum of
all the axioms @);, ¢ € [m]; this part has degree 1. Finally, using Theorem 3.2
we derive the polynomial 1. The last part has degree [n/2] + 1 even after the
substitution y; = >, z;;, since the substitution is linear. (]

4 A lower bound for subset sum over the reals

In this section we prove a simple lower bound on the degree of polynomial
refutations in the case of the field of real numbers. A special case of this lower
bound for a; = ... = a, = 1 gives a matching bound to Theorem 3.2 for the
field of reals.

Theorem 4.1 Let cy,...,c, be nonzero reals, m an arbitrary real. Then m —
St cix; has no refutation of degree [n/2] in the field of real numbers. (If m
is the sum of a subset of ¢1,...,cy, then, of course, there is no such refutation
of any degree.)

Proof. The combinatorial content of the proof is a well-known result about
incidence matrices. For every k < n define a matrix D} as follows. The rows
of D} are indexed by the k element sets A C [n], the columns are indexed by
k + 1 element sets B C [n], and the entry (A, B) is 1 if A C B and 0 otherwise.
It has been shown that the matrix has full rank [4].!

Lemma 4.2 Let p(x1,...,%,) be a nonzero real polynomial of degree less than
[n/2]. Then the degree of (m — Y7 | ¢;x;)p(®1,...,2,) is deg(p) + 1.
Proof. Let the degree of p be k. Let C be a matrix indexed as D} such that
the entry C4,p) is ¢; if AU {i} = B and 0 otherwise. The matrix C can be
obtained from D} by multiplying each row A by [[;c 4 ¢;” ! and multiplying each
column B by [[;.p¢i. Since all the numbers ¢; are nonzero, the rows of C are
linearly independent.

Suppose that the degree of (m — Y., a;z;)p(z1, ..., z,) is less than k + 1.
Thus the monomials of degree k + 1 cancel in this product. These monomials

IThe result has been rediscovered by several several people, including the authors of this
paper. We are indebted to Nati Linial for the reference.



result from multiplying the monomials of p of degree k£ by monomials c;x;.
Consider a monomial [],. 4 #:, where |A| = k. If we multiply > ", ¢;z; by this
monomial, the resulting monomials of degree k + 1 are C4,p) 11é € Bz, over
all B. Thus if all monomials of degree k£ + 1 cancel, we have a nontrivial linear
dependency among the rows of C, a contradiction. (]

The proof of the theorem now follows easily from the above lemma. First we
get by induction that every polynomial derivable by a proof of degree < [n/2]
is (modulo the ideal generated by z? — ;) of the form p(m — Y., a;z;) with
deg(p) < [n/2] — 1. Applying the lemma once again, we see that 1, which is a
polynomial of degree 0, is not derivable by proofs of degree < [n/2]. m

5 Lower bounds on the number of monomials

In this section, we show that for any instance of subset sum over the reals, and
the pigeonhole principle over any field, an exponential number of monomials
appear in any polynomial calculus refutation. Since most implementations of
the Groebner basis algorithm represent polynomials as a data structure with
monomials as basic elements, this yields an exponential lower bound on the time
these implementations of the Groebner basis algorithm take on any unsolvable
instance of subset sum, or on the pigeonhole principle.

Our argument uses the outline of the simulation of resolution by the poly-
nomial calculus from [3]. We simulate any polynomial calculus proof with a
sub-exponential size proof by a different proof with sub-linear degree. Thus,
since we have linear degree bounds, this yields an exponential size bound. The
argument for subset sum applies to any set of polynomials with a linear degree
bound. The proof has to be tailored for the pigeon-hole principle, since the
number of variables is actually the square of the degree bound.

Let plz—. be the restriction of a polynomial p obtained by replacing variable
x by the constant c; let P|,—. be the set of all p|z—., p € P. We use the following
definitions and claim from [3] (it is stated there for multilinear polynomials, but
it holds with no change for arbitrary polynomials).

Lemma 5.1 ([3, Lemma 9]) Let z be a variable, ¢ any constant, and P a
set of polynomials of degree at most d. Suppose that P|,—o has a polynomial
calculus refutation of degree d and P|,=1 has a refutation of degree 1 + d, then
P has a refutation of degree 1+ d.

We use this lemma to prove:

Theorem 5.2 If P is a set of polynomials of degree at most d in n variables,
and P has a polynomial calculus refutation with M mon-zero monomials, then
P has a polynomial calculus refutation of degree O(d + (nlog M)/?),

Proof. Let b = max(d, [(nln M)'/?]). For a given P, let S be the number of
non-zero monomials in the refutation of P containing at least b distinct variables.



If S = 0 then all the monomials have less than b distinct variables, hence
P has a refutation of degree b by Lemma 3.1. We prove that if S > 1 then
there exists a refutation of P of degree 1+ b —log;_;/,, S (we set the logarithm
to 0 if the basis is not positive). The theorem then follows, since S < M and
In(1—b/n) < —b/n, which implies that —log, _;/, S < (n/b)InS < (nln M)'/2.

We use induction on S and on the number of variables that appear in the
proof. Choose a variable z in at least Sb/n monomials of degree larger than b;
it exists by the definition of S. For any constant ¢, we can form a refutation
of P|,=. by replacing each line g of the refutation of P by ¢|,—.. Since (p +
QDle=c = Ple=c + Gla=c, (PQ)|z=c = Plz=cqlo=c, and 1|;=. = 1, this remains a
valid refutation.

For ¢ = 0 the restriction described above removes all the monomials con-
taining x, and hence it removes at least Sb/n monomials of degree larger than
b. Thus it produces a refutation of P|,—¢ with less than (1 — b/n)S monomials
with at least b variables. If (1 — b/n)S > 1 then by induction on S the set
Ply=o has a refutation of degree 1+ b —1log,_,/,((1 —b/n)S) =b—log,_;/,, S.
Otherwise all monomials have less than b variables and hence by Lemma 3.1,
Pl;—o has a refutation of degree b <b —log;_;/,, S.

For ¢ = 1 we obtain a refutation of P|,—1 with at most S monomials with at
least b variables. Using the induction on the number of variables in the proof,
P|;=1 has a refutation of degree 1 +b—1log;_,, S. Thus, applying Lemma 5.1,
there is a refutation of P of degree at most 1+ b —log,_;/,, S. L]

As an immediate consequence we obtain:

Corollary 5.3 For any set of inconsistent constant degree polynomials, if d is
the minimum degree of a polynomial calculus refutation, and M is téze minimal
number of non-zero monomials in such a refutation, then M > 2@°/7),

Corollary 5.4 Any polynomial calculus proof over the reals of any subset-sum
problem requires 22(") monomials.

Proof. By Theorem 4.1 the minimum degree is Q(n). The bound M >
2%n*/n) = 29n) then follows from Corollary 5.3 n

The Groebner basis algorithm is a method for computing normal forms for
polynomial equations. (Actually, since many parameters are left unspecified, it
is best thought of as a family of methods for such computation.) Its two main
operations, reductions and S-remainders, can both be simulated by the poly-
nomial calculus. In [3], the simulation of resolution by the polynomial calculus
was used to argue that the Groebner basis algorithm is a good substitute for
resolution-based algorithms for satisfiability: the instances on which it is bet-
ter than exhaustive search properly contains those where resolution methods
are much better than exhaustive search. Here, we have shown that, as long as
polynomials are written out as a vector of terms, the Groebner basis algorithm
is mever better than exhaustive search for subset-sum problems! So the appro-
priateness of using the Groebner basis algorithm for N P-complete problems is
highly problem specific.
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Corollary 5.5 For any implementation of the Groebner basis algorithm that
stores polynomials as vectors or lists of their non-zero monomials, the algorithm
will take exponential time, i.e., time 2°(™) when run on any unsolvable instance
of subset sum over the real numbers.

Although PHP]" has nm variables, we can prove a stronger simulation for
the special case, and so still get a size lower bound.

Theorem 5.6 If PHP]" has a polynomial calculus refutation with M non-
zero monomials, then PHPT has a polynomial calculus refutation of degree
O((nlog M)'7?),

Proof. Let b = [(2nIn M)'/?] and let P be any restriction of PHP™ by
Ziyjy = C1,---,%iyj, = Ck, Where c1,...,¢, € {0,1}. Let S be the number of
non-zero large monomials in some refutation of P, we call a monomial large if
it contains at least b distinct holes (i.e., b variables z;; with distinct 7).

We prove that if S > 1 then P has a refutation of degree 2+b—log;_, /5, S
and if S = 0 then P has a refutation of degree b+ 1. The theorem then follows
by the same calculation as in Theorem 5.2. We proceed by induction on S and
reverse induction and k.

If S =0 we first remove all the monomials containing x;;z; ; for some i # i’
using the axioms z;;z; ;; we obtain a refutation with at most b distinct variables
in each monomial. Then by Lemma 3.1 we obtain a refutation of P of degree
b+ 1.

If S > 1, choose a pigeon hole j which appears in at least bS/n large mono-
mials; it exists by the definition of S. Choose ¢ such that some large monomi-
als contain z;;. By induction on k we can always find a refutation of degree
2+ b —log;_y/s, S for both Pl;, =0 and P|;,;=1 (note that k increases, since
x;; appears in the proof). The induction step follows by Lemma 5.1 if we find
refutations of either P|;,;=o or P|;,;=1 of degree 1 +b —log;_; /5, S.

If 2;; appears in bS/2n large monomials, then in the restriction P|,,,—o these
monomials are removed. Hence by induction on S (using the bound for S =0
if necessary) P|;,;=o has a refutation of degree 2+b—1log;_;/5,((1 —b/2n)S) =
1+b—1logy 490 S

If x;; appears in less than bS/2n large monomials, consider the set P|;,, —1.
It contains the polynomials z;; and z;; for all ¢/ # ¢ and j' # j. Let P’ be
the set P further restricted by setting all these variables to 0. This restriction
removes at least bS/2n large monomials containing the hole j but not x;;. Hence
by induction on S, P’ has a refutation of degree 2+b—log; _y/5,((1—b/2n)S) =
1+b—log;_y/9, S. We can construct a refutation of P|;,;=1 of the same degree,
by simply adding auxiliary derivations of the axioms of P’ using the axioms z,
and z;;:; these have always degree 1 due to the definition of PHP. ]

Corollary 5.7 Any polynomial calculus proof over any field of PHP;" has
2°%") monomials.
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6 Conclusions and open problems

The lower bound can be translated in a design-based lower bound on Nullstellen-
satz refutations (see [2]); the value of the design on a monomial is the coefficient
at 1 if the monomial is expressed in the basis B;. Perhaps if we would have
a more explicit description of this design, we could modify it to work also for
other principles. However, the current proof shows that any polynomial calculus
refutation can be converted to a Nullstellensatz proof of the same degree, which
is not necessarily true for other principles than PHP.

Of course, as mentioned in [5], the most interesting problem is to extend the
lower bounds to stronger systems like the bounded depth Frege systems with
modular gates, perhaps using the machinery of extension polynomials from [2].
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