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Abstract

We consider the conjecture stating that a matrix with rank o(n) and ones on the main di-
agonal must contain nonzero entries on a 2 x 2 submatrix with one entry on the main diagonal.
We show that a slightly stronger conjecture implies that an explicit linear transformation can-
not be computed by linear size and logarithmic depth circuits. We prove some partial results
supporting the conjecture.

1 Introduction

The problem of relating the rank of a matrix to its structural properties given by the pattern of
its nonzero entries is a classical problem in mathematics. In complexity theory the most famous
instance of this problem is the relation between the communication complexity of a {0,1} matrix
and its rank over the field of reals [10, 6]. In this paper we consider a less known problem which,
however, might have even more interesting consequences, as it could lead to a nonlinear lower
bound on some algebraic circuits [7]. Unlike in the case of communication complexity, it seems
that the nature of the problem under investigation here does not depend so much on the field in
question, whereas the relevant ‘structure’ seems to be just provided by the distinction between
zero and nonzero elements. This research goes in the direction proposed by Valiant [12], who
suggested that some lower bounds on the size of circuits can be proved by constructing matrices
with certain properties. Before we explain the connection to Valiant’s results, we have to introduce
some concepts.

We shall call [2, 2] configuration a 2 x 2 submatrix consisting of nonzero elements and having exactly
one entry on the main diagonal. In graph theoretical terms a [2, 2] configuration corresponds to a
transitive triangle, thus we shall sometimes call it just triangle.

Conjecture 1 ([The Triangle Conjecture]) For every field F, there exists € > 0 such that every
n x n matriz M with nonzero entries on the main diagonal, and such that rank(M) < en, contains
a [2,2] configuration.
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The Triangle Conjecture implies a nonlinear lower bound on the computation of cyclic shifts by
semilinear circuits [7]. Proving nontrivial lower bounds on cyclic shifts is an important task, since
this class of functions can be reduced to the multiplication function. Another notion to which it is
related is that of matrix rigidity, a concept introduced by Valiant [12]. The rigidity of a matrix M
is the function Rps(r), which for a given r gives the minimum number of entries of M which one
has to change in order to reduce its rank to r or less. Valiant proved the following result.

Theorem 1 ([12]) If for some € > 0, the n X n matriz M, has rigidity Ry, (en) > n'*e, then
the transformation x — Mpyx cannot be computed by linear size and logarithmic depth circuits with
gates computing linear functions over a given field.

Although both a random matrix and a matrix whose entries are different indeterminates have rigid-
ity even larger than required by Theorem 1 (close to n?), very little is known about explicit matrices.
The best known lower bounds on the rigidity of explicit matrices are of the form Q("T2 log %) [3],
which gives only linear lower bounds on Rjps(en). It seems that Hadamard matrices have large
rigidity over the real field, but the best bound is so far only 2(n?/r?), due to Alon (unpublished).

Another relation of this type was found by Razborov [8]. He proved that some weaker bounds on
rigidity would imply that a {0,1} matrix defines a function which is not in the communication
complexity version of the polynomial hierarchy. The existing lower bounds on the rigidity are,
however, insufficient even for that.

As an intermediate step, Smolensky (and independently one of the authors) proposed to prove
a large lower bound on the rigidity of a Toeplitz matrix with indeterminates. He suggested to
make the problem of proving a lower bound easier by allowing the changed values to be just linear
functions of the indeterminates. The proof in [7] can be easily adapted to show that the ’triangle
conjecture’ implies a lower bound of the type needed in Theorem 1 for a Toeplitz matrix with
indeterminates. (This is true even if one allows the changes to be polynomials.)

In this paper we come up with an explicit matrix which has the rigidity required by Theorem 1,
just assuming a slightly stronger conjecture (Section 2). In the current situation where we lack any
methods for proving large lower bounds on rigidity, this gives a concrete program for proving such
bounds, provided that the Triangle Conjecture is true. Even if the conjecture fails, this matrix may
be a good candidate for large rigidity.

We also show a construction of circulant matrices which gives nonlinear bounds on the rigidity
Ry(en), for every fixed € > 0 assuming only the Triangle Conjecture (Section 3). Such a bound is
sufficient for proving a nonlinear lower bound on the size of series-parallel circuits computing the
transformation M.

In the following sections we present some supporting evidence for and results on the conjecture.
We have tested the conjecture for some small symmetric matrices, in the case of rank over GF[2].
For the sizes n < 32 we have verified that every symmetric matrix with ones on the main diagonal
and rank < n/4+1 contains a triangle. There is a unique, up to isomorphisms, family of symmetric
matrices of rank n/4 + 2 with ones on the main diagonal and without triangles. Such matrices do
exist for every n, but we cannot prove that they are extremal. They will be described in Section 5.

We shall also show a decomposition for symmetric matrices over GF[2] with at least one 1 on the
main diagonal, which simplifies either the search for counterexamples or a possible proof (Section



4). Namely, every such matrix A can be represented as UU . This representation allows us to
investigate the conjecture for GF'[2] in a purely combinatorial way, since we can treat the rows of the
matrix U as a set system. Since in the Triangle Conjecture we assumed that all the diagonal entries
are nonzero, we have that all sets have odd cardinalities. A triangle corresponds to three sets, every
two of which intersecting in odd sets. In Section 6 we prove a theorem on set systems which implies
the conjecture for the special case where the number of ones in each row of U is bounded by a
constant. This theorem is a version of the famous Erdés-Rado theorem on sunflowers (also called
delta systems). Accidentally, this type of a theorem has been used at least twice to prove a lower
bound on the size of circuits [9, 4]. Especially the last one is very much related to our new result,
though the application is completely different.

We also show a more general result that applies to matrices that admit, over GF'[2], the factorization
UV, where the number of ones in each row of U and each column of V' is bounded by a constant.

In the case of the field of reals it seems that the triangle conjecture holds with ¢ = 1/2. Our
experimental evidence is supported by a result of Rosenfeld [11]. He proved that a symmetric
positive definite n x n matrix of rank < n/2 with ones on the main diagonal contains a [2,2]
configuration. His proof uses properties of the eigenvalues of the matrix, which do not hold in
the non definite case. However he pointed out that our conjecture can be reduced to a stronger
conjecture on symmetric matrices. Namely, consider the following conjecture, for some fixed field
F and e > 0.

We use the term principal submatriz to denote a submatrix which shares the main diagonal with a
given maftrix.

Conjecture 2 FEvery symmetric n X n matriz of rank < en contains a 6 X 6 principal submatriz
of nonzero elements.

Conjecture 2 implies the Triangle Conjecture for fields of characteristic different from 2, as follows
from the argument below. Take a matrix M with rank < $n (¢ from Conjecture 2), and let
A=M+ MT. By Conjecture 2, A contains a 6 x 6 principal submatrix of nonzero elements. This
submatrix corresponds to a complete graph on 6 elements. Color the edges of this graph blue, if
the corresponding entry in the right upper half of M is nonzero, and red otherwise. Since 6 is the
Ramsey number R(3,3), we must have either a blue or a red triangle, i.e., a [2,2] configuration
either in the right upper half or in the left lower part.

This conjecture seems to be less likely to be true than the previous one. Alon and Szegedy [1]
proved that if we replace 6 by a sufficiently large constant, the statement is false. Namely, for every
§ > 0 there exists k such that there are matrices with ones on the main diagonal and rank < n®
with no k& x k principal submatrices of nonzero elements. The minimal k£ for which one can get
sublinear rank from their proof is still rather large, but there is no a priori reason for that.

In general there is only an Q(y/nlogn) lower bound on the rank of {0, 1} matrices with ones on the
main diagonal and without triangles. This bound easily follows from the well-known bound on the
Ramsey number R(3,k) = O(k?/logk). Namely, let an n x n matrix M be given and n > R(3, k).
Color the edges of the complete graph on n vertices as above, but now using the given matrix
M. If M does not contain a [2,2] configuration in the right upper part, the complete graph does
not contain a blue triangle. Hence there must be a red complete subgraph on k elements. This
corresponds to a k X k principal submatrix with zeros above the main diagonal, which has rank k.



Although our results do not improve on any current lower bound on circuit complexity, we nev-
ertheless think that we made a visible progress in that area. Fundamental problems in circuit
complexity cannot be solved by gradually increasing lower bounds. We need to make progress in
associated combinatorial and algebraic problems, and this paper is a step in this direction.

2 A possibly rigid matrix

Call [2,3] configuration a 2 x 3 submatrix consisting of nonzero elements and having at least one
entry on the main diagonal. A [3,2] configuration is defined in a similar manner. Note that unlike
the case of [2,2], we allow two entries to be on the main diagonal; this is to make the following
conjecture weaker.

Conjecture 3 For every field F there exists € > 0 such that every n xn matriz M with rank(M) <
en contains either a [2,3] or a [3,2] configuration.

In Lemma 2 below, we prove some properties of an explicit family of circulant matrices. We will
then use these properties to show that, assuming Conjecture 3, these matrices have high rigidity
(see Theorem 3).

Lemma 2 For each n > 2 there exists at least one {0,1} circulant matriz Cy,, such that

1. C, contains at least n*1/5 nonzero entries;

2. C, does not contain a 2 x 2 submatriz of nonzero entries, i.e., every two rows and every two
columns share at most one nonzero coordinate;

3. for every pair i,j of indices of a zero entry of Cy, there exist at most two 2 X 2 submatrices
containing this entry and with the other entries different from zero.

Proof. For a given n, we consider a subset A, = {a1,aq,...,a;} of {0,...,n—1} such that (a) all
the two-term sums S(?) = {a;i +aj:1<i<j <k} are distinct mod n, and (b) all the three-term
sums S®) = {an+a;+a; :1<h <i<j <k} are distinct mod n. It is easy to see that one can
use a “greedy” algorithm to construct a set A, satisfying (a) and (b), and such that a; < k®, from
which |A,| > ns.

Let now C), be the nxn {0, 1} circulant matrix whose first row is given by the characteristic vector of
the set A,,. We shall index the rows and the columns by numbers 0,...,n—1. Fori € {0,...,n—1},
we shall call the i—th diagonal the set of entries with indices (0, 7), (1,i+1),..., (n—1,i+n—1(=,))-

1. The circulant matrix C, has at least |A,| > n'/5 nonzero diagonals and thus at least n't!/
nonzero elements.

2. Let us assume that the matrix C, contains a rectangle, and denote by a, b, ¢, and d the
numbers of the diagonals corresponding to the corners of the rectangle, with a and b on the



first row and ¢ and d on the second row of the 2 x 2 submatrix. It is easy to see that, since
C), is circulant, we must have
b—a=,d—c. (1)

Hence ¢+ b=, a + d, which is in contradiction with property (a) if the two sets {c,b} and
{a,d} do not coincide. Since two entries of the matrix cannot simultaneously lie on the same
diagonal and on the same row or column, we have ¢ # a and ¢ # d, from which the thesis
follows.

3. Let us assume that the matrix C), contains a zero entry which completes a 2 x 2 submatrix
and, as above, let us denote by a, b, ¢ and d the numbers of the diagonals on which the
corners lie. Since the matrix is circulant, we can assume without loss of generality that
the zero entry is on its first row. We further assume that the zero entry belongs to the
diagonal a. The other case (zero entry on diagonal b) is similar. The other possible rectangles
(@', b,c,d") and (a”,b",c",d") containing the selected zero will have it in either the left
or the right upper corner. Let us consider the first case, i.e., ¢’ = a. By (1), we have

b+c—d=p,a=dad=,b +c —d, and thus
btc+d=,b+c+d. (2)

Since C,, satisfies (b), the two sets {b,c,d’'} and {b',c,d} must be equal.

Since d' cannot lie on the same diagonal as b’ or ¢/, we have that d’ # b and d' # ¢. Thus it
has to be d' = d. Since the two 2 x 2 submatrices are distinct, then the equalities b’ = b and
¢’ = ¢ are ruled out, and thus the only way to satisfy (b) and (2) is given by

ad=a b=c d=bd=d. (3)

In the other case, starting from a = ", we obtain b+c—d=,a = b" =, d" +d" — ' and thus
b+c+ " =,d" +d" + d. Proceeding as above, we obtain the set of equalities

' =c b' =a, d"=d, d =b. (4)

The two rectangles determined by (3) and (4) are incompatible, since by construction ¢ =
a” < a < b<b =c Hence at most two 2 x 2 submatrices, i.e., (a,b,c,d) and one among
(', 0, c,d") and (a”,b",c",d"), can contain the zero entry on diagonal a.

The results shown in Lemma 2 are the key ingredients in the proof of the following Theorem.

Theorem 3 Assuming Conjecture 3, for every field F' there exists an € > 0 such that
Re, (en) > n'+1/20,

Hence the linear transformation determined by C,, cannot be computed by a linear size logarithmic
depth circuit.



Proof. First observe that Conjecture 3 implies that for a sufficiently small constant € > 0 every
matrix with ones on the main diagonal and rank less than en contains a linear number of [2, 3]
or [3,2] configurations. Namely, if ¢ is sufficiently small, we can find either a [2,3] or a [3,2]
configuration, omit rows and columns containing this configuration, and repeat the process, until
the ratio between rank and matrix size becomes too small.

Fix an € which is four times smaller. Suppose the rank of C,, has been reduced to en by m changes,
and let d = m/n. Omit rows and columns which contain more than 4d changes. Thus we get a
submatrix, say C’, of size at least %n X %n, which contains at least 1/2 of each diagonal of ones of

C,,. We consider two cases.

Case 1: more than half the elements of C' are changed to 0 on more than half the diagonals of ones
of C,,. Then m, the number of changes, is at least inl"'l/ 5,

Case 2: at least half the elements of C' remain 1 on at least half the diagonals of C,. For each
of these diagonals, take the square submatrix of C’ determined by the intersection of the diagonal
with C' and apply the conjecture. There must be Q(n) [2, 3] or [3, 2] configurations for each of these
diagonals. As one configuration can be shared by at most 6 diagonals (using the properties of Cp,
we can actually show that by at most 4) there must be altogether Q(n'*1/5) such configurations
contained in C’. We shall show that the number of the configurations can be bounded from above
by O(nd*), whence m = Q(n'+1/29), which will complete the proof.

We shall consider several cases according to which elements of the [2,3] configuration are original
from C,, and which are new, introduced by the changes. The bound on [3, 2] configurations follows
by symmetry.

1. Suppose there is a 2 x 2 submatrix of the [2, 3] configuration which has three old and one new
elements. Then it is uniquely determined by the new element, by the second property of C,,. Hence
there are at most m possible ways to choose such a submatrix. By the first property, there can be
at most one old element among the remaining two of the [2,3] configuration. The new element is
on one of the rows already determined, so there are at most 8d — 1 ways of choosing it. Thus we
get the bound (84 — 1)m < 8d?*m on such [2, 3] configurations.

2. Consider [2,3] configurations which do not fall under the first case and which contain a 2 x 2
submatrix with a row of old elements and the other row of new elements or a column of old
elements and the other column of new elements. By the first property of C,, such a submatrix is
determined by one of the new elements (m possibilities) and the other new one (4d possibilities,
as the row or column is already determined). At least one of the remaining two from the [2, 3]
configuration is new, either by the first property of C,, or because the [2, 3] configuration does not
contain a submatrix which has three old and one new elements. There are at most 4d choices for
that element, which gives the bound 16d3n.

3. Consider [2, 3] configurations which do not fall under any of the above two cases. Then each row
and each column of it contains at most one old element. Thus it contains a 2 x 2 submatrix with
at least three new elements. It is determined by choosing one of them (m possibilities) and then
two others (each < 4d — 1 possibilities). Again, among the last two there must be at least one new
(< 4d — 1 possibilities). Altogether it gives O(d™) = O(d*n). O



3 Another Construction

We describe an explicit construction of circulant matrices which have rigidity of the order of
n(log n)l/ 3 provided that the Triangle Conjecture is true. For technical reasons, in this section we
number rows and columns of the matrices starting from 0, rather than 1. We construct a circulant
matrix C;L whose first row has nonzero entries in columns 1, b, b2, ..., b*, where the choices of b and
k are described below.

Lemma 4 Let n = 2?" — 1, and define a = 2> 1 + 2™ and b= a + 1. The following relations
hold over Z,, for 1 <h <m:

2 =, a (5)

bh =, 22m—1 _ 2m—1 + 2h—1 + 2h—|—m—1. (6)
Proof. From 2?™ =, 1, we easily obtain (5), since
a2 — 24m72 +2. 22m712m71 4+ 22m72 =, 2. 22m72 4 2m71 =,a.

Hence we also have that a” =, a, for h > 0. Relation (6) is obtained as follows

h
h\
h — 1h_—1+§: =" - 1a+1
b (a+1) 2 ;e ( )a

E’n, 2]1—1 _|_ 2h+m—1 _ 22771—1 _ 2m—1 + 1 En 22m—1 _ 2m—1 _|_ 2h—1 + 2h+m—1 .

where we used (5) and 22 =, 1 to simplify the expressions. O

Corollary 5 The set {1,b,b%,...,b6™ 1}, with the elements taken modulo n, has size m and it is
a subgroup of the multiplicative group Zj,.

Proof. The size is immediate from (6). To see that it is a subgroup, just check that b™ =, 1. O

Let us consider, for an integer « invertible over Z,,, a matrix C} defined by

/|
Cij = Caiyaj > (7)
where indices run from zero and are computed over Z,.

It is easy to see that the effect of (7) is to permute the diagonals in such a way that C! is still
circulant. In particular, if « = b7, with 1 < j < k, the elements of the diagonal corresponding
to b/ are moved to diagonal 1, and, since {1,b,b%,...,bF} and {b=7, b7+ ... b*=J} coincide (by
Corollary 5), we have C! = C\.

We summarize relevant properties of C! in the following observations.

Observation 1 Let n = 22", There are m — 1 permutation matrices Qy, such that the automor-
phism QkC;ZQ;{ = C;; = C;l corresponds to the transformation (7). In particular the permutation
matriz Qp, defined as q;j =1 iff j = b="i and 0 elsewhere, takes the elements of diagonal b* onto

diagonal 1.



Observation 2 Let M be the matriz obtained from C;L by deleting its first column and last row.
M has a principal submatriz of order % which is an identity matriz, since it is easy to verify, from
(6), that n/2 < b (mod n) < 3n/4, for 1 <j <k.

The above two observations can be used to prove the following Theorem.

Theorem 6 Assuming the Triangle Conjecture, for every field F there exists an € > 0 such that

Rer (en) = Q(n(logn)'/?).

Proof. By Observation 2, we have that the submatrix M (associated to the first diagonal of C),)

contains an % x % identity matrix.

Let us assume that the Triangle conjecture is true. Then, in order to decrease the rank of M below
en, for a suitable constant £, we must introduce a linear number of triangles or change a linear
number of the diagonal entries to 0 (as in the proof of Theorem 3 for [2,3] configurations). By
Observation 2, we actually a have linear number of triangles which do not contain entries from
other diagonals of C’n.

By Observation 1, we can rearrange C;, by means of permutations so that the elements of each
diagonal can in turn be moved to the first diagonal. This implies that we can repeat the previous
argument for all the m—1 diagonals of C;z. Thus either more than half of the elements on more than
half of the diagonals are changed to 0, in which case we are done, as this gives Q(nm) = Q(nlogn)
changes, or there are Q(nm) triangles. To get a lower bound on the number of changes in the latter
case, we shall use similar counting as in the proof of Theorem 3. Let d be the average number
of changes in a row. As in that proof we may assume that each row and each column contains
at most 4d changes. Each triangle is determined by choosing a row (n choices), two elements in
the row (< (42d) choices) and an element in one of the two columns (< 8d choices). Thus we get
nd® = Q(nm), whence the number of changes must be Q(n(logn)'/3). O

4 A construction over GF|[2] for symmetric matrices

We show a decomposition for symmetric matrices in the field GF'[2] which is useful for studying
our conjecture for such matrices and field. For an n X n symmetric matrix A of rank r, with at
least one 1 on the main diagonal, we show how to construct the factorization A = UUT, where U
is an n X r matrix. Note that the diagonal of UU” contains all ones if and only if each row of U
contains an odd number of ones. Moreover A is triangle-free if and only if for every submatrix V
of U, of size 3 x r, we have VV' # J5, where J3 is the 3 x 3 matrix whose entries are all equal to 1.

Lemma 7 Given an nxn symmetric matriz A whose rank over GF[2] is T, there exists an invertible

n X n matriz S such that
T P o
SAS"=B=( o1 o | (8)

where P is an T X r symmetric permutation matrix.



Proof. Let us denote with E;; an n X n matrix whose only nonzero element is e; ; = 1, and let us
define the matrices M;; = I + E;; for i # j. We now consider

i.e., A" is obtained from A adding the j-th row to the i-th row, and the j-th column to the i-th
column. In particular ag’i is equal to a;; + a;j + a;j + aj; = a;; + a; ;. Note that matrices M;;
are invertible and idempotent. We will show a procedure that constructs a matrix S that satisfies
(8). S will be obtained as a product of matrices which are either of the M;; type or permutation
matrices.

In the following we describe the k-th step of the algorithm. It starts assuming that each of the rows
and columns indexed by 1, ...,k — 1 contains exactly one 1 and that if a; ; = 1 for j < k, then a; ;
and aj; are the only nonzero entries of i-th row and column. In other words, we assume that the
first £ rows and columns of A have a structure ’compatible’ with the construction of a permutation
matrix. The algorithm starts with £ = 1, so that these conditions are trivially satisfied, and we
also let S = 1I,,.

Let us consider the k-th row and column of A. If they do not contain nonzero entries, then we
apply a symmetric permutation II to A in such a way that A < ITATIT has ones in the k-th row
and column, and we let S < ILS. If no such permutation exists, then all the rows and columns
from the k-th onward are null, and we are done. After the possible application of IT we have two
cases:

e aj ) = 1. For each other a; j =1, j > k, we let A + MjkAMﬁ and S + M, S. The effect of
this operation is to annihilate all the aj ; (and a;j) for j > k. Rows and columns h < k are
not modified and ay, i is the only nonzero left on row and column k. This is compatible with
the conditions needed to proceed in the next step.

e ap = 0. Ifthere is an index h > k such that aj ;, = 1, then we apply a symmetric permutation
IT to A that exchanges rows (and columns) h and k, we let S < ILS, and we apply the case
arr = 1 above. Otherwise let h be the smallest index such that a;j, = 1. Then for each
other ay; =1, 7 > h, we let A < MjhAMJ?;1 and S < M;;S. The effect of this operation is
to annihilate all the ay ; (and a; ) for j > h, while rows and columns with indices less than
h are not affected. (In fact, by hypothesis, there can not be nonzeros in the entries a; ; for
i < k, because otherwise we should have aj ; = 0). The only nonzero entry of row k is thus
ag,n- Then we apply the same procedure to row and column h. At the end, ajj is the only
nonzero of row k£ and column h. The same holds for aj, 1, so that we can proceed with the
next step.

It is clear that the above algorithm ends in at most n steps, and reduces the original matrix A to
a matrix B that satisfies (8). In particular, since the matrix S constructed during the algorithm
is nonsingular, then B and A have the same rank r. Thus P has size r, and hence the algorithm
above stops after at most r steps. m|

Lemma 8 Given an n x n symmetric permutation matriz P, there exists an n X n matriz U such
that P =UU"T owver GF2], if and only if P has at least one nonzero entry on the main diagonal.



Proof. Let us assume first that P has at least one nonzero entry on the main diagonal. Let
a1, Qg,...,ay be the indices 7 such that p;; = 0. These indices are ordered so that pa,; 0, =1
forj=1,...,k. If k =0 then P =1 and U = I and we are done. Otherwise let 3, (32,...,Bn—2
be the indices ¢ such that p; ; = 1. By hypothesis we have n — 2k > 1. The rows of U, denoted by
Ui,...,Upy, can be described as follows:

Uazj—1 == [12j—1 10 0n—2j—1] for j == 1, ey k

Ua2j = [12]'71 01 0n72j71] for _] = 1, ey k

Us, = [log410p 2¢1]

Uﬁ. = [O2k+j—1 1 On—Qk—j] for _] = 2, ceey N — 2k ,

J

where 1;, (resp. 0p) denotes a string of h ones (resp. zeros). Is is easy to see that UUT = P. In
fact we have

o Upy_ Uy, =2j—1=p1,forj=1,... k.

agz;
® Uay; 1Us, = Uay; Uy, =min(24,2h) =5 0, for j,h =1,... k.

e Uy, U,, =min(2j,2h) =50, for j,h =1,...,k, and j # h.

Qop

o UayUg, = UayUg =2j =50, for j =1,... k.

° Ua2j_1U3;=Ua2jU;;=O,forj:l,...,kandk’:?,...,n—2k’.
o UpUj =2k+1=51.

. UﬂjUg;zl,forj:z...,n—zk.

o UsUg =0, for jh=1,...,n—2k and j # h.

On the other hand, let us assume that P has only zeros on the main diagonal. Then, in order to
have P = UU T, each row of matrix U should have an even number of nonzeros. Hence the sum of
the rows of U is null over GF[2] and so U would not have full rank. This leads to a contradiction
since P is a permutation matrix and has full rank. O

Theorem 9 Given an n x n symmetric matriz A whose rank over GF|2] is r, and with at least
one nonzero entry on the main diagonal, there exists an n x r matriz U such that A=UU".

Proof. By Lemma 7 there exists an n X n matrix S such that SAST = B, where B contains
an r X r symmetric permutation matrix P. If A has at least a 1 on the main diagonal, then, by
construction, also P has at least a 1 on the main diagonal. Indeed the algorithm described in the
proof of Lemma 7, reduces A to B by means of symmetrical multiplication by either permutation
or M;; matrices. Symmetric permutation does not change the overall number of nonzero entries on
the main diagonal, while the product by M;; matrices produces the effect a;; < a;; + a; ;. Thus if
at least one of a;; and a; ; is different from zero, then the same will hold after the multiplication
by M;; matrices.

Since § is invertible we can write A = S$7!BS~7 and then A = VPV”, where V is the principal
n X r submatrix of S~1. Since P has at least a nonzero diagonal element we can apply Lemma 8
and claim that there exists an r x r matrix W such that P = WW?. Thus we obtain A = VPVT =
VWWTVT = (VW) (VW)T, where U = VW is an n x r matrix. 0
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5 A family of graphs with extremal properties

Let I, Ji, and P, denote the identity matrix, the matrix with all the entries equal to 1, and
the matrix with the (i,k — 7)-th entries equal to 1, respectively, all of size k. Let us consider the
following n x n matrix, for n = 4k, written in block form.

Iy, Iy, Iy, Ji — Py
_ _ I I Jp — Iy P
An=1In+ Bn = P Ji — I, Iy, P
Jp — Py Py Py I,

This is a family of symmetric matrices with the following properties:

e A, is triangle-free. This property can be easily verified computing the trace of B3. We have

(k —2)Jx + 31} 2(Jy — I) 2(Jg — Iy) 2P
B2 _ 2(Jg —Ix) (b —2)Jk + 3 Jr — I 2(Jx — Py)
" 2(Jk — Ir) Ik — I (k—2)Jpg+3I;  2(Jp — P) ’
2P, 2 Jy — Py) 2 Jp — Py (k—2)Jk + 31,

from which we readily see that Tr(B3) = 4Tr(6J; — 61;) = 0.

e Ranky(A) =7 = n/4 + 2. Indeed the matrices A, can be obtained as A, = UU”, where UT
is the following r X n matrix.

10 --- 0041 --- 101 1)1 1 10
140 -+ 01 0|1 1 1
110 0(0|1 1110 0 --- 0 |1
0 0 0 1 (9)
. Ir73 : IT*3 . Ir73 Jr73 - Pr73 .
0 0 0 1

e A, is regular of degree 7.
e B, has independent sets of size k = r — 2.

e Rankgr(4,) = n, and A, has exactly 5 distinct integer eigenvalues. More precisely A4, has
the following eigensystem.
— A1 = r with multiplicity 1 and eigenvector (1,---,1)%.
— Ao =1 — 4 with multiplicity 1 and eigenvector

k k k k
——— 7
(_17"'7_1717"'7171a"'ala_la"'a_l) .
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— A3 =4 — r with multiplicity 2 and eigenvectors
k k k k
e e e e e T
(_17"'7_1,0,"'70705"'50517"'11)

and
k k k k
—

——— —— "7
(=<1,---,-1,1,---,1,=1,---, -1,1,--- . 1)".
— Ay = —2 with multiplicity £ — 1 and eigenvectors
1 -1 -1 1

—Pr : Py : Py — I
1 —1 —1 1

— A5 = 2 with multiplicity n —r — 1 = 3(k — 1) and eigenvectors

1 ~1 T
—I_1 | 0 0 : | Peq
1 -1
-1 -1
P_; 0 = 0
-1 -1
-1 -1
. Pk—l Pk—l 0 0
-1 -1

The verification of the above properties can now be done by direct inspection.

6 A sunflower theorem related to the conjecture

The decomposition of a symmetric matrix A over GF3 given in Theorem 9 can be interpreted as
representing A as an intersection matrix as follows. The rows and columns are indexed by sets of
some family of subsets of {1,...,r}, where r is the rank of A. The (7, )-th entry of A is 1 iff the
intersection of the index sets corresponding to row ¢ and column j is odd. The rows of U are the
characteristic vectors of the sets. We shall call set systems also hypergraphs. If all sets have size k,
then we speak of k-hypergraphs.

Let us state our conjecture for symmetric matrices over GF3 in terms of set systems. The entries
on the main diagonal are all equal to one, and this implies that the sizes of the sets must be odd.
A triangle corresponds to a triple of sets in the family such that every two intersect in an odd set.
Thus the conjecture can be rephrased as: there exists a constant K such that for any family of
odd subsets of {1,...,r} of size > Kr there ezists a triple of sets in the family such that every two
intersect in an odd set.

One of the special properties of the matrices considered in the previous section is that the sets in
this representation have only four sizes, i.e., 1,3,7 —3,r — 1. This raises the question of whether it
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is possible to prove the conjecture under such restriction on sizes of the representing sets. Notice
that it is actually sufficient to prove it only for size equal to 3. We prove below a more general
result which implies that the conjecture holds for any constant size (Theorem 10).

Definition 1 A sunflower with [ petals and coreY is a family of sets X1, ..., X; such that X;NX; =
Y for everyi # j.

Note that the assumption that Xi,..., X; form a sunflower with an odd core is stronger than the
assumption that every two sets intersect in an odd set. A classical result of Erdés and Radé [2]
states that for a given k& and [, every sufficiently large k-hypergraph contain a sunflower with [
petals. It has been observed in [4] that a k-hypergraph, & odd, on an n element set of vertices
with at least n(kfl)/Ql(kH)/?% edges contains a sunflower with [ petals and with an even
core. A k-hypergraph can be easiiy constructed which shows that this bound cannot be essentially
improved. Our result shows that there is a big difference between the cases with even and odd
cores, i.e., for the latter a linear number of edges suffices to guarantee the presence of a sunflower.

Theorem 10 For every positive integers k,l, with k odd and l > 3, there exists an integer K such
that for every n > 1 and every k-hypergraph H on n vertices with at least Kn edges, there exists a
sunflower in H with | petals and an odd core.

Proof. Let H be a k-hypergraph on V, |V| = n, i.e., H is a set of k element subsets of V. We
shall suppose that H does not contain a sunflower with [ petals and an odd core and bound the
number of edges by a linear function of n.

Claim. Let d be a constant depending only on k and [. There exists a directed graph G on V with
the following properties:

1. G has no self-loops;
2. the outdegree of G is bounded by d;

3. for every h € H and v € h, there exists u € h such that the edge v — u is in G.

Proof: Take d = (I — 1)(k — 1). For each v € V, we define outgoing edges as follows. Let
H, ={h—{v}; h € H, v € h}, so that H, is a (k — 1)-hypergraph on V — {v}. As H does not
contain a sunflower with [ petals and a one-element core, H, cannot contain more than [/ —1 disjoint
edges. Thus there exists a set of size at most d such that every edge of H, intersects the set. We
put in G an arc v — u for every element u of this set. The three conditions are clearly satisfied.

We shall prove the theorem by induction on k, where k ranges over the odd numbers. For k = 1 the
statement is trivial, as there are only n one element sets. So suppose k > 3. Fix a graph G with the
properties stated in the above claim. Consider the induced graph on h € H. It contains at least
one terminal component, which is a transitive subset (i.e., each point is reachable from another one
by an oriented path) and no point outside is reachable from the set. Such a set has at least two
elements, since there are no self-loops in G. We shall choose one such terminal component for each
edge and call it the nucleus of the edge.
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We now define another auxiliary graph F. It is a symmetric graph with vertex set U consisting of
all transitive subsets in G of size at most k, including one-element sets. Two vertices are connected
by an edge, if they are different and have nonempty intersection.

Claim. The maximal degree of F' can be bounded by a constant d’ depending only on k and /.

Proof: Clearly, each v € V is contained in at most gltd+.+d* rangitive components of size < k.
k
Thus we can bound the degree of F' by k2! Ta+-+d"

Now we construct a hypergraph J on U. For each edge e € H we put an edge €’ in J consisting
of the nucleus of e and one element sets {v} for each v € e which is not in the nucleus. Note that
there is a one-to-one correspondence between the edges of H and J.

Claim. There exists € > 0, depending only on k and [ such that one can choose J' C J such that
|J'| > €|J| and |J J' is an independent set of F.

Proof: For each edge of F', choose at random and independently one of the two possible orientations.
Let X consist of the vertices v all of whose incident edges are oriented into them. Clearly, X is
an independent set of F. It suffices to show that the expected number of edges of J which are
contained in X is a positive fraction of all the edges of F'. For a vertex v, the probability that
v € X is at least 27%. An edge e € J does not contain any edge of F, thus the probabilities for
the vertices in e are independent. Hence e is contained in X with probability at least 2 dlel, By
linearity of expectation we get that at least this fraction of edges of J is in X on the average.

Each edge of J' consists of a nucleus, whose size is at least two, and one element sets. We can
assume that all terminal components have the same size, say r, as there are only constantly many
sizes.

Let H' C H be the hypergraph consisting of the edges corresponding to the edges J'. The con-
struction of J’ gives us the following property of H'. For every e € H' and the nucleus C of e, if
f € H' is another edge, then either C' is also the nucleus of f or C is disjoint from f.

We now consider two cases.

1. r is odd. Replace each of the nuclei by a single vertex, thus obtaining a (k — r + 1)-hypergraph
H" with the same number of edges. A sunflower with a core of size s in H” corresponds to a
sunflower with the same number of petals and a core of size either s or s + 7 — 1 in H' (depending
on whether or not a nucleus is in the core). Thus H” does not contain a sunflower with [ petals
and an odd core. By the induction assumption, |H”| must be bounded by a linear function of n,
hence so is |H]|.

2. r is even. We construct H” by deleting the chosen terminal components. Thus H"” is a (k — r)-
hypergraph. The number of edges in H” can be smaller now, but at most by the constant factor
I — 1, since an edge resulting from m edges of H' is the core of a sunflower with m petals in H'.
We shall show that H” does not contain a sunflower with (I — 1)2 + 1 petals and an odd core. This
will complete the proof, as by the induction assumption it implies a linear upper bound on the size
of H".

Suppose that H" does contain a sunflower with (I — 1)? + 1 petals and a core of an odd size s.
Consider the corresponding (I — 1)? + 1 edges in H'. Some edges may share the nuclei. There are
two possibilities, either at least [ edges share the same nucleus, or there are [ edges with different
nuclei. In the first case we get a sunflower with [ petals and a core of size s + r; in the second case
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a sunflower with [ petals and a core of size r. This is a contradiction with the assumption on H.
O

Note that the version with even k& and even cores follows immediately.

We now present a more general result, which applies to factorizations of the form UV, and which
implies the Triangle Conjecture for matrices that can be decomposed in the form UV, where both
U and V satisfy some sparsity requirements. More precisely we have the following Theorem.

Theorem 11 Vk, I, 3e > 0 such that Vn, if M = AB (over GF[2]), where M is an n X n matriz
with ones on the main diagonal, A is an n X r matriz, B is an r X n matriz, r <en, A (resp. B)
has at most k ones in each column (resp. row), then there exists in M an I X | principal submatriz
of ones.

Remark. Note that the matrix M above does not need to be symmetric.

Theorem 11 can be reformulated in an equivalent way, in set intersection terms. Indeed we have
the following.

Theorem 12 Vk,l, 3¢ > 0, Vn, and for all sets (A1, B1),...,(4n, By), |Ai|,|Bi| <k, A;, B; C X,
|X| = r < en, where for all i, if |A; N B;| is odd, then there exist ii,...,%;, such that for all
1 < a,pB <1, with a # (3, we have that |A;, N B;y| is odd.

Theorem 12 follows from a stronger result, which we prove below.

Theorem 13 Vk,l, 3¢ > 0, Vn, and for all sets (A1, B1),...,(An, By), |4i|,|Bi| <k, A;, B; C X,
| X| = r < en, if for all i, |A; N B;| is odd, then there ezxists a set D of odd cardinality such that for
all 1 < o, B <1, with a # B, we have that A;, N B;; = D.

Proof. Let C; = A;N By, i.e., |Gy is odd. By Theorem 10, we have that there exist j1,...,jmn and
D such that Va # 3, Cj, N Cj, = D.

Now, for every %, choose the mappings

fi: P(4;) = {0,...,2F — 1},

gi: P(B;) = {0,...,2F — 1},

and assign the colour (f;(A4; N Bj),g;(A; N Bj)) to the pair (4, ), for ¢ < j. By Ramsey Theorem,
there exists {i1,...,%} C {Jj1,-..,Jm} such that all pairs have the same colour.

Claim: i,i ,j,j € {i1,-..,it},i < j,i <j,wehave AN Bj=A;NBy.

Proof: AiNBj =A;NBy =Ay NB.

Thus there exists a set D' such that Vi, j € {i1,...,u},i<j, AinBj = D' Symmetrically, there
exists D" such that Vi,j € {i1,...,4}, i < j, AiNBj = D". Since Vi,D' C A; and D' C B;,

we have D’ C D. But also Vi,D C A;, and D C Bj, and hence D C A; N B; = D' (for i < 7).
Therefore D = D'. By symmetry D = D”.

a
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7 Conclusions and more open problems

Problem 1 Let M be a matriz with ones on the main diagonal and without [2,2] configurations.
How many rows do we have to remowve to reduce its rank by one?

If, for a given field, this number can be bounded by a constant, then the Triangle Conjecture is
true.

What if the Triangle Conjecture is false? We think that the approach of relating local properties
of the graph of nonzero elements can still be used, if weaker properties are used. Let us call an
odd alternating cycle an oriented graph which is a cycle, when the orientation is forgotten, and
the orientation of the arrows on the cycle alternates with one exception (put otherwise, there is a
vertex v on the cycle such that if we go around the cycle from v to v, the orientation of the edges
alternates). Thus a transitive triangle is an alternating cycle of length 3. For some applications
(e.g., the lower bound on the rigidity of Toeplitz matrices with indeterminates) it would suffice
to use odd alternating cycles of length bounded by a constant, instead of just transitive triangles.
There may be other subgraphs having similar properties.

We do not know if Theorem 3 can be proved only using the Triangle Conjecture. It is even
conceivable that the symmetric case of the conjecture could suffice.

Theorem 10 gives only a restricted version of the Triangle Conjecture, namely for matrices which
can be decomposed into UU ", where U has only a constant number of nonzero elements in each
row. The restriction on the number of nonzero elements seems to be too severe for the theorem to
be useful for intended applications. That may be true for proving lower bounds on rigidity. For
proving lower bounds on the circuit size, however, we may use some additional restrictions on the
number of nonzero elements in the matrices involved. Low rigidity of a matrix M means that M
can be decomposed into A + B where A is sparse and B is of low rank. B being of rank less than
r means that B can be further decomposed into B = C' x D where C, D are some matrices of size
n X r and r X n, respectively. A closer look at Valiant’s reduction reveals that, in the case of a
transformation computed by a small circuit, one can find a decomposition such that C is sparse.
In the case of series-parallel circuits of linear size and logarithmic depth, the restriction on C is
particularly strong, namely there is a constant bound on the number of nonzero elements in each
row of C. This type of restriction is similar to ours.
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