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Abstract

We consider the problem of the presence of short cycles in the graphs of nonzero elements of matrices
which have sublinear rank and nonzero entries on the main diagonal, and analyze the connection between
these properties and the rigidity of matrices. In particular, we exhibit a family of matrices which shows
that sublinear rank does not imply the existence of triangles. This family can also be used to give a
constructive bound of the order of k%2 on the Ramsey number R(3, k), which matches the best known
bound. On the other hand we show that sublinear rank implies the existence of 4-cycles. Finally, we
prove some partial results towards establishing lower bounds on matrix rigidity and consequently on the
size of logarithmic depth arithmetic circuits for computing certain explicit linear transformations.

1 Introduction

The problem of relating the rank of a matrix to its structural properties given by the pattern of its nonzero
entries is a classical problem in mathematics. In complexity theory the most famous instance of this problem
is the relation between the communication complexity of a {0,1} matrix and its rank over the field of reals
[16, 12]. In this paper we consider general matrices over arbitrary fields and we study cycles in the graphs
of their nonzero elements. Our goal is to prove lower bounds on the rigidity of matrices which would imply
nonlinear lower bounds on some algebraic circuits. This research goes in the direction proposed by Valiant
[19], who defined the concept of rigidity of matrices and proved that lower bounds on the size of logarithmic
depth circuits can be proved by constructing matrices with high rigidity. The rigidity of a matriz M is
defined as the function Rps(r), which for a given r gives the minimum number of entries of M which one
has to change in order to reduce its rank to r or less. Valiant proved the following result.

Theorem 1 ([19]) If for some € > 0 there exists 6 > 0 such that the n x n matriz M, has rigidity
R, (en) > n'*? over a field F, then the transformation x — M,z cannot be computed by linear size and
logarithmic depth circuits with gates computing linear functions over F.

Another relation of this type was found by Razborov [14]. He proved that some weaker bounds on rigidity
would imply that a {0, 1} matrix defines a function which is not in the communication complexity version of
the polynomial hierarchy. However the existing lower bounds on the rigidity are not sufficient even for that.
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Although both a random matrix and a matrix whose entries are different indeterminates have rigidity even
larger than required by Theorem 1 (close to n?), very little is known about ezplicit matrices. The best known
lower bounds on the rigidity of explicit matrices are of the form Q("T2 log %) [6], which gives only linear lower
bounds on Rps(en). It seems that Hadamard matrices have large rigidity over the real field, but the best
bound is so far only Q(n?/r) (see Kashin and Razborov [9]).

Let us call an alternating cycle an oriented graph which is a cycle, when the orientation is forgotten, and
such that the orientation of the arcs on the cycle alternates with one exception (put otherwise, there is a
vertex v on the cycle such that if we go around the cycle from v to v, the orientation of the edges alternates).

Let A = (a;j) be an n x n matrix. The graph of nonzero entries of A is the directed graph with vertex set
{1,...,n}, where (¢, ) is an arc iff a;; # 0.

Given a matrix, we call [2,2] configuration a 2 x 2 submatrix consisting of nonzero elements. In graph
theoretical terms a [2, 2] configuration corresponds to either an alternating 3-cycle, which is usually called
a transitive triangle (and this occurs when the 2 x 2 submatrix has one entry on the main diagonal), or an
alternating 4-cycle (when none of the entries of the 2 x 2 submatrix is on the main diagonal), or a 2-cycle
(when the 2 x 2 submatrix has two entries on the main diagonal).

We are expecially interested in odd alternating cycles as subgraphs of the graph of nonzero entries of low
rank matrices, because of a connection to matrix rigidity. The reason for such special attention to odd lengths
is that an odd alternating cycle corresponds to a configuration in the matrix where one element is on the
main diagonal, while an even alternating cycle (of length greater than or equal to 4) is not connected to it.
This connection with the main diagonal will allow us to argue about the large rigidity of certain explicitly
defined families of matrices. In particular, the truth of the following conjecture would imply the nonlinear
rigidity of certain matrices, and thus nonlinear lower bounds on the size of some circuits.

Note that we have to make some nontriviality assumption, such as having nonzero elements on the main
diagonal or having a support (see Section 4), in order to get any interesting implication from low rank.

Conjecture 1 (The Odd Alternating Cycle Conjecture) For every field F, there exist an odd k and
€ > 0 such that every nxn matriz M with nonzero entries on the main diagonal, and such that rank(M) < en,
contains an alternating cycle of length k.

It is worthwhile to notice that the Odd Alternating Cycle Conjecture, in addition to motivating some of the
problems analyzed in this paper, also implies a nonlinear lower bound on the computation of cyclic shifts on
semilinear circuits, a model introduced and studied in [13].

In Section 2 we provide the main motivation for studying short cycles in low rank matrices, by giving an
explicit construction of a family of rigid matrices, assuming the Odd Alternating Cycle Conjecture be true.
(We call a family of matrices rigid, if for some fixed ¢ > 0 the rigidity Rys(en) of any n x n matrix M
from the family is superlinear.) Even if the conjecture fails, these matrices may be good candidates for large
rigidity.

In Section 3 we describe a construction which shows that, for £ = 3, Conjecture 1 does not hold, over any
field. We also show that this construction can be modified to give a very simple constructive lower bound
on the Ramsey number R(3,k) > k%2, which matches the best known one, due to Alon [1]. If the field has
characteristic different from 2, the counterexample to Conjecture 1 can be provided by a symmetric matrix.
For GF[2] we instead describe (see Section 5) a family of symmetric matrices of rank % + 2 with 1’s on the
main diagonal and without a triangle, which is so far the best bound in this case.

Our results should be contrasted with those by Rosenfeld [17], and Alon and Szegedy [2]. (Their results
are stated in terms of vectors in E”, but can be easily translated to statements on real valued matrices.)
Rosenfeld proved that a symmetric positive definite n x n matrix of rank < n/2 with ones on the main
diagonal contains a triangle. The combination of Rosenfeld’s and our result shows that the assumption of
positive semidefiniteness is essential. On the other hand, Alon and Szegedy proved that, for every § > 0



there exists k such that there are symmetric positive semidefinite matrices with ones on the main diagonal
and rank < n® with no k x k principal submatrices of nonzero elements. The minimal value of k for which
they get sublinear rank can be computed from their proof, but for small values, in particular for k = 4, it is
open whether such matrices must contain Kj.

In Section 4 we prove that matrices with sublinear rank over the real or complex field must contain a [2, 2]
configuration, in fact they must contain an alternating 4-cycle. For fields of nonzero characteristic the
corresponding statement is an open problem.

In Section 5 we analyze some special cases, obtained by making further assumptions, under which Conjec-
ture 1 is true for k = 3; we also consider the Conjecture over GF[2] in the symmetric case.

Although our results do not improve on any current lower bound on circuit complexity, we nevertheless think
that we made a visible progress in the area. Fundamental problems in circuit complexity cannot be solved
by gradually increasing lower bounds. There is need of progress in associated combinatorial and algebraic
problems, and this paper is a step in this direction.

2 New candidates for high rigidity

We now describe an explicit construction of circulant {0,1} matrices which have rigidity of the order of
n(logn)'/*=1 provided that the the Odd Alternating Cycle Conjecture is true. Recall that a circulant
matrix is a matrix fully determined by its first row, each other row being a cyclic shift of the previous
one. For technical reasons, we number rows and columns of the matrices starting from 0, rather than 1.
We construct a circulant {0, 1} matrix C’;L whose first row has nonzero entries in columns 1,b,52,...,0m 1,
where the choices of b and m are described below.

Lemma 2 Letn = 22™ —1, and define a = 22™~1 + 2™~ ! and b= a+ 1. The following relations hold over
Z, for1<h<m:

bh =, 22m71 _ 2m71 + 2h71 + 2h+m71‘ (2)

Proof. From 22™ =, 1, we easily obtain (1), since
a2 — 24m—2 + 2. 22m—12m—1 + 22m—2 =, 2. 22m—2 + 2m—1 =,a.

Hence we also have that a® =,, a, for h > 0. Relation (2) is obtained as follows

h
h .
o= (a+1)h=1—|—Z<,)a’:(2h—l)a+1
i=1 ¢
=, 2h71 + 2h+m71 _ 22m71 _ 2m71 +1 =, 22m71 _ 2m71 + 2h71 + 2h+m71 .

where we used (1) and 22™ =,, 1 to simplify the expressions. O

Corollary 3 The set {1,b,b%,...,b™ '}, with the elements taken modulo n, has size m and it is a subgroup
of the multiplicative group Z,.

Proof. The size is immediate from (2). To see that it is a subgroup, just check that b™ =, 1. m|



Let us consider, for an integer a invertible over Z,,, a matrix C!/ defined by

no_
Ci,j = Cai,aj > (3)
where indices run from zero and are computed over Z,.

It is easy to see that the effect of (3) is to permute the diagonals in such a way that C}! is still circulant. In
particular, if @ = b7, with 1 < j < m — 1, the elements of the diagonal corresponding to b’ are moved to
diagonal 1, and, since {1,b,b%,...,b™ 1} and {b=7,b=7*1 ... b™ 177} coincide (by Corollary 3), we have
cl=cq.

We summarize relevant properties of CJ, in the following observations.

Observation 1 Let n = 22™~1. There are m — 1 permutation matrices Q) such that the automorphism

QkC;LQkT =C, C’;l corresponds to the transformation (3). In particular the permutation matriz Qp,
defined as gi; = 1 iff j = b="i and O elsewhere, takes the elements of diagonal b* onto diagonal 1.

Observation 2 Let M be the matriz obtained from C;L by deleting its first column and last row. M has
a principal submatriz of order % which is an identity matriz, since it is easy to verify, from (2), that

n/2 < b (mod n) < 3n/4, for 1 <j<m—1.
The above two observations can be used to prove the following Theorem.

Theorem 4 Assuming the Odd Alternating Cycle Conjecture for a field F' and an odd k there exists an
€ > 0 such that

Ry (en) = Q(n(logn)'/ ==V,
Proof. By Observation 2, we have that the submatrix M (associated to the first diagonal of C!)) contains

an 7 x 7 identity matrix.

Let us assume that the Odd Alternating Cycle Conjecture be true, for an odd k and a constant £ > 0. Then
it is easy to see that matrices of rank at most %en must contain a linear number of alternating k-cycles. In
order to decrease the rank of M below %En, we must thus either introduce a linear number of alternating
k-cycles or change a linear number of the diagonal entries to 0. By Observation 2, we actually have a linear
number of alternating k-cycles which do not contain entries from other diagonals of C,.

By Observation 1, we can rearrange C), by means of permutations so that the elements of each diagonal can
in turn be moved to the first diagonal. This implies that we can repeat the previous argument for all the m
diagonals of C;L. Thus either more than half of the elements on more than half of the diagonals are changed
to 0, in which case we are done, as this gives Q(nm) = Q(nlogn) changes, or there are Q(nm) alternating
k-cycles. To get a lower bound on the number of changes in the latter case, we let d be the average number
of changes in a row. We may assume that each row and each column contains at most 4d changes. The
number of alternating k-cycles can be easily upper bounded by a function of the order of nd*~'. Thus we
get nd*~! = Q(nm), whence the number of changes must be Q(n(logn)!/*—1). O

3 Sublinear rank matrices without triangles

We show here the construction of an n x n matrix with ones on the main diagonal, rank of the order of
n2/3, and such that the graph obtained by associating edges to nonzero entries of the matrix does not have
transitive triangles. As a byproduct of our construction, we find another constructive bound on the Ramsey
number R(3,n) which is simpler than the construction obtained by Alon in [1].



Theorem 5 For every m, there is an explicitly definable square matriz M of size n ~ m3/% which has 1’s
on the main diagonal, rank < m, and such that the associated graph of nonzero elements does not contain a
transitive triangle.

Proof We shall use an auxiliary undirected graph G with no cycles of length less than 6 or 8, and with a
nonlinear number of edges. The following simple construction [20] provides us with an example of an infinite
family of such graphs.

For every prime number p and for K = 2 or k = 3, we construct a bipartite graph Hy(p) as follows. The
vertex set of Hy(p) is the union of two sets V; and Va with |V;| = |Va| = p* each. Each vertex a € V; has a
unique label (ag,a1,...,ar—1) with 0 < a; < p—1. Similarly each b € V5 has a unique label (bg, b1, ..., bgk—1).
(The labels are simply the numbers from 0 to p* — 1 expressed in base p notation.) The edge set of Hy(p) is
{(a,b) :a € V1,b € Vo,b; =p a;j + ajq1bk_1, for j =0,...,k — 2} . The bipartite graphs Hy(p) have n = 2pF
vertices and p**t! = (n/2)(**+1/*) edges by construction. Tt is possible to prove [20] that Ha(p), which has
O(n®/?) edges, contains no cycles of length less than 6, and that Hs(p), which has O(n*/3) edges, contains
no cycles of length less than 8.

Other known constructions rely on finite projective geometry. A projective plane of order n can be defined
as a set P of n? +n + 1 points and a set L of n? +n + 1 lines, such that any two points determine a line, any
two lines determine a point, every point has n+ 1 lines on it, and every line contains n + 1 points. Projective
planes exists for every n equal to a prime power. The incidence graph of a projective plane is a bipartite
graph whose vertices correspond to points and lines, and edges link each line with its incident points. Such
a graph, by the properties of the projective plane, contains no cycles of length less than 6, and has O(n?)
edges. The asymptotic edge density is thus the same of the H2(p) graphs.

In this proof, we will be needing a graph without 6 cycles (either Hz(p) or the graph of the projective plane),
while for its extension to the symmetric case we will take H3(p).

Let now G be a graph without cycles of length less than 6, with m vertices and O(m?3/2) edges. Starting
from G, we first describe an oriented graph H, and then a matrix which have nonzero entries corresponding
to edges of H. For the sake of a simpler description, in the following we assume that G is the bipartite graph
associated with a projective plane.

The vertices of the graph H are pairs (P, L), where P corresponds to a point on a line L. The edges of H are
given by pairs ((P, L), (P',L")), where P, P', L, L' are all different and P € L', i.e., the point P is incident
to the line L'. Tt is straightforward to verify that there is no transitive triangle in H (using only the fact
that there are no cycles of length less than 6 in G).

Now we associate to H a matrix as follows. We index both rows and columns by pairs (P,L). To a row
(P, L), we assign the vector whose coordinates are the vertices of G (that is, points and lines) and which
has an entry equal to —1 on P and an entry equal to 1 on L, all the other entries being zero. To a column
(P, L), we assign the characteristic vector of the set (L \ P) U {L}, (i.e., the set consisting of the vertex L
and all neighbours of L except P). Thus the matrix obtained as the product of the vectors associated to its
rows and those associated with its columns has 1’s on the main diagonal, —1’s on the entries corresponding
to the edges of H, and 0 elsewhere. The rank of this matrix is at most m, the number of vertices of G, while
its size is equal to the number of edges of G, which is of the order of m3/2. |

Notice that the above construction does not produce {0,1} matrices, except for the field GF[2].

It is an easy observation that the graph H has oriented 3-cycles if G contains 6-cycles. This prevents from
applying the construction to the symmetric case, where oriented 3-cycles become triangles. However, to get
a graph without oriented 3-cycles, we can start from a bipartite graph without cycles of length less than 8,
like the previously described Hs(p), and with O(n*/3) edges. Then it is possible to proceed as in the proof,
obtaining an n x n matrix of rank of the order of n3/4, and then symmetrize the construction by adding



the matrix and its transpose, thus getting an n x n symmetric matrix still of rank O(n3/*), and without
triangles.

However note that the above approach fails over GF[2], because symmetrization produces (over GF[2]) zeros
on the main diagonal.

Using the fact that the rank (over any field) of a matrix is an upper bound on the size of the maximal
independent set of a graph associated with the zero-nonzero pattern of the matrix, the above construction
- after symmetrization - provides an explicit Ramsey graph. More precisely, it gives an n-vertex graph
without triangles and with independent sets of size O(n3/*). As it is, the bound is worse than the already
mentioned Alon’s bound. However, it is possible to work on the original construction, do another kind of
symmetrization, and get the same asymptotic bound as Alon’s, while significantly gaining in simplicity. The
idea is to consider only the upper triangle of the matrix obtained from the graph H, and copy it in the lower
part of the matrix. In this way, we obtain a symmetric matrix without triangles, without having to start
with a sparser graph G. On the other hand, we loose the “low rank” property, whereas the rank of the
original matrix still bounds the size of the maximal independent set. We summarize these considerations in
the following theorem.

Theorem 6 Let G be the graph of a projective geometry with 2m wvertices. Take a linear ordering of pairs
(P,L), P € L and construct a symmetric graph J on this ordering by connecting (P, L) with (P', L"), where
(P,L) is less than (P', L") in the ordering, iff P, P', L, L' are all different and P € L'. Then the graph J
neither contains a triangle nor an independent set of size 2m + 1, while the number of its vertices is of the
order of m3/2.

On the other hand, one can prove an Q(y/nlogn) lower bound on the rank matrices with ones on the main
diagonal and without triangles using the well-known bound on the Ramsey number R(3,%k) = O(k?/logk).
Namely, let an n X n matrix M be given, and n > R(3,k). Color the edges of the complete graph on n
vertices blue, if the corresponding entry in the right upper half of M is nonzero, and red otherwise. If M
does not contain a transitive triangle in the right upper part, the complete graph does not contain a blue
triangle. Hence there must be a red complete subgraph on k elements. This corresponds to a k x k principal
submatrix with zeros above the main diagonal, which has rank k. Thus the least rank which implies the
existence of triangles is between c¢;4/nlogn and con?/ 3, for some constants ci,cs.

4 4-cycles in low rank matrices

Triangles are special cases of a [2,2] configuration. We have seen so far that sublinear rank matrices need
not contain them, except in special cases, which will be dealt with in the next section.

Here we consider both general [2,2] configurations and 4-cycles, and show that they must appear in any
matrix with sublinear rank. We first analyze the special case of {0,1} matrices with constant row sums,
and then generalize the result obtained in this case to arbitrary real matrices. We analyze real matrices,
although all the results can be easily extended to complex matrices.

We will take advantage of the following lemma [4]

Lemma 7 Le A be an n X n real symmetric matriz. Let tr(A) denote the trace of A, i.e., the sum of the
diagonal entries of A, and rk(A) the rank of A, over the real field. We have

rk(4) > “tr(A2) (4)



Proof. Let k be the rank of A. Since A is symmetric, k is equal to the number of nonzero eigenvalues of

A. Let Az,lz 1,...,
By elementary properties of the trace, we obtain

n k
A)=3"A7=>"A and

n, be the eigenvalues of A, and assume that the first & of them are different from zero.

2

NCARG]

and the thesis follows from Cauchy-Schwarz inequality, since

) e

Lemma 8 Let B=1+ A be a {0,1} n x n symmetric matriz with 1’s on the main diagonal and row sums

all equal to d > 2.

1. If B does not contain 2 x 2 full submatrices, except for those with two entries on the main diagonal,

then the following equalities hold

tr(4) =0 tr(B) =n

tr(4%) =n(d-1) tr(B?) = nd 5
tr(A3) = 0 tr(B%) = n(3d — 2) (5)
tr(AY) =n(2d®> —=5d+3)  tr(BY) =n(2d* +d-2)

2. If B does not contain 2 x 2 full submatrices, except for those with one or two entries on the main
diagonal, then the following equalities and inequalities hold

tr(Ad) = tr(B) =

tr(A?) =n(d—1) tr(B?) = nd

(A% < n(d —3d+2)  tr(B%) < nd? (©6)
tr(A*) =n(2d? —5d+3)  tr(B*) < n(6d> — 11d + 6)

Proof.

1. Let us consider the undirected graph G associated with A. Since A does not contain 2 x 2 full

submatrices, G' cannot have cycles of length 1, 3 or 4. It is well known that the entry a;;

(k) on the main

diagonal of Ak is equal to the number of closed walks of length k in G, which orlglnate and terminate
at node i. Since the nodes of G have degree d — 1, then agf) = d — 1. The lack of self-loops and
3-cycles implies that a(3) = 0. The closed walks of length 4 from i to i consist of the (d — 1)? walks
i—=>j—oi—>h—1, w1th],h7éz, and of the (d —1)(d —2) walks i = j — h — j — i, for j # i and
h#1,j.

. We evaluate tr(A4%) and tr(A*) under the assumption that A can contain 3-cycles. The number of closed
walks of length 3 from i to ¢ is equal to the number of 3-cycles, since A does not contain self-loops,
and thus we obtain tr(A43) < n(d — 1)(d — 2) = n(d®> — 3d + 2). It is easy to see that the number

of closed walks of length 4 from 4 to ¢ does not increase w.r.t. the previous case, hence we still have
tr(A*) = n(2d? — 5d + 3).

In both cases, the values of tr(B*) are easily obtained by expanding B*¥ = (I + A)*. O

Theorem 9 Let B be a {0,1} n x n symmetric matriz with 1’s on the main diagonal constant row sums.



1. If rk(B) < %n, then B contains a 2 X 2 full submatriz without two entries on the main diagonal;

2. if tk(B) < %n, then B contains a 2 X 2 full submatrix with no entries on the main diagonal.

Proof Assuming by contradiction that B does not contain a 2 x 2 full submatrix, then equalities (5) hold.
Basic properties of rank imply that rk(B) > rk[B(B — I)] = rk(B? — B). Since B? — B is symmetric we can
apply inequality (4) to B2 — B, obtaining

1k(B) > tk(B? - B) > % S (7)

for d > 2, which is a contradiction with the assumption rk(B) < in, and the thesis follows.

The proof of the second case, rk(B) < gn, is obtained similarly, applying the inequalities (6) and (4) to B2
O

We now proceed to generalizing the above results. The intermediate step is provided by Lemma 10 below,
which gives a lower bound on the rank of doubly stochastic matrices without [2,2] configurations. This
Lemma is then instrumental to obtain a more general result.

In the following we denote by A - B the element-wise product of two matrices.
Lemma 10 Let B be an nxn matriz such that the matriz B-B is doubly stochastic, i.e., Zj bfj => bfj =1
fori,j=1,... n.

o If B does not contain a full 2 x 2 submatriz, then rk(B) > n/2;

e if B does not contain full 2 x 2 submatrices, except for those with two entries on the main diagonal,
then rk(B) > n/4;

o if B does not contain full 2 x 2 submatrices, except for those with one or two entries on the main

diagonal, then rk(B) > n/6.

Proof. We have rk(B) > rk(BB"), and we can apply the inequality

to C' = BB'.
The value of tr(BBT) = tr(C) can be easily calculated, since 2 b;; = 1for i =1,...,n. Indeed we have
¢ij = 3.5, binbjn, hence ¢;; = 3, b3 = 1, and tr(C) = Y, cii = n. The trace of C? can be computed

similarly:
tr(C?) = Zcijcji = Z (Z bihbjh> (Z bikbjlc) = Z binbjnbikbjk -
4] 4] h k i3,k k
Let d;; be equal to 1 if i = 7, and 0 otherwise. Then we have

tr(C?) = [8i5 + Ok — 6i0nr + (1 — 835) (1 — 6] Z binbjnbirbjr,
igi ok

tI‘(CZ) = Z bghb?k + Z bfhb?'h. - Z b;ih + Z binbjnbirbj.
ih

i;h,k i,5,h i#j,h#k

and thus



Exploiting the fact that B - B is doubly stochastic, we get

2

2
Sunbi = [D 0| =n and D b3, Jh_Z[Zbih] =n,
h k

i,h,k i J i,3,h

and, since Y., bj; > 0, we have tr(C?) < 2n + T, with

Z binbjnbikbjr, -
i#£j,h#k

The products in T' correspond exactly to all 2 X 2 nonzero submatrices of B (each counted 4 times due to
symmetries). Hence, if B does not contain such submatrices, we have T = 0 and tr(C?) < 2n, from which

rk(B) =rk(C) >

n

as claimed.

If there are 2 x 2 nonzero submatrices with two entries on the main diagonal of B, then the nonzero terms
in T are those obtained setting either ¢ = h, j = k or i = k, j = h. The two cases are disjoint (since i # j
and h # k) and thus we get

2 2
Z blhbjhblkb ik — 2Zbubmb]zb]] S 2Zbl_]b]’t S 22 + b = <n,

i#j,h#k i#j

by stochasticity and using the inequality zy < (? +y?)/2. Summarizing we obtain tr(C?) < 4n, from which,
proceeding as in (8), we have rk(B) > n/4.

If there are also the 2 x 2 submatrices with one entry on the main diagonal, then at least one of ¢ = h, i = k,
7 = h, 7 = k holds, so that we can write

Z binbirbjnbjr < Z binbiibjnbj; + Z bijbikbjibjr +
i, htk ijh ijk
+ ) binbijbinbj; + Y bibirbjnbji -
ijh ijk
We have . b
in T
Z bzhbzzb]hb]z - Z bzzb]z Z bzhb]h < z bzzb]z Z h Z bi’ibjia
ijh ij
and

b7 + b2
mebﬂ < ZZ

The other 3 terms can be bounded analogously, thus giving tr(C?) < 2n + 4n = 6n. Proceeding as in (8),

we have rk(B) > n/6. |
Definition 1 If A is an n X n matriz and o is a permutation of {1,...,n}, then the sequence of elements
a1,5(1)5- - - >An,o(n) 18 called the diagonal corresponding to o.

Definition 2 Let A be a square matriz. A is said to have support if it contains a diagonal of non-zero
elements. A is said to have total support if every nonzero element of A lies on a diagonal of nonzero
elements.



Lemma 11 Let A be a square matriz with total support, then there exists a matriz B with the same rank
and nonzero pattern of A such that B - B is doubly stochastic.

Proof. The matrix A’ = A- A, whose nonzero pattern is the same of A, is nonnegative and has total support.
By [18] there exist two positive diagonal matrices D; and D5 such that Dy A’ D, is doubly stochastic. It is
easy to verify that the matrix B = D}/ 2AD;/ % meets our conditions, since it has the same pattern and rank
of A and PR It 11 L1

B-B=(D}AD2)- (D ADZ)= (D} -D2)(A-A)(D:-D2)=D1A'D,.

Theorem 12 Let A be an n X n matriz with total support.

o Ifrk(A) < mn/2, then A contains at least one full 2 X 2 submatriz;

o if tk(A) < n/4, then A contains at least one full 2 x 2 submatriz with at most one entry on the main
diagonal;

o if tk(A) < n/6, then A contains at least one full 2 X 2 submatriz with no entry on the main diagonal.

Proof. Let us suppose, by contradiction, that A does not contain a full 2 x 2 submatrix. Then by Lemmas
10 and 11 there exists a matrix B such that rk(4) = rk(B) > n/2. This contradicts the assumption
rk(A) < n/2, and hence proves the thesis. The other two cases, rk(4) < n/4 and rk(A4) < n/6, are similar.
O

Corollary 13 Let A be an n x n matriz with support.

o Ifrk(A) < n/2, then A contains at least one full 2 x 2 submatriz;

o if tk(A) < n/4, then A contains at least one full 2 x 2 submatriz with at most one entry on the main
diagonal;

e if tk(A) < n/6, then A contains at least one full 2 X 2 submatriz with no entry on the main diagonal.

Proof. If A does not have total support, then there exist two permutation matrices P and @ such that
B = PAQ is a block triangular matrix, whose diagonal blocks By, Bs, ..., B; have total support [3]. The
matrices B; are uniquely determined within arbitrary permutation of their rows, but their ordering in B is
not necessarily unique. As a consequence we cannot guarantee that the multiplication by P and () maps all
the diagonal elements of A inside the union of the blocks B;. However, we can choose P and @ in such a way
that every diagonal element of A is either outside the union of the diagonal matrices B; or on the diagonal
of one of them.

The sum of the ranks of the diagonal blocks of B does not exceed the rank of A, and thus, if rk(4) < n/k ,
there is at least a block, say Bj, of size m and rank less than m/k. Depending on k we consider 3 cases.

If tk(B;) < m/2, by Theorem 12, we have that Bj, and thus A = P~1BQ ! contains a 2 x 2 submatrix of
nonzeros, as claimed. In fact it is easy to see that the multiplication by permutation matrices, like P and @
and their inverses, preserves such a structure.

If rk(B;) < m/4, by Theorem 12, we have that B; contains a 2 x 2 submatrix of nonzeros, with at most one
entry on the main diagonal of B;. Since all the diagonal elements of A which appear inside B; are located
on the main diagonal of B;, we have that the 2 x 2 submatrix of B;, once mapped again in A, can contain
at most one diagonal entry, as required.

The case rk(B;) < m/6 is similar to the case rk(B;) < m/4. O

10



5 Further Results

5.1 Symmetric case over GF[2]

We consider here symmetric {0, 1} matrices with low rank over GF'[2], a case for which we cannot apply the
result of Section 3. In the following, we describe a family of matrices of rank % + 2 and without triangles.

Let Iy, Ji, and Py denote the identity matrix, the matrix with all the entries equal to 1, and the matrix
with the (i, k — i)-th entries equal to 1, respectively, all of size k. Let us consider the following n x n matrix,
for n = 4k, written in block form.

Iy, I, I, Jp — By
— _ Ik Ik Jk _Ik Pk
An = In B = I Jo =Ty Iy By
Jr — P Py Py I

This is a family of symmetric matrices with the following properties:

e A, is triangle-free. This property can be easily verified computing the trace of B3. We have

B2 = 2(Jx —Ir)  (k—2)J +3I, I — I 2(Jx — P)
" 2(Jy — I) Jr — I, (k—2)Jy + 31} 2(Jx — Py) ’
2P, 2(Ji — Py) 2k — Py)  (k—2)Jp + 31

from which we readily see that Tr(B3) = 4Tr(6.J;, — 6I;) = 0.

e Ranky(A) = r = n/4 + 2. Indeed the matrices A, can be obtained as A, = UU T, where U is the
following r x m matrix.

10 --- 0j0|1 --- 1(0]1 11 1 10
10 --- 0]1]0 01011 10 0 |1
110 --- 0|01 1110 00 0 |1
0 0 0 1 9)
. Ir—3 IT—S Ir—3 Jr—3 - Pr—3 .
0 0 0 1

e A, is regular of degree r.
e B, has independent sets of size k = r — 2.

e Rankg(A4,) = n, and A, has exactly 5 distinct integer eigenvalues. More precisely A,, has the following
eigensystem.
— A1 = r with multiplicity 1 and eigenvector (1,---,1)7.
— A2 =7 — 4 with multiplicity 1 and eigenvector
k k k k

—_— 7
(_17"'7_1717"'71 17"'717_17"'7_1) .

’

11



— A3 =4 — r with multiplicity 2 and eigenvectors
k k k k

—_—
(_15'"7_1507"'50507"'50713"'71)

and
k k k k
/—’%/—’H/—’%/—’H
(-1,---,—-1,1,---,1,-1,- 11--1)

— Ay = —2 with multiplicity k¥ — 1 and eigenvectors
1 -1 -1 1

—P_ : Py 5 Py —Iy_1
1 -1 -1 1

— A5 = 2 with multiplicity n —r — 1 = 3(k — 1) and eigenvectors

1 —1 r
—Ip 1 | : 0 0 © | Py
1 -1
-1 —1
I 0 D | Pa 0
-1 -1
-1 -1
D | Peoa | | Peot 0 0
~1 -1

The verification of the above properties can now be done by direct inspection.

It is an open problem whether or not the above family is extremal, i.e., whether all symmetric {0, 1} matrices
with rank over GF[2] at most § + 1 must contain triangles.

5.2 Special cases for which Conjecture 1 holds

We now consider sublinear rank matrices satisfying additional constraints which guarantee that they must
contain triangles. The main result of this section is Theorem 15, where we show that a low rank matrix
which can be factored in terms of sparse matrices must contain triangles.

Low rank and sparse factors.

It is known that a symmetric {0, 1} matrix M can be factored over GF[2] as M = AAT, where the number of
columns of A is equal to either r or r+1, and r is the rank of M over GF[2], see [11]. If at least one diagonal
element is equal to 1, then the number of columns of A is r. The above decomposition of a symmetric matrix
M over GF[2] can be interpreted as representing M as an intersection matrix as follows. The rows and
columns are indexed by sets of some family of subsets of {1,...,r}, where r is the rank of M. The (i, j)-th
entry of M is 1 iff the intersection of the index sets corresponding to row ¢ and column j is odd. The rows of
A are the characteristic vectors of the sets. We shall call set systems also hypergraphs. If all sets have size k,
then we speak of k-hypergraphs. This representation allows us to investigate the presence of triangles in M
in a purely combinatorial way, by treating the rows of the matrix A as a set system. Since we assume that
all the diagonal entries are nonzero, we have that all sets have odd cardinalities. A triangle corresponds to
three sets, every two of which intersecting in odd sets.

12



Definition 3 A sunflower (also called a delta system, or a star) with | petals and core Y is a family of sets
X1,-..,X; such that X; N X; =Y for every i # j.

Note that the assumption that X3, ..., X; form a sunflower with an odd core is stronger than the assumption
that every two sets intersect in an odd set. A classical result of Erdds and Radé [5] states that for a given
k and [, every sufficiently large k-hypergraph contain a sunflower with [ petals. It has been observed in [§]
that a k-hypergraph, k odd, on an n element set of vertices with at least n(k—1)/2](k+1)/ 2% edges
contains a sunflower with [ petals and with an even core. A k-hypergraph can be easily constructed which
shows that this bound cannot be essentially improved. On the other hand the next theorem shows that the
case of odd cores is essentially different. The theorem is an easy consequence of a theorem of Fiiredi [7]. We
are indebted to V. Rodl for suggesting this proof, which replaces our original proof, which was self contained,
but more complicated.

Theorem 14 For every positive integers k,l, with k odd and |l > 3, there exists an integer K such that for
every n > 1 and every k-hypergraph H on n vertices with at least Kn edges, there ezists a sunflower in H
with | petals and an odd core.

Proof. Let a k-hypergraph on n vertices be given. By Fiiredi’s theorem there exists a subhypergraph H'
with [H'| > ¢|H| such that for every two different sets X,Y € H’, the intersection X NY is a core of a
sunflower with [ petals contained in H'. The constant € > 0 depends only on k and I. Thus we only need to
show that there is at least one odd intersection. Suppose Ke > 1, then |H'| > 1. Hence, by the odd town
theorem (an easy algebraic argument) there is at least one odd intersection and we are done. a

This theorem implies that if M = AAT, where the n x % matrix A is “sparse” and M has 1’s on the main
diagonal, then the associated matrix must contain a complete graph on [ vertices. We shall show that a
similar statement holds also with M = ABT, where A and B may be different sparse matrices.

Theorem 15 Vk,l, 3¢ > 0 such that Vn, if M = AB (over GF[2]), where M is an n x n matriz with ones
on the main diagonal, A is an n X r matriz, B is an r X n matriz, r < en, A (resp. B) has at most k ones
in each column (resp. row), then there exists an | x 1 principal submatriz of ones in M. (Note that M does
not need to be symmetric.)

Theorem 15 can be reformulated in an equivalent way, in set intersection terms:

Theorem 16 VEk,l, e > 0, Vn, and for all sets (A1,B1),...,(An,Bp), |4il,|Bi| <k, A;,B; C X, |X| =
r < en, where for all i, if |A; N B;| is odd, then there ezist iy,...,4;, such that for all 1 < o, < I, with
a # (3, we have that |A;, N B;,| is odd.

Theorem 16 follows from a stronger result, which we prove below.

Theorem 17 Vk,l, 3¢ > 0, Vn, and for all sets (A1,B1),...,(An,Bn), |4il,|Bi| <k, A;,B; C X, |X| =
r < en, if for all i, |A; N B;| is odd, then there exists a set D of odd cardinality and i1,...,4 such that for
all 1 <, B <1, with a # 3, we have that A;, N B;, = D.

Proof. Let C; = A; N By, i.e., |C;| is odd. By Theorem 14, we have that there exist ji,..., jm and D such
that Va # 3, C;, NCj, = D.

Now, for every i, choose the mappings

fi: P(4;) = {0,...,2F — 1},

gi: P(B;) = {0,...,2%F — 1},

13



and assign the colour (f;(4;NB;), g;(A;NB;)) to the pair (4, j), for ¢ < j. By Ramsey Theorem, there exists
{i1,..-,i1} C{J1,---,Jm} such that all pairs have the same colour.

Claim: i,i',j,j € {i1,...,i1},i < j,i <j, wehave A;NB; =A; NB,.
Proof: A; ﬁBj = A; ﬂle = Ai' nle.

Thus there exists a set D' of odd cardinality such that A; N B; = D', for all 4,5 € {i1,...,4}, i < j.
Symmetrically, there exists D" such that A; N B; = D", for all i,j € {i1,...,i1}, i > j. W.lo.g we
can assume that [ > 4. Then D' C A ;N By NAyNBsNA3N Ay C Ay N By N A3 N By = D. But also
DCA NBiNAy;NBy C Aj N By =D'. Therefore D = D'. By symmetry D = D".

Note that we have applied Theorem 14 although the sets C; do not have all the same cardinality because
there is only a constant number of different cardinalities, so that we can take those i’s for which the size of
intersection occurs more frequently. O

Note that sunflower theorems had been used at least twice to prove lower bounds on the size of circuits
[15, 8].

Rank equal to the maximal independent set.

We now consider the problem of rank vs triangles, under the additional assumption that the rank is equal
to the size of the largest independent set in the associated graph. Our main motivation is that, due to the
connection with Ramsey theory, we would like to know how big the gap can be between rank and size of an
independent set, in the case of triangle free graphs. Note that in our Ramsey construction of Section 3, the
rank of the matrix is full!

Here we show that an 2n x 2n 0-1 matrix M, with rank n, maximal independent set of size n, and without
‘triangles’ must be bipartite.

Let I denote the identity matrix. We represent M (or P" M P, where P is a suitable permutation matrix)
as a 2 x 2 block matrix, with n x n blocks:
I B
v-(¢z)

such that E > I, (element-wise). Note that the case E = I would imply that the graph is bipartite.

We will show that M (in order not to have triangles) must be bipartite.

(I B , (I B
M_(C E> and M‘(o E—CB)’

where M’ is obtained from M by Gaussian elimination, and thus has the same rank as M. It is easy to see
that if E — CB # 0 then the rank of M’ would exceed n, hence we can assume that E = CB. If E =1
then M is clearly bipartite. Assuming by contradiction that E # I we obtain that M must have triangles.
In fact, since E > I, E # I implies that E must have at least an off-diagonal nonzero entry, say epq, with
p # q. Since E = CB we have

We can write

n
1= qu = Zcpkbkq,
k=1

which implies that there is at least one index k such that both ¢y and by, are equal to 1. The thesis follows
by observing that e,q, cpr and by, form a triangle in M.

The above described result is just a first step towards understanding whether or not there must be a significant
gap between rank and size of a maximal independent set in a triangle free graph of low rank.
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6 Conclusions

The Odd Alternating Cycle Conjecture fails for k¥ = 3, and a similar statement is false for complete graphs
on k vertices, for k sufficiently large (even for positive semidefinite matrices). However, in spite of some
effort, we were not able to disprove the conjecture even for k = 5. Furthermore, it is true for some special
cases (e.g., products of sparse matrices) and the statement is true for £ = 4 over the real field. These results
do not give better bounds on the size of linear circuits, but we are thinking of some generalizations which
may have such consequences. Thus we believe that this is a promising research area, which will eventually
lead to results on the complexity of linear circuits and solve problems posed more than 20 years ago. As the
construction of a Ramsey graph shows, this research also belongs to a mainstream area in combinatorics.

To conclude, we shall insist on three open problems, which we believe are the most important among those
mentioned in this paper:

1. Does the Odd Alternating Cycle Conjecture hold for k¥ = 5?7
2. Does the Odd Alternating Cycle Conjecture hold for k = 3 for symmetric matrices over GF[2]?

3. Does sublinear rank and nonzero elements on the main diagonal imply the existence of a 2 x 2 submatrix
of nonzero elements also for fields of nonzero characteristic?
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