Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97- 046 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

syndrome trellis 73
test set 48ff.

time complexity 5
trellis complexity 74
zero neighbor 52

114

Index

algorithmic problem 5
almost all 7

bound
Blokh—Zyablov 28
Justesen 27

Zyablov 27

boundary 51
channel 70
additive 70
discrete 70
memoryless 70
symmetric 70

code
algorithmic problems for 8
asymptotically good 11
correcting defects 34
correcting erasures 31
correcting localized errors 37
limit parameters of 11
linear
concatenated 26
covering radius of 41
low-density parity-check 13
rate of 8
regular-graph 17
relative distance of 8
systematic 7

check set 7
computation 5
covering 57
covering system 58

decision problem 5
defect 34

decoding
bounded distance 8
complete minimum distance 8
covering set 56
hard-decision 9, 46
gradient-like 48
information set 55
iterated majority voting 13
parallel 16

generalized minimum distance 85

list cascade 67

113

maximum likelihood 70
minimal-vectors 50
soft-decision 9, 70ff.
split syndrome 48
punctured 62
supercode 64f.
syndrome 45
syndrome trellis 72ff.
weighted-partitions 83
zero-neighbors 52

edge-vertex incidence graph 18
error-correcting pair 24
Evseev lemma 45

generalized 77f.
expander 16

Gilbert—Varshamov distance 8
GUAVA 12
information set 7, 55ff.
large factors 101
logical circuit 6
size 6
depth 6
McEliece cryptosystem 58
minimal vector 49

problem

algorithmic 5
almost-NP-hard 100
complete 6

NP- 6, 94fF.

17— 98
constructive 6
easy 4
difficult 4
decision 4
instance of 5
intractable 6
mass 5
polynomially reducible 6

Random Access machine (RAM) 5
random matrix
corank of 43f.
segmentation 80
space complexity 5
support 49

[157]
[158]
[159]
[160]

[161]

[162]

[163]

[164]

[165]
[166]

[167]
[168]

[169]

[170]

[171]

M. A. Tsfasman and S.G. VIiddut, Algebraic-Geometric Codes, Dordrecht :
Kluwer (1991).

V. Uspensky and A. Semenov, Algorithms: Main Ideas and Applications, Kluwer
(1993).

A. Vardy, “The Nordstrom-Robinson code: representation over GF(4) and effi-
cient decoding,” IKEE Trans. Inform. Theory, 40 (5) (1994), 1686-1693.

A. Vardy and Y. Be’ery, “More efficient soft decoding of the Golay codes,” IEEE
Trans. Inform. Theory I'T-37 (3) (1991), 667—672.

A. Vardy, “The intractability of computing the minimum distance of a code,”
IFEFE Trans. Inform. Theory, to appear. Preliminary version in Proc. 29th ACM
Annual Sympos. on the Theory of Computing (STOC’97), ACM (1997), pp. 92—
109.

S. G. Vlddut and Yu.Il. Manin, “Linear codes and modular curves,” Cospemennnie
npobremsr maremarnrn, 25, Moscow: VINITI (1984), 209-257, and J. Soviet Math.
30 (1985), 2611-2643.

C. Voss and T. Hgholdt, “An explicit construction of a sequence of codes attain-
ing the Tsfasman—VIddut—Zink bound: The first steps,” IEEE Trans. Inform.
Theory, 43 (1) (1997), 128-136.

K. Wagner and G. Wechsung, Computational Complexity, Dordrecht: Reidel
(1986).
D. J.A. Welsh, Matroid Theory, London: Academic Press (1977).

J. K. Wolf, “Efficient maximum likelihood decoding of linear codes using a trel-
lis,” IEEE Trans. Inform. Theory, 24 (1) (1978), 76-80.

J. Wolfmann, “A permutation decoding of the (24,12,8) Golay code,” IEEE
Trans. Inf. Theory, 29 (5) (1983), 748-751.

V. V. Zyablov, “An estimate of complexity of constructing binary linear cascade

codes,” Problems of Info. Trans., 7 (1) (1971), 3-10.

V.V. Zyablov and M.S. Pinsker, “Estimation of the error-correcting complexity
of Gallager low-density codes,” Problems of Info. Trans., 11 (1) (1975), 26-36
and 18-28.

, “List cascade decoding,” Problems of Info. Trans., 17 (4) (1981), 29-33
and 236-240.

V. V. Zyablov and V.R. Sidorenko, Bounds to the trellis decoding complexity of
linear block codes,” Problems of Info. Trans., 29 (3) (1993), 3-9 and 202-207.

112

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

I. E. Shparlinski, Computational and Algorithmic Problems in Finite Fields,
Dordrecht: Kluwer (1992).

L.J. Shulman and D. Zuckerman, “Asymptotically good codes correcting inser-
tions, deletions, and transpositions,” Proc. 8th Annual ACM-SIAM Sympos. on
Discrete Algorithms (SODA 97), (1997) 669-674.

V.M. Sidelnikov, “Weight spectrum of the binary Bose—Chaudhuri-Hocquen-
ghem codes,” Problems of Info. Trans., 7 (1) (1971), 14-22 and 11-17.

, “Decoding of Reed—Solomon codes beyond (d —1)/2 and zeros of multi-
variate polynomials,” Problems of Info. Trans, 30 (1) (1994), 51-69 and 44-59.
Errata in the English translation, ibid., 30 (2) (1994).

J. Simonis, “On generator matrices of codes,” IEEFE Trans. Inform. Theory,
IT-38 (2) (1992), p. 516.

, “GUAVA: A computer algebra package for coding theory,” Proc. 4th
Intern. Workshop “Algebraic and Combinatorial Coding Theory, Novgorod, Rus-
sia” (ACCT4), (1994), pp. 165-166.

M. Sipser and D. Spielman, “Expander codes,” ITEFFE Trans. Inform. Theory,
IT-42 (6) (1996), 1710-1722. Preliminary version in Proc. 35th Sympos. on the
Foundations of Computer Science (FOCS ’94), IEEE Press (1994), pp. 566-576.

J. Snyders, “Partial ordering of error patterns for maximum likelihood soft de-
coding,” in G. Cohen et al., Eds, Algebraic Coding, Lect. Notes Comput. Science,
573, New York: Springer (1992), pp. 120-125.

U. K. Sorger, “A new Reed—Solomon code decoding algorithm based on Newton’s
interpolation,” IEEE Trans. Inform. Theory, IT-39 (2) (1993), 758-765.

D. Spielman, “Linear-time encodable and decodable error-correcting codes,”
IEEE Trans. Inform. Theory, IT-42 (6) (1996), 1723-1731. Preliminary ver-
sion in Proc. 27th ACM Annual Sympos. on the Theory of Computing (STOC
'95), ACM (1995), pp. 388-397.

J. Stern, “Approximating the number of error locations within a constant ration
is NP-complete,” in G. Cohen, T. Mora, and O. Moreno, Eds., Applied Algebra,
Algebraic Algorithms and Error-Correcting Codes, (AAECC-10), Lect. Notes
Comput. Science 673 (1993), pp. 325-331.

, “A method for finding codewords of small weight,” in G. Cohen and J.
Wolfmann, Eds., Coding Theory and Applications, Lect. Notes Comput. Science
388, New York: Springer (1989), pp. 106-113.

M. Sudan, “Decoding of Reed—Solomon codes beyond the error-correcting
bound,” J. Complexity, 13 (1997) 180-193. Preliminary version in Proc. 37th
Sympos. on the Foundations of Computer Science (FOCS ’96), IEEE Press
(1996).

Y. Sugiyama, M. Kasahara, S. Hirasawa, and T. Namekawa, “Superimposed
concatenated codes,” IEEE Trans. Inform. Theory, IT-26 (6) (1980), 735-736.

R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.

Inform. Theory, IT-27 (5) (1981), 533-547.

J. van Tilburg, “On the McEliece public-key cryptosystem,” in S. Goldwasser,
Ed., “Advances in Cryptology” (Crypto’88), Lect. Notes Comput. Science 403,
New-York: Springer (1990), pp. 119-131.

111

[122]
[123]
[124]
[125]

[126]

[127]
[128]
[129]
[130]
[131]
[132]
[133]
[134]
[135]
[136]
[137]
[138]

[139]

[140]

A. McLoughlin, “The complexity of computing the covering radius of a code,”
IEEE Trans. Inform. Theory I'T-30 (6) (1984), 800-804.

H. Miyakawa and T. Kaneko, “Decoding algorithms of error-correcting codes by
use of analog weights,” Electron. Commun. Japan, 58-A (1975), 18-27.

S. Ntafos and S. Hakimi, “On the complexity of some coding problems,” IEEE
Trans. Inform. Theory, IT-27 (6) (1981), 794-796.

C. Papadimitriou, Computational Complezity, Reading, MA: Addison-Wesley
(1995).

C. Papadimitriou and M. Yannakakis, “Optimization, approximation, and com-
plexity classes,” Journal of Computer and System Sciences, 43 (1991), 425-440.

Preliminary version in Proc. 20th ACM Annual Sympos. on the Theory of Com-
puting (STOC’88), ACM (1988), pp. 229-234.

R. Pellikaan, “On decoding by error location and dependent sets of error posi-

tions,” Discrete Math., 106 /107 (1992), 369-381.

, “On the existence of error-correcting pairs,” Journ. Stat. Plan. Infer-
ence, 51 (1996), 229-242.

E. Petrank and R. M. Roth, “ Is code equivalence easy to decide?” IFEFE Trans.
Inform. Theory, IT-43 (5) (1997), 1602-1604.

V. Pless, “Decoding the Golay codes,” IEEE Trans. Inform. Theory, IT-32 (4)
(1986), 561-567.

E. Prange, “The use of information sets in decoding cyclic codes,” IRE Trans.,

IT-8 (1962), S5-S9.

M. O. Rabin, “Efficient dispersal of information for security, load balancing, and
fault tolerance,” Journal of the ACM, 36 (2) (1989), 335-348.

H. Rogers, Theory of Recursive Functions and Effective Computability, McGraw
Hill, (1967).

R. Roth, “Maximal-rank array codes and their application to crisscross error

correction,” IEEE Trans. Inform. Theory, IT-37 (2) (1991), 328-336.

R. Roth and G. Seroussi, “Location-correcting codes,” [EEE Trans. Inform.
Theory, IT-42 (2) (1996), 554-565.

J. E. Savage, “The complexity of decoders,” 1, I, IEEE Trans. Inform. Theory,
IT-15, (6) (1969) 689-695 and IT-17 (1) (1971), 77-85.

J. E. Savage, The Complezity of Computing, New York: Wiley-Interscience Pub-
lications (1976).

N. Sendrier, “Finding the permutation between equivalent binary codes,” Proc.
IEEE Intern. Sympos. Inform. Theory, Ulm (1997), p. 367.

B.-7Z. Shen, “A Justesen construction of binary concatenated codes which asym-
ptotically meet Zyablov bound for low rate,” IFEF Trans. Inform. Theory, IT-
39 (1) (1993), 239-242.

P.W. Shor, “Polynomial-time algorithm for prime factorization and discrete
logarithms on a quantum computer,” STAM J. Comput. (to appear). Prelimi-
nary version in Proc. 35th Annual Sympos. on Foundations of Computer Science

(FOCS’94), TEEE Press (1994), pp. 124-134.

110

[103]
[104]

[105]

[106]
[107]

[108]

[109]

[110]

[111]

[112]
[113]

[114]

[120]

[121]

B. D. Kudryashov and T. G. Zakharova, “Block codes from convolutional codes,”
Problems of Info. Trans., 25 (4) (1989), 98-102 and 336-339.

A.V. Kuznetsov and B. S. Tsybakov, “Coding for memory with defective cells,”
Problems of Info. Trans., 10 (2) (1974), 52-60 and 132-138.

J.D. Lafferty and D.N. Rockmore, “Spectral techniques for expander codes,”
Proc. 29th ACM Annual Sympos. on the Theory of Computing (STOC’97), ACM
(1997), pp. 160-167.

A. Lafourcade and A. Vardy, “Lower bounds on trellis complexity of block
codes,” IEEE Trans. Inform. Theory, IT-41 (6) (1995) 1938-1954.

J. Leon, “Computing automorphism groups of error-correcting codes,” [EEE
Trans. Inform. Theory, IT-28 (3) (1982), 496-511.

, “A probabilistic algorithm for computing minimum weights of large
error-correcting codes,” IEEE Trans. Inform. Theory, I'T-34 (5) (1988), 1354—
1359.

L.A. Levin, “Average case complete problems,” SIAM J. Comput., 15 (1)
(1986), 285-286.

L. Levitin and C. R.P. Hartmann, “A new approach to the general minimum dis-
tance decoding problem: The zero-neighbors algorithm,” ITEEFE Trans. Inform.
Theory, IT-31 (3) (1985), 378-384.

H.-A. Loeliger, “On the basic averaging arguments for linear codes,” in R. Blahut
et al., Eds., Communications and Cryptography: Two Sides of One Tapestry,
Dordrecht: Kluwer (1994), pp. 251-261.

B. Lopéz Jiménez, Plane Models of Drinfeld Modular Curves, Ph.D. Thesis,
University of Complutense, Madrid (1996).

A. Lubotzky, R. Phillips, and P. Sarnak, “Ramanujan graphs,” Combinatorica,
8 (3) (1988), 261-277.

M. G. Luby, M. Mitzenmacher, M. Amin Shokrollahi, D. A. Spielman, and V.

Stemann, “Practical loss-resilient codes,” Proc. 29th ACM Annual Sympos. on
the Theory of Computing (STOC’97), ACM (1997), pp. 150-159.

] Yu.I. Manin, A Course in Mathematical Logic, Berlin: Springer (1976).

G. A. Margulis, “Explicit constructions of concentrators,” Problems of Info.
Trans., 9 (4) (1973), 71-80 and 325-332.

, “Explicit constructions of graphs without short cycles and low density
codes,” Combinatorica, 2 (1) (1982), 71-78.

, “Explicit group-theoretical constructions of combinatorial schemes and
their application to the design of expanders and concentrators,” Problems of
Info. Trans., 24 (1) (1988), 51-60 and 39-46.

J.L. Massey and T. Schaub, “Linear complexity in coding theory,” in G. Cohen
and P. Godlewski, FEds., Coding Theory and Appl., Lect. Notes Comput. Science,
311, New York: Springer (1988), pp.19-32.

A.J. McAuley, “Reliable broadband communication using a burst erasure cor-
recting code,” Proc. SIGCOMM ’90, Philadelphia: ACM Press (1990), pp. 287—
306.

R.J. McEliece, “A public-key cryptosystem based on algebraic coding theory,”
DSN Progress Report 43-44, JPL, Pasadena, pp. 114-116 (1978).

109

[84]

[85]

[89]

[90]
[91]
[92]
[93]
[94]

[95]

[100]
[101]

[102]

G.B. Horn and F. R. Kschischang, “On the intractability of permuting a block
code to minimize trellis complexity,” IEEE Trans. Inform. Theory, IT-42 (6)
(1996), 2042-2048.

J.D. Horton, “A polynomial-time algorithm to find the shortest cycle basis of a
graph,” SIAM J. Comput., 16 (2) (1987), 358-366.

T.-Y. Hwang, “Decoding linear block codes for minimizing word error rate,”

IEEE Trans. Inform. Theory, IT-25 (6) (1979), 733-737.

, “Efficient optimal decoding of linear block codes,” IEEE Trans. Inform.
Theory, IT-26 (5) (1980), 603-606.

D.S. Johnson, “The NP-completeness column: An ongoing guide,” editions 3, 18,
and 22, Journal of Algorithms, 3 (1982), 182-195, 7 (1986), 584601, 11 (1990),
144-151.

, “A catalog of complexity classes,” in J. van Leeuwen, Ed., Handbook
of Theoretical Computer Science, vol. A: Algorithms and Complexity, North-
Holland, (1990), pp. 67-161.

D. Jungnickel, Finite Fields: Structure and Arithmetics, Mannheim: Wis-
senschaftsverlag (1992).

J. Justesen, “A class of constructive, asymptotically good algebraic codes,” IFEF
Trans. Inform. Theory, 13 (Sept. 1972), 652-656.

G. A. Kabatianski and E. A. Krouk, “Coding decreases delay of messages,” Proc.
IEEE Intern. Sympos. Inform. Theory, San-Antonio (1993), p.225.

T. Kasami, “A decoding procedure for multiple-error-correcting cyclic codes,”
IEEE Trans. Inform. Theory, 10 (1964), 134-138.

G.O.H. Katona, “T'he Hamming-sphere has minimum boundary,” Studia Sci.
Math. Hungar., 10 (1-2) (1975), 131-140.

M. Kiwi, “lesting and weight distributions of dual codes,”
FElectronic Colloquium on Computational Complexity, TR97-010,
http://www.eccc.uni-trier.de/eccc/ .

D. E. Knuth, The Art of Computer Programming, Vol. 3, Reading, MA: Addison-
Wesley Publ. Co. (1973).

R. Kotter, “Fast generalized minimum distance decoding of algebraic-geometry
and Reed-Solomon codes,” IEEE Trans. Inform. Theory, IT-42 (3) (1996),
721-737.

S. 1. Kovalev, “I'wo classes of generalized minimum distance decoding algo-

rithms,” Problems of Info. Trans., 22 (3) (1986), 35-42 and 186-192.

, “Decoding of low-density codes,” Problems of Info. Trans., 27 (4)
(1991), 51-56 and 317-321.

J. Kratochvil, “Regular codes in regular graphs are difficult,” Discrete Mathe-
matics, 183 (1994), 191-205.

E. A. Krouk, “Decoding complexity bound for linear block codes,” Problems of
Info. Trans., 25 (3) (1989), 103-107 and 251-254.

E.A. Krouk and S.V. Fedorenko, “Decoding by generalized information sets,”
Problems of Info. Trans., 31 (2) (1995), 54-61 and 134-139.

108

[65]
[66]
[67]
[65]
[69]
[70]
[71]

[72]

M. Frances and A. Litman, “On covering problems of codes,” Theory of Com-
puting Systems, 30 (2) (1997), 113-119.

A. Frank, “Conservative weightings and ear-decompositions of graphs,” Combi-
natorica 13 (1) (1993), 65-81.

7. Firedi, “Matchings and coverings in hypergraphs,” Graphs and Combina-
torics, 4 (1988), 115-206.

E. M. Gabidulin, “Theory of codes with maximum rank distance,” Problems of
Info. Trans., 21 (1) (1985), 3-16 and 1-12.

R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA: MIT Press
(1963).

, Information Theory and Reliable Communication, New York: John Wi-
ley & Sons (1968).

M. R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, San-Francisco: Freeman (1978).

D. Gazelle and J. Snyders, “Reliability-based code-search algorithms for
maximum-likelihood decoding of block codes,” IEEF Trans. Inform. Theory,
IT-43 (1) (1997), 239-249.

S. 1. Gelfand and R. L. Dobrushin, “Complexity of asymptotically optimal code
realization by constant depth schemes,” Problems of Control and Information
Theory, 1 (3/4) (1972), 197-215.

S. 1. Gelfand, R.L. Dobrushin, and M.S. Pinsker, “On the Complexity of Cod-
ing,” in B. N. Petrov and F. Csaki, Eds., “2nd International Sympos. on Inform.
Theory, Tsahkadsor, Armenia,” Budapest: Akadémiai Kiad4 (1973), pp. 177-
184.

F. Gerth, “Limit probabilities for coranks of matrices over GF(q),” Linear and
Multilinear Algebra, 19 (1) (1986), 79-93.

D. M. Gordon, “Minimal permutation sets for decoding the binary Golay code,”
IEEE Trans. Inform. Theory, IT-28 (3) (1982), 541-543.

D. M. Gordon, G. Kuperberg, O. Patashnik, and J. Spencer, “Asymptotically
optimal covering designs,” J. Combin. Theory A, 75 (2) (1996), 270-280.

D. M. Gordon, O. Patashnik, and G. Kuperberg, “New constructions for covering
designs,” J. Combin. Designs, 3 (4) (1995), 269-284.

D. A. Grable and K. T. Phelps, “Random methods in design theory: A survey,”
J. Combin. Designs, 4 (4) (1995), 255-273.

Yu. Gurevich, “Average case complete problems,” J. Comput. Syst. Sciences, 42

(3) (1991), 346-398.

S. L. Hakimi and J. G. Bredeson, “Graph-theoretic error-correcting codes,” IEEFFE
Trans. Inform. Theory, I'T-14 (1968), 584-591.

Y.S. Han, C.R.P. Hartmann, and C.C. Chen, “Efficient priority first search
maximume-likelihood soft decision decoding of linear block codes,” IFEE Trans.

Inform. Theory, IT-39 (5) (1993), 1514-1523.

1.S. Honkala and P. R. J. (")stergard, “Code design,” in E. Aarts and J. K.Lenstra,
Eds., Local Search in Combinatorial Optimization, New York: Wiley (1997), pp.
441-456.

107

[46]
[47]

48]

[49]

[51]
[52]
[53]

[54]

[53]
[56]
[57]

[54]

[59]
[60]
[61]

[62]

[63]

[64]

N. Cutland, Computability, Cambr. Univ. Press (1980).

P. Diaconis and R. L. Graham, “The Radon transform on Z3,” Pacific J. Math.,
118 (1985), 176-185.

P. Delsarte, “Distance distributions of functions over Hamming spaces,” Philips

Res. Repts., 30 (1975), 1-8.

, “Bilinear forms over a finite field, with applications to coding theory,”
J. Comb. Th., Ser. A, 25 (1978), 226-241.

Y. Desaki, T. Fujiwara, and I'. Kasami, “T'he weight distribution of extended
binary primitive BCH codes of length 128,” IEEFE Trans. Inform. Theory, IT-43
(4) (1997), 1364-1371.

I. Dumer, “T'wo decoding algorithms for linear codes,” Problems of Info. Trans.,
25 (1) (1989), 24-32 and 17-23.

, “Asymptotically optimal linear codes correcting defects of linearly in-
creasing multiplicity,” Problems of Info. Trans., 26 (2) (1990), 3-17 and 93-104.

, “On minimum distance decoding of linear codes,” Proc. 5th Joint Soviel-
Swedish Int. Workshop Inform. Theory, Moscow (1991), pp. 50-52.

. “Suboptimal decoding of linear codes: Partition technique,” IEEE
Trans. Inform. Theory, IT-42 (6) (1996), 1971-1986. Preliminary version in
Proc. Eurocode ’92, CISM Courses and Lectures, 339, Berlin: Springer (1993),
pp. 369-382.

, “Maximum likelihood decoding with presorting,” manuscript (1997),
also Proc. IEEE Intern. Sympos. Inform. Theory, Ulm (1997), p. 396.

I.M. Duursma and R. Kotter, “Error-locating pairs for cyclic codes,” IEEE
Trans. Inform. Theory, IT-40 (4) (1994), 1108-1121.

M. Elia, “Algebraic decoding of the (23,12, 7) Golay code,” IEEE Trans. Inform.
Theory, IT-33 (1) (1987), 150-151.

P. van Emde Boas, “Machine models and simulations,” in J. van Leeuwen, Ed.,
Handbook of Theoretical Computer Science, vol. A: Algorithms and Complexity,
Amsterdam: North-Holland (1990), pp. 1-66.

P. Erd6s and J. Spencer, Probabilistic Methods in Combinatorics, Budapest:
Akadémiai Kiadé (1974).

G.S. Evseev, “Complexity of decoding for linear codes,” Problems of Info.
Trans., 19 (1) (1983), 3-8 and 1-6.

S. V. Fedorenko, “Decoding algorithms of linear block codes,” Problems of Info.
Trans., 29 (4) (1993), 18-23 and 313-317.

J. Feigenbaum, “The use of coding theory in computational complexity,” in R.
Calderbank, Ed., Different Aspects of Coding Theory, Proc. Symposia in Applied
Mathematics, vol. 50, Providence: AMS (1995), pp. 207-233.

G.D. Forney, “Generalized minimum distance decoding,” IEEFE Trans. Inform.
Theory, IT-12 (2) (1966), 125-131.

M. P.C. Fossorier and S. Lin, “Computationally efficient soft-decision decoding
of linear block codes based on ordered statistics,” IFEFE Trans. Inform. Theory,

IT-42 (3) (1996), 738-750.

106

[26]

[27]

28]

[29]

[30]

L. A. Bassalygo, V.V. Zyablov and M.S. Pinsker, “Problems of complexity in
the theory of error-correcting codes,” Problems of Info. Trans., 13 (3) (1977),
5-17 and 166-175.

E. Berlekamp, “Bounded distance + 1 soft decision Reed—Solomon decoding,”
IEEE Trans. Inform. Theory, IT-42 (3) (1996), 704-720.

E. Berlekamp, R.J. McEliece and H.C. A. van Tilborg, “On the inherent in-
tractability of certain coding problems,” IEFE Trans. Inform Theory, IT-29
(3) (1978), 384-386.

M. Blaum and J. Bruck, “Simple combinatorial decoding of the [23,12,7] Golay
code,” in R. Capocelli, Ed. Sequences, Berlin: Springer (1990), pp. 433-448.

V. M. Blinovskii, “Lower asymptotic bound on the number of linear code words
in a sphere of given radius in Fg,” Problems of Info. Trans., 23 (2) (1987),
50-53 and 130-132.

. “Asymptotically exact uniform bounds for spectra of cosets of linear
codes,” Problems of Info. Trans., 26 (1) (1990), 99-103 and 83-86.

, Asymptotic Combinatorial Coding Theory, Kluwer: Boston (1997).

J. Bruck and M. Naor, “The hardness of decoding linear codes with preprocess-
ing,” IEEE Trans. Inform. Theory, IT-36 (2) (1990), 381-385.

L. Calabi, “A note on rank and nullity in coding theory,” Information and
Control, 4 (4) (1961), 359-363.

R. Calderbank and P. Shor, “Good quantum error-correcting codes exist,” Phys-
ical Review, Ser. A, 54 (2) (1996), 1098-1105.

A. Canteaut and F. Chabaud, “A new algorithm for finding minimum-weight
codewords in a linear code: application to primitive narrow-sense BCH codes of
length 511,” Rapport de recherche no. 2685, INRIA, Rocquencourt (1995).

A.H. Chan and R. A. Games, “(n, k, t)-covering systems and error-trapping de-
coding,” IEEE Trans. Inform. Theory, IT-27 (1981), 643-646.

P. Charpin, “Tools for coset weight enumerators of some codes,” in G. L.. Mullen
and P.J.-S.Shiue, Eds., Finite Fields: Theory and Applications, Providence:
AMS (1994), pp. 1-14.

F.R. K. Chung, Spectral Graph Theory, Providence: Amer. Math. Society (1997).

D. M. Chickering, D. Geiger, and D. Heckerman, “On finding a cycle basis with
a shortest maximal cycle,” Information Processing Letters, 54 (1) (1995), 55-58.

G. Clark and J. Cain, Error-Correcting Coding for Digital Communication, Lon-
don: Plenum Press (1981).

J.T. Coffey and R. M. F. Goodman, “The complexity of information set decod-
ing,” IEEE Trans. Inform. Theory, IT-35 (5) (1990), 1031-1037.

J.T. Coffey, R. M.F. Goodman, and P. Farrell, “New approaches to reduced
complexity decoding,” Discrete Applied Math., 33 (1991), 43-60.

G. Cohen, S. Litsyn, and G. Zémor, “On greedy algorithms in coding theory,”
IEEE Trans. Inform. Theory, IT-42 (6) (1996), 2053-2057.

T.H. Cormen, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithms,
Cambridge, MA: MIT Press (1990).

105

[10]

[11]

[12]

[13]

[19]
[20]
[21]

[22]

(23]

, “Reductions, codes, PCPs, and inapproximability,” Proc. 36th Annual
Sympos. on Foundations of Computer Science (FOCS’95), IEEE Press (1995),
pp. 404-413.

S. Arora, L. Babai, J. Stern, and Z. Sweedyk, “The hardness of approximating
optima in lattices, codes, and systems of equations,” Proc. 34th Annual Sympos.
on Foundations of Computer Science (FOCS’93), IEEE Press (1993), pp. 724—
733.

D. Augot, “Description of minimum weight codewords of cyclic codes by alge-
braic systems,” Finite Fields Appl., 2 (2) (1996), 138-152.

A. Ashikhmin and A. Barg, “Minimal vectors in linear codes and sharing of
secrets,” Universitat Bielefeld, SFB 343 Diskrete Strukturen in der Mathematik,
Preprint 94-113 (1994), available from ftp.uni-bielefeld.de.

J.J. Ashley, R. Karabed, and P. Siegel, “Complexity and sliding-block decod-
ability,” IEEE Trans. Inform. Theory, IT-42 (6) (1996), 925-947.

C.A. Asmuth and G.R. Blakley, “Pooling, splitting and restituting informa-
tion to overcome total failure of some channels of communication,” Proc. 1982
Sympos. on Security and Privacy, New York: IEEE Press (1982), pp. 156-169.

A. Ashikhmin, A. Barg, G. Cohen, and L. Huguet, “Variations on minimal
codewords in linear codes,” in G. Cohen, M. Giusti and T. Mora, Eds., Applied
Algebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-11), Lect.
Notes Comput. Science, vol. 948 (1995), pp. 96-105.

L. Babai, “Transparent proofs and limits to approximation,” Proc. First Furo-
pean Congress of Mathematics, pt. 2, Basel: Birkhauser (1994), pp. 31-92.

L.R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error rate,” IEEFE Trans. Inform. Theory, IT-20
(2) (1974), 284-287.

A. Barg, “Some new NP-complete coding problems,” Problems of Info. Trans.,
30 (3) (1994) 23-28 and 209-214.

A. Barg and 1. Dumer, “Concatenated decoding algorithm with incomplete in-
spection of code vectors,” Problems of Info. Trans., 22 (1) (1986), 3-8 and 1-7.

, “On computing the weight spectrum of cyclic codes,” IEEE Trans.
Inform. Theory, IT-38 (4) (1992), 1382-1386.

A. Barg, E. Krouk and H.C. A. van Tilborg, “Remarks on the hard-decision
decoding of linear codes,” preprint (1996), also Proc. IEEE Intern. Sympos.
Inform. Theory, Ulm (1997), p.331.

A. Barg and S. Zhou, “Linear-time binary codes correcting localized erasures,”
Proc. 35th Annual Allerton Conf. on Communication, Control and Compuling,
Monticello, IL (1997).

J.-P. Barthélemy, G.D. Cohen, and A. Lobstein, Complexité algorithmique de
problémes de communication, Paris: Masson (1992). English translation: Algo-
rithmic Complezity and Communication Problems, London: University College
of London (1996).

L. A. Bassalygo, S.1. Gelfand, and M.S. Pinsker, “Codes for channels with lo-
calized errors,” in: Proc. 4th Swedish—Soviet Workshop on Information Theory,
(1989), pp. 95-99.

104

computations that operate with states of certain quantum systems. Shor [140]
showed that using this hypothetical computing device it is possible to greatly
expedite algorithmic solutions of some notoriously difficult problems. The ex-
istence of asymptotically good quantum codes has been proved in Calderbank
and Shor [35]. Therefore, a most natural question is whether it is possible
to construct simple quantum computations for the decoding of these quantum
codes or of classical codes with a better performance than that of the classical
algorithms discussed in this chapter.

Acknowledgment. A substantial part of this chapter was written during
my stay at the Faculty of Mathematics and Computing Science of the Technical
University of Eindhoven. T wish to thank Prof. H. C. A. van Tilborg for granting
me an opportunity to spend the years 1995-96 at the faculty and for his support.

Discussions with Shiyu Zhou were helpful in improving the presentation of
a number of results in Section 2.

References

[1] E. Agrell, “Voronoi regions for binary linear block codes,” IEEE Trans. Inform.
Theory, IT-42 (1) (1996), 310-316.

[2] R. Ahlswede, L. A. Bassalygo, and M.S. Pinsker, “Asymptotically optimal bi-
nary codes of polynomial complexity correcting localized errors,” Problems of
Info. Trans., 31 (2) (1995), 76-83 and 162-168 *.

[3] A.V. Aho, J. E. Hoprcroft, and J. D. Ullman The Design and Analysis of Com-
puter Algorithms, London: Addison-Wesley (1974).

[4] A. Albanese, J. Blomer, J. Edmonds, M. Luby, and M. Sudan, “Priority encod-
ing transmission,” IEEE Trans. Inform. Theory, IT-42 (6) (1996), 1737-1747.
Preliminary version in Proc. 35th Annual Sympos. on Foundations of Computer
Science (FOCS’94), IEEE Press (1994), pp. 604-613.

[5] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth, “Construction of asymp-
totically good low-rate error-correcting codes through pseudo-random graphs,”

IEEE Trans. Inform. Theory, IT-38 (2) (1992), 509-516.

[6] N. Alon and F.R.K. Chung, “Explicit constructions of linear sized tolerant
networks,” Discrete Mathematics, 72 (1988), 15-19.

[7] N. Alon and M. Luby, “A linear time erasure resilient code with nearly optimal
recovery,” IEEE Trans. Inform. Theory, IT-42 (6) (1996), 1732-1736. Prelimi-
nary version in N. Alon, J. Edmonds, and M. Luby, Proc. 36th Annual Sympos.
on Foundations of Computer Science (FOCS’95), IEEE Press (1995), pp. 512—
519.

[8] N. Alon and J. Spencer, The Probabilistic Method, Chichester: Wiley-Intersci-
ence (1992).

[9] S. Arora, Probabilistic Checking of Proofs and Hardness of Approzimation Prob-
lems, Dept. of Computer Science, Princeton University, Techn. Rep. CS-TR-476-
94 (1994), 158p., available from http://www.eccc.uni-trier.de/eccc/.

*The first page range refers to the Russian original (Ilpo6nemt nepenaun unpopmanmm)
published by the Russian Academy of Sciences and the second one to the FEnglish translation
(Problems of Information Transmission) published by Plenum Press.

103

NP-completeness of deciding whether a binary code has a vector of weight n/2
has been proved by Calderbank and Shor (see [47]). The same result for ternary
codes and weight n is from Barg [19].

For the NP-completeness of Py, Ps, P7 see Frances and Litman [65], Horn
and Kschischang [84], and Kratochvil [100], respectively. An easy reduction for
Pg follows from part (b) of Theorem 4.1; see Vardy [161].

The construction of codes from graphs was introduced in Calabi [34], Hakimi
[81]. Properties of classical linear spaces in graphs and their combinatorial
evolution form the subject of matroid theory; see Welsh [165]. Many problems
that are difficult for general linear codes, are polynomial for cycle codes of
graphs. Examples are decoding, see Ntafos and Hakimi [124], finding a basis of
minimal total weight, see Chickering et al. [40], Horton [85], and computing the
covering radius, see Frank [66].

Theorem 4.4 is due to McLoughlin [122]. The complexity of the Weight
of error problem with preprocessing (Pg) was proved in Bruck and Naor [33].
Their reduction is from K3. The proof that we give, following Lobstein [24,
pp-121-123], has the advantage of being valid for any fixed code alphabet.

The nonapproximability theorem (Theorem 4.6) and the surrounding dis-
cussion is from Arora et al.[11], Stern [151]. Stern [151] constructs a sequence
of approximation preserving reductions from 3-SAT (cf. Problem Kj). Arora
et al.[11] also prove similar nonapproximability results for integral lattices in
R”™. The general theory of problems that are hard to approximate is found in
Papadimitriou and Yannakakis [126],

Some NP-complete problems related to constrained codes are found in Ash-
ley et al. [14]. In [129] Petrank and Roth study the complexity of deciding
whether two linear codes are equivalent. An algorithm for establishing equiv-
alence of two binary codes with no nontrivial automorphisms is presented in

Sendrier [138].

In this chapter we studied the use of complexity theory in coding. However,
complexity theory itself also profits from coding methods. Since the technique
is not related to codes and the proofs are long, we have decided not to include
these results. They are covered in Arora [9],[10], Babai [17], Feigenbaum [62],
Kiwi [95].

In conclusion we would like to mention two research areas related to our
topic.

First, as is well known and partly shown above, most best results in coding
theory are achieved by averaging over the ensemble of random codes. Therefore,
it is natural to ask whether basic problems, first and foremost, the decoding,
are NP-complete on the average in the sense of the definitions in Levin [109],

Gurevich [80].

The second area is related to algorithms for a “quantum computer,” i.e.,

102

wt (y;) = . This implies, as in the proof of Thm.4.1, Part (a), that the nonzero
coordinates of y; equal one and as an incidence vector, it defines a matching
M C W3. Finally, the identity y, + ¥, = zrr locates the ones of y, within the
coordinates corresponding to U, that is, M C U. |

Remark 4.2 Note the difference between this reduction and the one in part (a)
of Theorem 4.1. There H depended on the instance of Ky, here it is fixed, and
the only influence of a particular instance of the matching problem is through
y and w.

We conclude our discussion with another NP-completeness related result
that deals with approximating the solution to Problem P;. From the proof of
Theorem 4.1(a), we see that this problem remains NP-complete even if in its
statement we ask about exact equality.

Let # > 1. An algorithm is said to approximate the solution of a problem
(in our case, the weight of error) if its output is within the interval [w, fw], w
being the exact answer. If 7 is a constant, one speaks on approximating the
weight of error up to a constant factor. If g = 21030'5_6”,6 > 0, then it is said
that an algorithm approximates a solution up to a large factor.

Approximating the weight of an error even within any large factor is likely to
be difficult. In the following theorem we use one technical concept. A function
f 1s almost-NP-hard if using f as an oracle, we could solve any NP problem in
deterministic quasi-polynomial time, i.e., in time O(np"ly(bg")).

Theorem 4.6 Approzimating the weight of an error within any constant factor
ts NP-hard and within any large factor is almost-NP-hard.

A simple way to prove a weaker nonapproximability result is to reduce Prob-
lem K3 to P;. Note that this reduction preserves approximations. Therefore,
if K3 is NP-hard to approximate up to a certain constant, then so is Py. In
particular, finding a 98% approximation in the maximal cut problem is known
to be NP-hard. Therefore, the same holds for Problem P;.

4.1 Notes

A comprehensive account of logical foundations related to the complexity classes
is given in Garey and Johnson [71]. The NP-completeness proofs of problems
K;-Kj3 are also found there.

The first paper on NP-complete problems related to coding was Berlekamp et
al.[28]. The results of this paper correspond to parts (a) and (c¢) of our Theorem
4.1. That Weight of error is NP-complete for arbitrary ¢ and for multilevel codes
was observed in Barg [19].

Part (b) is a recent breakthrough due to Vardy [161]. The NP-completeness
of the Minimal weight problem has been conjectured in Berlekamp et al.[28]
and has resisted all attacks for 19 years despite repeated calls for a proof; see
Johnson [88]. Some partial results were proved in Ntafos and Hakimi [124]. The

101

mial time using a one-step oracle for problems from coNP. Clearly, coNP C TI§
and a fundamental conjecture states that this inclusion is proper. Under this
assumption, a IT5-complete problem is more difficult that any problem from

coNP.
We state without proof the following theorem.

Theorem 4.4 Pg is 15 -complete. |

By building longer quantified expressions of the form V3V3... it is possible
to form an hierarchy of complexity classes coNP = 11} C 115 C Then the
above conjecture suggests that every inclusion in this chain is proper. The order
of quantifiers in the alternating sequence is quite essential. We have illustrated
this difference above for the classes NP and coNP, i.e., for problems which ask
for the existence of an object (NP) and problems that claim something for all
objects from a certain set (coNP). Reversing the order (IVIAV...), we get an
hierarchy of complementary classes NP = X C ¥ C The general form
of the fundamental conjecture 1s that every inclusion in either chain is proper.
The next result that we are going to discuss is related to this conjecture.

In Problem P; we have assumed that the code is a part of the input, i.e.,
that the matrix H is supplied with every particular instance. Relaxing this
assumption, let us suppose that it is given once and forever and we can perform
an arbitrarily large preprocessing.

Py (Error weight with preprocessing). Given a vector s and a number w, find

out whether there is a vector y of weight < w with this syndrome: Hy” = s7.

Theorem 4.5 A polynomial algorithm for Py would imply that UZ.21 P =%F.

Proof: We shall give a reduction from K; to Pg with the property that every
instance U of Ky can be polynomially transformed to an instance of Pg in such
a way that U has a matching if and only if the question of Pg can be answered
in the affirmative. That this implies our claim will then follow from a general
structure theorem on nonuniform complexity, discussed for instance in [33].

Let W be at-set, N = 3 and let us number the triples u; € W? in a certain
fixed way. Form a ((3t + 2N) X 3N) matrix

B
H= Ik Ik)
I I,

where B is a 3t x N incidence matrix of the set W3, Let s = (11...1, 2z, 217)
be a (3t + 2N)-vector, where zy = (x(u; € U),1 < j < N) is the incidence
vector of the set U. Finally, choose w =1t + |U]|.

If U contains a matching M and zps is its incidence vector, then the vector
Yy = (zm, 2m, 2y\um) satisfies the conditions of Py. Conversely, if there is a
vector y = (yg, Yy, y5) with wt (y) < w and HyT = s then By? = (1...1)T.
However, wt (yg) + wt (y4) > |U| whence wt (y,) < w— |U| = ¢ and therefore,

100

Lemma 4.3 Let z be a n-vector of ones and twos. Then BzT = (11...1)7T
over Zs iff z provides a truth assignment with the properties required in Ks.

Proof: For the nonzero ternary numbers a1, as, as, the only way that a1 + a2+
asz = 1 is that exactly one of them equals 2 while the two remaining equal 1. 1
Form the matrix Hy = (B|1) by augmenting B with the all-one column and
put w = n + 1. If there exists an assignment z satisfying K2, then the vector
x = (z|2) is annihilated by Hs. Conversely, suppose that there exists a vector
@ such that Hox? = 0 and wt () = n+ 1. Then if 2,41 = 2, the necessary
assignment is given by the first n coordinates of . If z,41 = 1, then by the
lemma, the necessary assignment is given by the vector z = (2z1,...,2z,).

(d). CopEs AND GRAPHS. In Sect.2 we constructed codes from regular
graphs. There is also another way of associating a binary linear code to a graph
G{V, E}, which takes more account of classical linear spaces in graphs. Let
[V| = v and |[F] = e. A cutin G is a set of edges such that removing them
increases the number of connected components by 1. Characteristic vectors of
cuts form a linear subspace F5 of the space of all binary words of length e.
The dimension of this subspace (code) C'is v — 1. The dual code C'* has the
parameters [e, e — v + 1] and equals the linear space of cycles of G.

Then P3 is NP-complete for ¢ = 2 by an obvious reduction from Kg. For
q = 3 its completeness follows from part (b).

Proofs of parts (e)—(f) are omitted. |

Lemma 4.2 implies one interesting corollary. Namely, it is NP-complete to
find out whether a code over a given field Fpm is MDS or not, i.e., whether its
distance is one greater than its redundancy.

We would like to draw the reader’s attention to part (e) of this theorem.
Problem P5 accepts as an input string the entire code M, in striking contrast
to all other problems considered, where we deal with a concise representation of
the code of total length O(log? |M|). Therefore, a natural question is what is the
complexity of computing the covering radius if we are only allowed to store an
input of a similar size. Then intuition suggests that the covering radius should
be a more difficult problem than, for instance, decoding. Indeed, a naive way to
decode is to take a given vector y and compare it with all codewords in order
to find the closest one. To find the covering radius one has to take a vector
y, compute its distance to the code, and repeat this for all vectors outside the
code in order to find the farthest-off one.

Pg (Upper bound on covering radius). Given a linear code C' and w > 0, is it
true that

VyeE; Jeec (dist (y,¢) < w)? (4.2)

Since the covering radius equals the maximum weight of a coset leader, an
equivalent formulation is to ask whether for any given s there is a vector with
this syndrome whose weight does not exceed w.

Decision problems involving quantified expressions of type (4.2) are joined
into a class TT5. A problem is in IT% if it can be solved in nondeterministic polyno-

99

The definition of C' implies that
dg > dedp.
Therefore, if de = w + 2, we have
do > (w+2)dp.

We need to chose dp so that the r.h.s. of this inequality is strictly greater than
that of (4.1). This will be satisfied if

dB>w+1qm_1(q—1) g—1 ¢—1 ¢ —w-—-2

np T w+2 ¢m -1 g ¢ (w+2)(gm—1)

where w < m. Such codes exist and can be polynomially constructed. Indeed,
if the length ne of the code € is small, its distance can be found by exhaus-
tive search. If ne grows, then so do w and m. Then we need a polynomially
constructible code with distance approaching (¢ — 1)/q. An example is given
by concatenating a ¢"-ary Reed—Solomon code with a g-ary first-order Reed—
Muller code; we omit the details.

(c). Let us reduce Ky to Py. Let |[U| = n. As above, form a 3¢ x n incidence
matrix of U and construct the following (3t(n + 1) x 3t(n + 1) + n) matrix:

Hy
In
=1 I3t(n+1)
I

Let w = 3t2 + 4t. Let ¢ = (€1, €2), where ¢; has length n and ¢y has length
3t(n 4+ 1). If U contains a matching, then taking ¢; as its incidence vector,
we see that for the product He” to vanish, o has to have weight 3t 4+ ¢ - 3¢.
Conversely, if wt (¢) = w and HeT = 0, then we have to prove that the product
s = HicT has weight 3t:

wt (e2) = wt (s) + 3twt (e1).
Adding wt (¢1) to both parts, we obtain the equation
wt(e) =wt(s)+ (3t + 1)wt(eq)
or
3t 44t = (3t + Dwt(c1) +wt(s), 0<wt(s) <3t
which admits a unique solution wt (¢1) = ¢, wt(s) = 3t.
The reduction for ¢ = 2, w = n/2 will be omitted.

If ¢ = 3 and w = n, we can reduce Ky to P5 as follows.

Form the r x n-incidence matrix B of the function C' = c1&cer& .. . &c, by
putting b;; = x(u; € ¢;). Let 2 = (z1,...,2,) be the vector corresponding to a
truth assignment to the variables U, where z; = 1 if u; is set to false and z; = 2
otherwise. The following simple fact is used in the proof.

98

If it includes the last column, then

1 1 o 1 1 1 o 1
a;, a;, a;., a;, a;, a;.,
a7, o ... al a7 ol ol
det H =o|) =1 .
a?’l_2 a?;_2 o Z”.J’w_2 ozi-”l_Q a;‘;_:z e a?’w_Q
a?’l_l a;l;_l o a;”w_l oy af ... af

The first term on the r.h.s. is the Vandermonde determinant A(7; ... 4,). Let
us compute the second term. Changing «;, to z changes it into a polynomial

w—1
in z. This polynomial has zeros «;, ..., @;,_, and thus, is divisible by [] (z —

ji=1
@;;). Continuing in this manner, we conclude that the necessary determinant is
divisible by A(iy ...,1,). Comparing degrees, we see that it equals A7y ..., 4y)
times a linear form of a’s. Since the answer is symmetrical in a’s, this linear form
18 E;'):l a;; times a constant. This constant must be one since the determinant
in question does not have identical terms. Thus,

det H=(0—> ai)A(i1... i),
j=1

which vanishes exactly when PY has a positive answer. |

Thus, Py is shown to be NP-complete for ¢™-ary codes. Note that in the
course of this reduction we pass from F, to its extension of degree m, where m
is a part of the instance. It is known [141] that one can construct extensions
(irreducible polynomials) in polynomial time.

The second part is, given an instance of Py for ¢"-ary codes, to present
a polynomial reduction to g-ary codes. This is easy since both codes have
alphabets of the same characteristic. To build this reduction, we construct a
g-ary concatenated code C' = CX B (see the definition in 2.1.2) with € the
outer code. Our objective is, given (', to be able to determine the distance of
C in polynomial time. This will be achieved by imposing restrictions on the
parameters of B, which we denote by [ng, kg, dg]. We use similar notation for
the parameters of C, namely, [ne, ke, de]. Note that for C to be well-defined,
kp should be at least m. A double counting argument similar to Theorem 14.1
in Chapter 1 shows that the distance of C'

¢"g—1)

dg < npde
=1

Remember that we have to distinguish the cases de = w+ 1 and de = w + 2.
In the first case, we have

m—1 _

97

P1 that corresponds to the instance of Ky, put s = (11...1) and w = ¢. Then if
U contains a sought subset and y is its characteristic vector, we have Hy” = s7.
Conversely, if for some y of weight < ¢ this inequality holds true, then clearly
wt (y) = ¢. Hence for every 7,0 < ¢ < 3t, the sum s; = zyill y; h;; contains
only one nonzero term, iy say, and y;, = 1, i.e., y defines a three-dimensional
matching in U. To build a reduction for product codes, we can take H as the
parity-check for the code B and choose A to be any nontrivial code that contains
the all-one vector. We omit the details.

(b). We shall reduce Py to P3. Let m be the number of rows and n the
number of columns in H. The interesting case is w < m since any linear code
contains a code vector of weight less or equal than its redundancy plus one.
Observe that the reduction in (a) necessarily involves all |U| columns of H;
therefore, the proof is unscathed if we replace < by = in the statement of P;.
We call this version Exact weight of error and denote it by P].

Rephrasing P} as in Remark 4.1(7i7) above, we conclude that the following
problem PY is NP-complete: given a set of elements A = {ay,as,..., 0,0}
of Fym, ¢ # 0, and an integer w > 0, is there a nonempty subset of distinct

w
elements {a;,, a;,,...,a;,} C A such that)~ a;; = o7
ji=1
Let us reduce P{ to P5. The central part of the proof deals with constructing
a code over F ;= whose minimum distance is different according as the answer
to Py is yes or no. This will prove that Py is NP-complete over Fym. Then
what remains is to prove that given a ¢™-ary code € one can always construct
a g-ary code C' such that the distance of € can be computed in polynomial time
given the distance of C.
Let us reduce P{ to Py for ¢™-ary codes. Let {ay,as,...,a,,c} be a given
instance of P{. Form the matrix

1 1 1 0
a1 (s %) (6%} 0
a% a% a,% 0
H— . .
oy ay? v
0/1”_1 0/2“_1 oooavTt
| af ay ... a0

The interesting case is w < n. Then H has the rank w+ 1 and the dimension of
the code € = ker (H) equals n—w. The following lemma s a crucial observation.

Lemma 4.2

a(e) = {w + 1 if there is a subset {a;,, @y, ..., i, } with) a;, =0,

w4+ 2 otherwise.

Proof: Recall that we have assumed that all &’s are distinct. Therefore, any w x
w square submatrix of H that does not include the last column, is nonsingular.

96

q. It remains NP-complete even if C = AQ B is a product code or a concatenated
code AR B with nontrivial factors.

(b) Py is NP-complete for any given alphabet.

(¢c) P3 is NP-complete for any given alphabet. If ¢ = 2, it is NP-complete
even if w=n/2. If ¢ = 3, it is NP-compleie even if w = n.

(d) Py is NP-complete for ¢ = 2,3.

(e) Problems P5-Pg are NP-complete for ¢ = 2.

(f) P7 is NP-complete even if r = 1.

Remark 4.1 (i) Problem Py is closely related to minimum distance decoding.
Indeed, any decoding algorithm can be used to solve P;. Namely, given a
syndrome s, it is a matter of simple linear algebra to find a vector with this
syndrome. Then running the decoding algorithm, we would obtain an answer
to Py. For this reason, one says that minimum distance decoding is NP-hard,
meaning that it is not in the class NP itself but there is an NP-complete problem
(Py) that can be polynomially reduced to it.

Further evidence of the difficulty of Problem P; is given by Theorem 4.6,
which says that even approximating the answer up to any given constant is
NP-complete.

(7i) In the same fashion, Problem Py (P3) is related to the minimum (resp.,
maximum weight) of the code, Problem Py to the covering radius of an (un-
restricted) code, and Problem Pg to the minimal trellis complexity (defined in
Sect. 3.4.1).

(7i1) For ¢ = 3 and w = n, Problem Pj can be also formulated as follows:
given n elements of a fixed extension of the field F3, is it possible to place the
signs in the sum Z?zl +a; so that it vanishes? This is the same as Py if we
view columns of H as elements of an extension field. |

Turning to the proof of Theorem 4.1, we shall discuss only relatively sim-
ple reductions, omitting more difficult parts. The following problems are NP-
complete, see Garey and Johnson [71].

K (three-dimensional matching). Given a t-set 1W and a collection U C W3
of triples find out whether there exists a subset V' C U, |V| = ¢, such that for
any two distinct triples v;, v; € V' the corresponding components are different:
vi1 # Vj1, Uiz F Vj2, Vis 7 Uj3.

K2 (monotone 1-in-3 SAT). Given a set of Boolean variables U = {uy, ...,
un,} and a set of clauses such that each clause contains three literals, none
of which are negated, is there a truth assignment to U such that each clause
contains exactly one true literal?

K3 (maximal cut or cycle). Given a simple graph and w > 0, is there a cut
(cycle) with at least w edges?

Proof of Theorem 4.1: (a). We reduce Ky to Py. Form a 3¢ x |U] incidence
matrix H of the set /. The columns of the matrix correspond to the triples
u € U. Let u; = (ui,, Uiy, t;,). Then the ith column of H contains 3t — 3 zeros
and 3 ones in positions u;,,? + u;,, 2t + u;,. In order to construct an instance of

95

4 Intractable Problems

In this section we present NP-complete coding problems and closely related
results. Being NP-complete does not imply many practical consequences for a
problem. Namely, even if P # NP, this does not exclude the existence of simple
probabilistic algorithms, algorithms that have a low average-case complexity, or
a possibility to easily approximate the exact solution (a noteworthy exception
to this being Theorem 4.6).

As discussed in Section 1.2, to prove that a problem P in NP is complete in it,
we have to show that there is an NP-complete problem that can be polynomially
reduced to P.

The following is a list of some coding problems.

P1 (Weight of error). Given a linear code C, an integer w and a vector y, is it
true that dist (y, C') < w? Since we want to encode instances of the problem as
concisely as possible, we stick to the following formulation: Given a matrix H,
a vector s, and a nonnegative integer w, is there a vector y of weight wt (y) < w
such that HyT = s7?

P2 (Minimal weight) Given a matrix H and an integer w, is there a nonzero
vector ¢ of weight < w that belongs to the kernel of H: He! = 07

P3 (Codeword of given weight). In the same setting, is there a vector ¢ €
ker (H) of weight w?

P4 (Maxweight). In the same setting, is there a vector ¢ € ker (H) with
wt (¢) > w?

P5 (Farthest-off point). Given a subset M C E% and w > 0, is there a vector
y € EY with dist (y, M) > w?

Pg (Partition rank). Given a binary matrix H with n columns, and positive
integers w and i, find out whether there is a partition N'= TU (N \ I), |T| = 1,
such that

rank H(I) +rank HN \T) < w.

P (Perfect code in regular graph). Given a planar 3-regular graph G(V, F)
with distance between any 2 vertices defined as the number of edges in a shortest
path connecting them, find out whether G contains an r-perfect code, i.e., a
subset A C V such that any vertex a € V' \ A is at a distance at most r of
exactly one member of A and any two vertices in A are more that r edges apart.

It is easy to see that problems P;—P; are in NP. As a side remark, we
note that problems complementary to P;—P7 are not necessarily in NP. Indeed,
looking at Py, suppose we want to check the statement that all vectors y with
syndrome s have weight > w. We are not aware of a way to check this in
polynomial time. Problems complementary to the decision problems from the
class NP form the class coNP.

Various results about the NP-completeness are collected in the following
theorem.

Theorem 4.1 (a) Py is NP-complete for any fized size of the ground alphabei

94

discussed in that paper, uses a bounded distance decoding algorithm to test
vectors generated in the course of the search. This procedure has a smaller
complexity for codes of high rate than the sparse-sets search.

The second method discussed in this section is due to Desaki et al. [50].
The main result of this work are tables of weight spectra for the extended BCH
codes of length 128, which proves Theorem 3.52.

Other algebraic methods for the computation of the weight spectrum of
cyclic codes are discussed in Charpin [38].

93

The idea is to single out a subcode of C'N R(m,r — 1) and to reduce the
computation to inspecting one of its cosets in C'. Let AF = {F,, a € EP'},
where Fg is the polynomial obtained by deleting from F(x + a) — F(x) all
monomials of degree up to r — 2. If F' € (| then clearly AF is a linear subcode
of C N R(r — 1,m). Then the common part of C' and R(r — 1, m) can be
represented as a direct sum

CNAR(r—1,m)=AF®C(F)

for some linear subcode C(F) C C.

An easy argument shows that for any F' € C, deg F = r, the number of
codewords of weight w in the coset F + C N R(r — 1,m) = F + C(F) + AF
equals |[AF|A,(F + C(F)). This leads to the following theorem.

Theorem 3.51 Let C' be a code of order r equivalent to an affine-invariant
extended cyclic code C' and Cy C C a code equivalent to an extended irreducible

subcode of C' with nonzero o, (u,n) =1. If C = Cy® C N R(r — 1, m), then

Ay (C) =

AF[nAy(F + C(F)) + Au(C N R(r — 1,m))

where F € C is any m-variate polynomial of degree r and C(F) is a linear

subcode that satisfies C N\ R(r —1,m) = C(F) ® AF. |

This general method was suggested by Desaki et al.[50] and applied to the
extended BCH codes of length 128, leading to the following nice result.

Theorem 3.52 (Desaki et al.[50]) The weight distribution of all binary prim-
itive BCH codes of length 127 is known. |

3.5.3 Notes

3.5.1. The first part of this section is adapted from Leon’s paper [108], which
was written independently of the “decoding line.” Leon also points out that the
implementation complexity of Algorithm A can be reduced if we know that if the
code has one word of weight d, it has a certain number a4 of them (for instance,
if we know the automorphism group of the code). The table of quadratic residue
codes is also from [108]. The table of BCH codes of length 511 is from Canteaut
and Chabaud [36]. Minimum-weight vectors in these codes were found using
the technique similar to that of Example 3.4. There remain 6 codes of length
511 (k = 268,259,238, 229, 202, 148) which, because of the large search, cannot
be analyzed by the algorithm. For all other BCH codes of this length the true
distance is known [36].

The second algorithm and Theorem 3.44 are from Barg and Dumer [21].
Other algorithms for bounding the minimum distance of cyclic codes are dis-
cussed in Massey and Schaub [119], Augot [12].

3.5.2. The first part of this section (up to Theorem 3.47) is based on a
paper by Barg and Dumer [21]. Another procedure based on similar ideas,

92

if there is a weight-preserving mapping that acts transitively on the cosets, we
can compute the weight spectrum of C' by finding the weight distribution in one
of the cosets.

For instance, suppose that C'= Cy @ C, where C 1s a cyclic subcode and
Co = {0} U {n cyclic shifts of a vector a}.

Then the quotient C'/C consists of (n + 1) cosets, namely Cy and T(a)+ Ci =
T(a + C4), where T is the cyclic permutation, T'= (n,1,2,...,n — 1). For Cy
we can take an irreducible subcode of C' with nonzero o*, (u,n) = 1. This gives
us the following.

Lemma 3.49 Let C' = Cy @ Cy, where Cy 1s wrreducible, and let a be any fired
codeword of Cy. Then for the number A, (C) of codewords of weight w in C' we
have

Aw (C) = nAw (Cl + ll) + Aw (Cl) I

This lemma provides a reduction in complexity of computing A, by about
n times compared to exhaustive search. However, many extended primitive
cyclic codes, for instance, the BCH codes, are invariant under a larger set of
permutations than the powers of T, namely, the affine permutations given by
the action of AGL(2™,1) on coordinates. (see Chapter xx (Huffman)). Label
the coordinates of C' as

Xo=0,X;=0al,0<j<2m 1, (3.22)

where a i1s an element of maximal order in Fy». Then the code is affine-
invariant if it is preserved as a subset of EZ by a set of (27 —1)2™ permutations
X; — aX; + b with a # 0. Therefore, we can further reduce the complexity of
computing A, if we manage to describe the partition of cosets according to the
action of AGL(2™1).

Every extended cyclic code is a subcode of the Reed-Muller code R(r, m) for
some r. Working with Reed—Muller codes, we shall also use the lexicographic
arrangement of coordinates which is obtained if we fix a basis of Fam over Fy
and represent every X; as an m-vector. Any 27-vector v = (vo,v1,...,0n)
can be represented as the set of values of a certain m-variate polynomial F'(z)
with & ranging over F7’. Then r is the maximal degree of polynomials defining
codewords of C, and C' C R(r,m), C € R(r — 1, m). For brevity we say that C
has order r. If the vector (F(®), ® € ET*) € C', we write simply F € C.

The following obvious lemma forms a basis for the simpler computation of
weight spectra.

Lemma 3.50 Let C' be an extended cyclic code with coordinates ordered cycli-

cally and C the same code with coordinates rearranged lexicographically. If C'
s affine-invariant, then

(F(z) € C) = Vaepy(F(z+a)).

91

Algorithm 3.12: Sparse-sets search

* Sethij:O,lgi,jgn.

e Choose a k-sparse information vector m and compute a =
(m|mA).

e If wt(a) = w, find the period 7 of @ and the number j of its

cyclic shifts containing k-sparse information sets. Increase the num-
ber h;; of such vectors by 1.

e Repeat the last two steps for all k-sparse vectors m.

e (Compute the number of vectors of weight w as

Ay = Ez‘Zhij/j.
i=1 j=1

Clearly, every vector that contains j distinct k-sparse information sets, will be
generated j times. Therefore, h;; equals j times the number of distinet cyclic
representatives of period 1.

The complexity of this algorithm is estimated in the following theorem. Its
proof is technical and will not be included.

Theorem 3.47 The sparse-sets search computes the weight spectrum of any

binary cyclic code. For a given w it can be implemented by a sequential algorithm
that finds Ay, with time complexity O(nM (k,w)), where

%;(T) < M(k,w) < AiQ (%Jrs}rli:;) (I;) s = [kw/n].

Of course, if C' contains the all-one vector, then A,, = A,,_,,. The following
lemma sometimes facilitates the computation of the weight spectrum for cyclic
codes.

Lemma 3.48 Suppose the extended cyclic binary code C®* is invariant under
a transitive group. Then

-2 1
AQw :A21z)—1n_7w+, 1<]<(n—1)/2
2w -7 =
Proof: See Chapter 1, Theorem 10.12. |

Therefore, the weight distribution of C' is determined by that of C'** and
vice versa.

The second method that we plan to discuss makes a different use of the cyclic
invariance. We restrict ourselves to primitive codes, i.e., those with n = 2™ — 1.
The idea is to factor C' into cosets with respect to a subcode Cy C C. Then

90

the set of all subvectors {a(I(i,m)), 0 < i< n—1}. Then

Zwt [a(1(i,m))] = mw,

since every 1 of a is contained in m subvectors. Thus the average weight of
subvectors of length m equals mw/n = m/A.

For a vector a, let us call an arbitrary segment 7(i,m) heavy, if the weight
of the subvector a(I(¢,m)) is greater than the average weight m/A. Let us call
a segment I(¢, £,) good if all the subvectors a(I(7,£,)), 1 < p < r, are light (not
heavy). Otherwise, let us call it j-bad, where j is the smallest integer such that
I(3,4;) is a heavy segment.

To prove the lemma, we describe a procedure that necessarily produces a
good segment. Consider the segment 7(0,£,) and suppose it is ji-bad. Then
consider the segment I(¢;,,£,). Suppose it is jo-bad and consider the segment
I(¢;, +¢;,,24,). We continue inspecting the segments I(4;, +---+ ¢, ,¢;), s =
1,2,..., until we find a good segment.

This procedure always stops. For if not, then we cover the ring a number of
times with heavy segments of length ¢;,,¢;,,.... The multiset U = (0, ¢;,,4;, +
4;,,...) of their starting points contains a finite number of different elements
(chosen out of (0,...,n — 1)). Therefore after a number of revolutions (¢, or
less) the set U will contain identical elements. This means that we have covered
integer number of circles with heavy segments, i.e., that wt(a) > w. This is
absurd.

Let mq,..., my be the locations of the w ones in a.

Corollary 3.46 FEvery cyclic w-class contains a vector a with

m; > [i1A], 1<i<w. I

Of the total of w restrictions in this corollary, |k/A| apply to the first & coor-
dinates of @a. Namely, they imply that in a the first one is in or on the right of
position [A], the second in or on the right of position [2A] and so forth. This
motivates the following definition. If a binary vector of length k satisfies |k/A|
restrictions of this corollary, we call it k-sparse. Since every cyclic class contains
a code vector whose first part is k-sparse, we can capture all cyclic w-classes by
encoding all k-sparse vectors m of length k. We have assumed that the code is
in the systematic form; therefore, encoding amounts to computing parity checks
for every m. Note that k-sparse vectors are easy to generate “on-line.”

89

Theorem 3.44 Let Cln, k] be a linear code with a simple decoding algorithm
of complezity dec (n,k,e) correcting e errors. Then il is possible to find its
minimum distance by running Algorithm 3.11 not more than n times. The
probability that the procedure gives a correct answer after In ((’})/€) (dfe)/(i)
iterations on each run is at least 1—e¢. Ife ~ d/2, then the asympiotic complexity
of the procedure equals

O(27H2(/2)dec (n, k, ¢)).
1

Finally, we note that in view of Theorem 3.29 both algorithms of this section
can be implemented by deterministic procedures.

3.5.2 Weight spectrum

Let C be a binary [n, k, d] code and A,, the number of codewords of weight w in
it. In this section we study the complexity of finding A,, first in general linear
codes and then in cyclic codes.

First, note that since algorithms of the previous section construct a covering,
they find all of the codewords of weight d, or, more generally, of any given
weight w (if w > n/2, some obvious changes should be made). A corresponding
reformulation is easy and is left to the reader.

In this section we present two algorithms for computing the weight spectrum
of cyclic codes. For some cyclic codes this can be found using algebraic methods
(see notes to this section). For long binary BCH codes the weight spectrum
is known to be approximated by the quantity N, from (1.7) with reasonable
precision. Otherwise the problem is wide open.

For simplicity we work with binary cyclic codes. Suppose the generator
matrix of C' is represented in the form G = [I;|A]. For a given vector a, we
consider the set of all its n cyclic shifts and call this a eyclic class. The number
of distinct vectors in this set is called the period of a. Moreover, if wt (a) = w,
we speak of a cyclic w-class. Let A = n/w be the average distance between
neighboring ones of the vector a. By averaging, we see that for a given k-subset
I C N of consecutive coordinates, every cyclic w-class contains a vector a with
wt (a(7)) = |k/A]. Therefore, if I is an information window, we can capture all
codewords of weight w by encoding all possible combinations of [k/A| ones on it.
The following lemma develops this idea. In its statement and proof we label the
coordinate set with numbers 0,1,...,n—1. Let 1(¢,j) = (¢,i+1,...,i+j—1),
where the indices are, if necessary, reduced modulo n.

Lemma 3.45 For any r numbers 1,... 6, with 1 < {y < --- < £, < n every
cyclic w-class Z contains a vector a with

wt[a(1(0,4;)] < |4 /A] forallj=1,2,... 7.

Proof: Write the coordinates ag, ..., a,-1 of @ on a ring with n cells. Consider

88

Example 3.11 In Sect. 3.3.4 we discussed a simpler implementation of covering
set decoding related to savings on diagonalizations of the generator matrix.
Obviously, this method can be applied to finding low-weight vectors in any
linear code. A challenging instance i1s determining the true distance of long
primitive BCH codes. The starting value is the designed distance. The first
length for which the code table is not complete is n = 511. Application of this
method to these codes gives the following results.
k385 358 340 331 304 193
d 29 37 41 43 51 87
For all six codes, the true minimum distance equals the designed distance.
Therefore, though the algorithm is probabilistic, the answer is given with prob-
ability 1 (unlike the case with the QR codes in the previous example when the
square root bound is far below the weight of the found codewords). |

The second procedure that we are going to discuss is well-suited for codes
that admit a simple polynomial decoding algorithm (C') correcting up to e
errors (for instance, BCH codes, Goppa codes, etc.). Let dec(n,k,e) be its
complexity.

The idea is to apply ¥(C) to vectors of weight d — e. If we successfully
“correct” e errors, this results in a codeword of weight d. The major difference
with the above approach is that we can work with coverings of subsets of smaller
size, d — e instead of d. Not to miss codewords, we would like to choose a family
of (d — €)-sets such that every d-subset contains at least one of them. Let

T(n,m,t) = {F CN": Vpeam Ires (F C E)}. (3.21)

In words: T'(n, m,t) is a family F of t-subsets of A such that every m-subset of
N contains at least one of them.

Remark 3.12 Coverings of this type are called Turan designs. Comparing with
the definition of M(n,m,t) in Sect. 3.3.4, one can notice that complements of
the sets in an M (n, m,t) covering design form a Turan design T(n,n—t,n —m).

We shall construct a covering T'(n,d, d — e) by a repeated random choice of
(d — e)-sets.

Algorithm 3.11: Finding minimum-weight codewords, B

e Repeat In ((3) /6) (dfe)/(g) times

e Choose randomly a (d — e)-subset W C N.

e For every vector y with y(W) = 0, decode y with ¥(C). If it
outputs a codeword of weight d, STOP.

Its proof, which we wish to spare the reader, again builds on the argument
familiar from Theorem 3.24.

87

Algorithm 3.10: Finding minimum-weight codewords, A

¢ Repeat In(1/e) (';)/(”;d) times.

e Choose randomly an s-subset W C N. Form a list of codewords
KW)={cel|e(W)=0}.

e If K(W) contains a codeword of weight d, STOP.

The number of iterations of the algorithm is discussed in the next theorem. Ob-
serve that there i1s actually no difference between this algorithm and decoding.
The complexity of this algorithm is again related to the probability of construct-
ing a covering and to the size of the list K(W). If s = k—1, then asymptotically
this size is at most ¢V™ (Corollary 3.8; in practical examples it is much smaller).
Thus, we arrive at the following result.

Theorem 3.43 Let Cln, k] be a linear code. Then it is possible to find its min-
imum distance by running Algorithm 3.10 not more than n times. To guarantee

an error probability of at most ¢, it is sufficient to perform during each run
ln(l/e)[(’:)/(n;d)] iterations of the algorithm. The asymptotic complerity of
the entire procedure is

onlHa(8)=(1=R)Ha(5/ (1= R)J(140(1))

Proof: The proof is similar to that of Theorem 3.24. The probability of con-
structing a covering after the cited number of iterations equals 1 — e~ (1/€) =
1 — €. The asymptotic expression follows by taking s ~ k since (2)/(n;d) =
n n—s

(/2

Example 3.10 Practically it may be advantageous to allow a few nonzero en-
tries within the s coordinates. This yields a saving on the Gaussian elimination,
which is then performed only once for large groups of codewords. If the num-
ber of these nonzero entries is £, then we need to construct a covering system

Na(n;s,n — s;€,d —) (see Remark 3.8(i¢)). This method has been applied to
quadratic residue codes, yielding the following results.

n d € n d €
311 36 10-100 9281 36 10—too
359 40 10-100 313 40 10720
367 48 10-20 337 40 10—20
383 48 10-10 353 42 10~20
431 48 10-10 401 42 10~20
439 48 10-10 409 48 10-3
463 48 —56 1073 433 38 10-20
479 48 —-56 1073 449 48 —56 102
487 48 —56 1073 457 48 —56 1072
503 48—56 1073 521 48 —54 10~2

86

and Be’ery [160], see also references in these papers.

Bounded distance decoding can also be extended to the soft-decision case,
where it is known as generalized minimum distance decoding, see Berlekamp

[27], Kotter [97], Kovalev [98], Sorger [149].

3.5 Computing numerical parameters of codes

Among many numerical parameters of the code, such as the minimum distance,
weight spectrum, covering radius, the number of nonzero weights, higher dis-
tances, coset weight distribution etc., we choose to treat only the first two,
the reason being that these already allow us to demonstrate applications of
the known techniques and that the algorithms for other problems that we can
construct are more or less trivial extensions of the ones being discussed.

3.5.1 Minimum distance

The only known way to compute the distance of a general linear code C' is to
look for codewords of small weight. In this form the problem is very close to
bounded distance decoding up to half the minimum distance. Let C' be a linear
code.

Lemma 3.42 Any algorithm that finds a minimum weight codeword in a gen-
eral linear code, can also perform decoding up to |(d — 1)/2] errors.

Proof: Let y = c¢+e be areceived vector, ¢ € C'. Then e is linearly independent
of C and is therefore a unique codeword of minimal weight in the code (C,y). I

Errors of larger weight will also satisfy this lemma except that they need not
to be unique. Therefore, to find them, one would need an algorithm that finds
all minimum-weight codewords in the code.

The covering technique enables one to compute the distance of C' with com-
plexity comparable to that of covering set decoding. The general strategy is
as follows. Let dg be a lower bound to the actual distance d of C'. Then one
should run the search for codewords of weight dy, dg+ 1, ..., until a codeword of
weight d is found. If this search is done by a probabilistic algorithm with failure
probability €, we say that the distance of C' equals d with probability 1 — €.

Since d < n — k+ 1, every weight d codeword ¢ vanishes on at least £ — 1
coordinates. The idea is therefore to fix some s < k — 1 coordinates of ¢ to 0
and solve the system of linear equations He” = (0 with respect to the remaining
unknown coordinates. This can be done, for instance, by diagonalizing the
generator matrix GG in order to obtain only one nonzero element in the chosen s
columns and taking all possible linear combinations of the remaining k£ — s rows.
If the repeated choice of the s coordinates exhausts a covering M(n,n — d, s),
we shall certainly find a codeword of weight d.

85

0.5
a a
0.4
0.3
€
b
0.2
C
0.1
d
0.2 0.4 0.6 0.8 1

Figure 3.3: Complexity of soft-decision decoding algorithms for binary codes
(z-axis—code rate, y-axis—complexity exponent):

(a) min(R, 1 — R),

(b) weighted-partitions decoding, Theorem 3.40,

(c) Theorem 3.41.

(d) lower bound on complexity of syndrome trellis decoding, see Corollary 3.33
and the following discussion,

(e) lower bound on complexity of syndrome trellis decoding under the assump-
tion that the binary asymptotic GV bound is tight.

path algorithm in graph theory. Theorem 3.31 is due to Zyablov and Sidorenko
[171]. They also use the argument in its proof to derive a particular case (m = 1)
of the asymptotic lower bound in Corollary 3.33. The general case (Theorem
3.32 and its corollary) is due to Lafourcade and Vardy [106].

3.4.2. This section follows rather closely two recent works by Dumer, [54], [55].
Paper [54] contains a more detailed discussion of sufficient conditions for a chan-
nel to yield the estimate (3.19) for pg,.. Algorithm 3.9 [54] is a generalization of
a similar decoding for the case of (narrow-sense) g-ary symmetric channel due
to Evseev [60]. Theorem 3.41 is from [55]. The material covered in this section
presents an important development in coding theory and is currently a subject
of ongoing research.

Different other decoding algorithms and examples for specific short codes
are discussed in Gazelle and Snyders [72], Fossorier and Lin [64], Han et al. [82],
Kudryashov and Zakharova [103], Miyakawa and Kaneko [123], Vardy [159],Vardy

84

Algorithm 3.9: Weighted-partitions decoding

e Set ¢g = 0. Compute the ¢ x n matrix W = [w;(a)],0 < i <
n—1l,ae X.

e Run the Euclidean Division Algorithm on sq = n,s; = s to find
sequences (s1,...,5m), (a1, ...,am), and the number m. Put & = &
if mis even and & = O if m is odd.

e Take the segmentation 7 = UZ, that corresponds to an element
6;-2) € 6. Compute lists X(7,) formed by NIZlu/7 lightest subvec-
tors on the segments 7.

e Form the list X(Z) = X(Z1) X -+ x X(Zu) X - -+ by joining the
lists constructed on the previous step.

e Use G to find an information set on s coordinates that corre-
spond to the current segment Z. Form the list L(X (7)) by encoding
k coordinates of this information set for every vector in (X (Z)). If
there is a vector ¢ € L(X (7)) with wy(c) < wy(cq), assign ¢ +— c.
e Repeat the previous 3 steps for every (‘3;2) €6,0<j<n 1<
i < |m/2] 4+ 1. Output ¢q.

Finally, note that any cyclic code trivially satisfies Lemma 3.7. |

A further improvement of this result is based on two ideas, Theorem 3.36
and the (punctured) split syndrome decoding algorithm of the previous section.
We formulate this result without further comments.

Theorem 3.41 Mazimum likelihood decoding for almost all linear codes used

over any symmeiric channel can be performed with both time and space com-
plezity ¢"[FO=R)/(1+R)](1+0(1)) I

Figure 3.3 shows the complexity exponents of the algorithms of this section
(¢ = 2). We see that weighted-partitions decoding improves the complexity of
syndrome trellis decoding for almost all codes and all code rates. Moreover, the
complexity of this algorithm falls below the lower bound for trellis decoding for
low code rates, for almost all linear codes and all cyclic codes. If the asymptotic
GV bound is tight, the result of Theorem 3.41 ensures simpler decoding than the
syndrome trellis algorithm for all linear codes and all code rates R, 0 < R < 1.

3.4.3 Notes

Channels and maximum likelihood decoding are studied in Gallager [70].
3.4.1. Trellis decoding was introduced in Bahl et al.[18], Wolf [166] (see

Chapter xx (Vardy) for the history and more results). Algorithm 3.8 is known

in coding theory as the Viterbi algorithm and is very close to Dijkstra’s shortest

83

(7). If there is a segment of length 5 such that the corresponding subvector of
is light, we are done.
(#7). Otherwise, if no segment in 651) is good, consider segmentations of N/ =
{0,...,17} corresponding to the first step of the division in (3.20). By Lemma
3.38, for any j € [0, 17] the segment of length 3 starting at position j is good.
(#i7). Now consider segmentations 653). If there is a j such that the segment of
length 2 is good, this yields a well-decomposable 5-segment.
(iv). Otherwise, according to the third step of the division, all 1-segments of N/
are light, and we can pick a well-decomposable segment from (‘5;5). |

Proof of Lemma 3.9: By now the proof should be clear from the example
and can be left to the reader. The impact of the parity of m is understood
if one considers stopping in any even step of the example provided that the
corresponding division is exact. |

We are now ready to construct the algorithm. Its idea is quite in the spirit
of algorithms in Section 3.3. Namely, we propose to find a well-decomposable s-
segment, build lists of subvectors on subsegments of this segment and join them
into one list. Every subvector in this list can be used to reconstruct a codeword
according to Lemma 3.7. The algorithm outputs the lightest codeword among
the inspected ones.

The input data of the algorithm are the received vector y, n,k,s = k +
[2 log, n], the number N, which controls the error probability, and the generator

matrix G of C. For given i and j, the element 65-1) defines a partition of the
segment Z = {j,j+1,...,5 +s — 1}, which we will again write in the generic
form 7 =UZ,.

The algorithm (weighted-partitions decoding) appears below in a tabular
form. Its properties are given by the following theorem.

Theorem 3.40 For all long linear codes and any memoryless symmetric chan-
nel the decoding error probability of weighted-partitions decoding is equivalent
to the error probability of ML decoding. For almost all linear codes and all

cyclic codes the time complexity of its sequential implementation is at most
g RO=R)(1+0(1)

Proof: The first part of the statement follows from Theorem 3.35. The com-
plexity of the algorithm is dominated by the size of the list X (7). This size
equals

N 12D/ = prsin

The total number of segmentations examined is at most n(log,n + 1). The
most time-consuming among nonexponential steps is finding the information
set within the given s coordinates, which takes time O(n?®). Therefore, if we put
N = ¢n(1=F)logn the total time complexity is bounded from above as

) <n4(log2 n) (qn(l—R) log n) k+2log, Ic) _ qk(1_R)(1+o(1))_

82

Fuclidean Division Algorithm to find s, = ged(so, s1) :
50 = @181 + Sa,

$1 = a8y + 83,

Sm—2 = Gm_15m—1 + Sm
Sm—1 = GmSm -

As is well known, if = = 2=% then m <log, o + 1.

Below we consider two sequences of segmentations depending on the parity
of m. For m even let

8:{Ggl)a6§3)a~'~:6§'m+1)}: 0<j<n-—-1,
&) = ((1,51)),
&) = ({1,), (a,22)).
655) = ((1, 55), ((14, 54), ((12, 52));

S = (1, 5m—1), (@m—2, $m—2), .- -, (a2,52)),
& = ((am, 5m), (Ame2, $m=2), - .-, (a2, 82)).
For m odd let 0 = {6{"), 6, ... 6™}, 0 <j < n—1, where this time
&™) = (1, 5m), (@m—1,5m=1), -, (a2, 5))
and all other segmentations are the same as above.

Lemma 3.39 Let y be the received vector. For any s,n and ® € X" there is at
least one well-decomposable segment in the set & for m even and O for m odd.

Though the notation may seem complicated, the idea is actually quite simple
and beautiful. Before proving the lemma, let us consider an example.

Example 3.9 Let n = 18, s = 5, then (a1,a9,a3,a4) = (3,1,1,2) and (s1,
Sq,83,84) = (5,3,2,1) (i.e.,

18=3.543
5=1.342

+ (3.20)
3=1-2+4+1
2=92.1)

Then € = (6;-1), 6;-3), 6;-5)), 0 < j < n, where
&\ = ((1,5)),
o = ((1,2),(1,3)),
o = ((2.1).(1,3)).

81

Lemma 3.37 Let ® € X™ be a vector and let [CN', J CN', INJ = 0. Then
#y(x(TUT)) > #y(@(1)#y(x(])).

Proof: Let U = {(al,a2) e xM % xl lai Xrz(I) & az < m(])} Then
[U| = #y(2(1)#y(2(])). Considering U as a subset of X+l we observe
that (x(I)|@(J)) is the last vector in it. Hence its number in the order <y is
at least the size of |U].

We shall look for light subvectors by averaging over certain partitions of A”.
Since ranks enjoy the property just proved, we shall take geometric means. This
motivates the following definition. For a given z € X™, and a segment I € N,
the subvector ®(I) is called light if #4(2(I)) < #4(2)!'1/7. In this case we
sometimes also call the segment I good (w.r.t.). The following lemma asserts
that any vector @ contains a light subvector.

Lemma 3.38 Let N/ = UZ, be a partition of N' into pairwise disjoint seg-
ments. Then for any ® € X it contains a segment 7 such that the subvector
x(7) is light.

Proof: For suppose not. Then by the previous lemma and definition,
#y(®) > H#y(m(ZU)) > H#y(m)lzul/n = #y(z),

a contradiction. |

Let N/ = U, Z, be a partition of the set of coordinates into pairwise disjoint
segments. As we remarked above, we would like to find a good segment of length
s = k+[2log, n] on which it is sufficient to examine only N#/™ subvectors ®(7)
and then use them as message sets to recover codewords. Unfortunately, even
though we are free to choose a partition of N/ according to the last lemma, we
cannot control the length of the good segment. However, we can prove that
for any s,1 < s < n, any vector @ contains a subvector ®(Z), |Z| = s, such
that there is a partition of Z into pairwise disjoint segments Z = UZ), in which
every subvector ®(Z),) is light. This is the second key idea (after Theorem 3.35)
that leads to simpler decoding. Let us call a segment Z that has this property
well-decomposable.

Suppose s = @181 + -+ 4+ @mSm. This defines a partition of an s-segment
into a; segments of length s; followed by as segments of length ss, and so on up
to am, segments of length s,,. Generally the indices should be reduced mod n.
Let us call this partition a ((a1,51),...,(am, sm))-segmentation and denote it
by &; (((1,1, $1), .oy (Am, Sm)), where j is the first coordinate of the s-segment.

To construct a well-decomposable segment, let s = n, sy = s, and run the

80

most py = pr, and so

Pr(Sr\S)

-1

—~

Pr(E\SN) SQQPN <

<Pr(Sr\S)(1+ +—=)-

Sl

We conclude that the required inequality holds for every o, which completes the
proof. |

Remark 3.11 If py > pny1, then it can be shown that pg, admits a better
estimate (3.19) even under the more general conditions of this theorem.

Just as in the case of hard-decision decoding, the Evseev lemma is supple-
mented in the asymptotic setting by Theorem 3.4, in the general case under
discussion one can prove a similar asymptotic result. Again note the difference:
while the estimates of the last two theorems are valid for all codes, the following
holds true only for almost all linear codes. Recall that given a received vector
y we can form a subset Xn(y) of N most probable vectors of X".

Theorem 3.36 There exists N with log, N/(n — k) — 1 such that for almost
all linear codes, every subset Xn(y) contains a codeword, regardless of the chan-
nel used. |

Hence for almost all long linear codes, inspecting N most probable vectors
is equivalent to exact maximum likelihood decoding.

One of the main results of this section is a decoding algorithm for symmetric
memoryless channels. By (3.15), we are looking for a vector ¢ € C' that maxi-
mizes the a posteriori probability Pr(e|y). For notational convenience we again
introduce a (¢xn) weight matrix W(y) = [w;(a)], wi(a) = —log Pr(aly;),a € X.

In the remaining part of this section code coordinates are numbered by the
set NV =[0,1,...,n—1]. Recall that by (.J) we denote a projection of & € X"
on the coordinates in J € N”. We shall examine (cyclically) consecutive subsets
of coordinates T = (i, + 1,...) C N’, where the indices are, if necessary,
reduced modulo n. In order to distinguish them from other subsets we call
them segments.

The general idea is to look for light subvectors of code vectors and then use
Lemma 3.7 to retrieve codewords. Therefore, given a vector ® € X7, define a
function on subsets I C A’ as follows:

w(l) = wg y(T) = Zwi(xi)

i€l

For a fixed subset I, these functions give a total order <; on X! if we again
agree to order vectors of equal weight lexicographically. TLet us extend the
definition of the rank function to subsets of N by putting #,(2(I)) equal to
the rank of the vector #(7) in the order <;. An important observation is that
for a fixed & € X the #-function is log-supermodular.

79

Theorem 3.35 (Generalized Evseev lemma) Let C' be an arbitrary code of
length n over a q-ary alphabet X. Suppose C' is used over a symmetric channel
with input alphabet X and ouiput alphabet Y, defined by a probability distri-
bution Pr(y|z),y € Y™, & € X". Then the error probability of ¢n-decoding
satisfies

pon 0o (14 L) for any N> .

N-T

Proof: By the definition of symmetric channels, we can write Y = U,Y2,

where Y Qo = |Y7| are digjoint finite subsets such that every column in
every (¢" X Qo) matrix P, = [Pr(y|®)]ycyr is a permutation of one and the
same set of ¢” numbers p, = {p1,...,p4~}. Below we assume w.l.o.g. that

P12 2PN 22 Pgn

According to (3.17), we need to isolate N “first” entries in each column.
Suppose that vectors @ with equal probabilities Pr(y|z) are ordered lexico-
graphically. This defines a total order in every column of P,. Let Sy be the set
of NQ. pairs (2, y) that correspond to the first N entries in all columns.

Since the set p, can contain many equal entries, we will also need to consider
the set p, = -+ = py = -+ = pr defined as the maximal subset of ordered
equal numbers that contains py. Each number p;, ¢ < R, occurs in the matrix
at least RQ, times; therefore, there is a row that contains at least RQs/q"
numbers p;, i < R, and hence this is valid for each row since the channel is
symmetric. Restricting our attention to rows that correspond to the codewords
of C', we observe that they contain at least

CIRQ. _ RQa _ NQu
qn T — T

such numbers. Denote by Sgr the subset of pairs (¢, y) that correspond to these
entries in P,.

Note that MT decoding is successful on the set £ = {(¢(y),y)} of Qo entries
in the code rows (“coset leaders”). By (3.11), (3.17), and (3.18),

|Clpgn < Pr(E)+Pr(E\ Sn).

We need to estimate the last term.

Parallelizing the proof of Lemma 3.9, consider also the subset of pairs § C Sy
that consists of exactly Qo pairs (¢, y) with the largest entries Pr(y|c) in the
code rows. Since |S| = |E| and S is formed by the most probable pairs, we

conclude that Pr(S) > Pr(F).

Let us relate Pr(E \ Sy) and Pr(Sg \ S). Since every term in the last
probability is bounded from below by px, we have

Pr(Sr\S) > Qa(g - 1)PN~

On the other hand, the subset Pr(E \ Sx) has size at most @), and is formed
by pairs (#,y) on which ¢n-decoding fails. The probability of each pair is at

78

Finally, we briefly mention a further improvement of this algorithm achieved
along the lines of the punctured split-syndrome decoding method in the hard-
decision case (Algorithm 3.5). The reader already familiar with Section 3.3 can
get a general impression of the current situation with soft-decision decoding
algorithms by reviewing Fig. 3.3.

We use the notation introduced in the beginning of this section. Given a
received vector y, we can compute all ¢” a posteriori probabilities Pr (@|y), ® €
E}. Using them, we can order the ¢" vectors @ by assigning number 1 to the
vector with the largest a posteriori probability, number 2 to second largest, and
so on. We only have to agree how to order vectors with equal probabilities.
Suppose they are always ordered lexicographically. Then for a given y every
vector & € Ey has a well-defined rank in this order. Denote this rank by #(z).

Recall that ¢,,; denotes the maximum likelihood decoding algorithm, which
for given y chooses a code vector with the smallest rank. Let ¢ = ¢,,:(y).

Suppose we agree to restrict our attention only to the first N most probable
vectors, where N is a parameter. Denote such decoding by ¢ . More formally,

C) # Cc S N’
only) = Fulo): (3.17)
0, otherwise.
The error probability of this decoding equals
1
Poén < P + m Z Pr(y|c) (318)

cecC
Yeo,1(C), #y(C)>N
(cf.(3.11)).
First, suppose that the channel is discrete, additive, and ¥ = X. The

following theorem generalizes the Evseev lemma (Lemma 3.9) and shows that
by increasing N one can trade error probability for decoding complexity. Let

T = [¢"/|CI].

Theorem 3.34 (Generalized Evseev lemma) Let C' be an arbitrary code of
length n over a q-ary alphabet X. Suppose C is used over an additive dis-
crete channel with input/output alphabet X defined by a probability distribution
Pr(y —z), 2,y € X". Then the error probability of ¢n-decoding satisfies

T
Pén < Do (1 + ﬁ) for any N > T. (3.19)
|

Remark 3.10 Taking here N = T, we again get Lemma 3.9 for linear codes
over the g-ary (narrow-sense) symmetric channel.

The next theorem further generalizes this result and serves as a basis for the
design of reduced-complexity ML decoding algorithms. Overloading the term,
we also call this fact the generalized Evseev lemma.

T7

Proof: The first part is straightforward by the previous theorem. For small
-1

rates a,(8) is maximal for m = 2. However, R*(26) = 0 for 26 > 1= by the
q

Plotkin bound. |
In Fig.3.3 we draw this curve for a family of binary codes meeting the GV

bound. Then R = 1 — H4(6) and s can be written as a function of R. The two

parts of the bound meet at the point é = 1/4 which corresponds to the point

R=1- Hy(1/4) = 0.1887

already familiar from Lemma 3.18. The best upper bound known is the McEliece—
Rodemich-Ramsey—Welch bound (see Chapter xx (Levenshtein)). We can use
this as R* to compute the curve. Note that this bound is a maximum of two
functions, the so-called “first” and “second” upper bounds. They coincide for
R > 0.273 and for 0.188 < R < 0.273 the second bound gives a marginal im-
provement of the function as(R). This lower bound is shown in Fig.3.3 (curve
d).

However, if this assumption is too optimistic, and the true upper bound on
the size of binary codes is the GV one, this would give a much stronger lower
bound on decoding complexity. This (conditional) lower bound is shown in
Fig.3.3 as curve e.

3.4.2 Maximum likelihood decoding with reduced complexity

Reducing the asymptotic complexity of decoding rests on generalizations of
two results in the previous section, Lemma 3.9 and Theorem 3.4. We begin
with the Evseev lemma and consider its generalizations in two settings, that
of general symmetric channels and additive discrete channels, which gives two
slightly different estimates of the error probability. Another group of results
briefly mentioned at the end of this section is based on an important fact that
in memoryless channels for almost all long codes any subset of X" = E7' of
size ¢(?=F)(1+e(1)) formed by most probable vectors with respect to any given
point y € Y” contains at least one code vector (recall that X denotes the input
alphabet and Y the output alphabet). Therefore finding the most probable code
vector in this subset w.r.t. the received vector y for almost all long codes is
equivalent to maximum likelihood decoding.

Next we formulate an algorithm that for any memoryless symmetric channel
constructs a set of most probable (“lightest”) error vectors of any given size N.
In particular, for N = ¢(»=#)(1+e()) it performs maximum likelihood decoding
for almost all long linear codes and all cyclic codes with complexity of order
¢"=)(+e(1) which is better than ¢™»*7=%) in Theorem 3.31 for all code
rates R,0 < R < 1. For instance, for R = 1/2 we obtain in the exponent
0.25 instead of 0.5, i.e., for long codes the complexity of the algorithm in this
section is only a square root of the time and space complexity of syndrome trellis
decoding. Moreover, for low code rates, the complexity of this algorithm falls
below the asymptotic lower bounds on the trellis complexity (Corollary 3.33).

76

Proof: Let (vg;, 2 = 0,...,n) be the all-zero path in T. Let H; and Hs be
two submatrices of H formed by its columns 1 to ¢ and 7 + 1 to n, respectively,
and let Cy (C3) be the code of length i (resp., n — i) orthogonal to Hy (resp.,
Hj). Every codeword of C, whose first i symbols form a codeword of C', passes
through vertex vo; and so does every codeword whose last n — i symbols form a
codeword in C5. Hence the total number of codewords that cross vg; 1s at least
|C1||C2|. Any other vertex v;; corresponds to a nonzero syndrome s;. Hence
the above argument is valid with respect to cosets of C; and C5 defined by this
syndrome. Thus,

|C| k—(i—rank Hy)—((n—3)—rank H
Vil > ——— =4 (i 1)=((n—1) 2)
~ |Ch|Cy|

The rank of Hy and Hs for almost every choice of H follows from Lemma 3.6.

We get

rank H; ~ min(n — k,7) rank Hy ~ min(n — k,n — i).
Taking the maximum over i completes the proof. |

We conclude this discussion by proving a lower bound on the trellis com-
plexity of linear codes.

Theorem 3.32 Let A(n,d) be the mazimum size of a code of length n and
distance d. Then for any m = 2,3, ...,

]
-
(A2, a)
Proof: We elaborate on the argument that led to the previous lemma. Partition

the set A into m equal segments £(i) = [(i — 1)n/m, ..., in/m] (since n is going
to be large, roundoff errors are irrelevant). Let Cj_q; be a subcode of C' with

(msivl)”™" >

zeros outside £(7). Let j; = in/m,1 < i < m — 1 be the division points other
than the endpoints of AV.

As above, we easily see that

m—1
T Wil >

i=1 H |Ci—1,i|
i=1

The required estimate follows. |
Taking logarithms, we arrive at the following.

Corollary 3.33 Let R*(8) be the mazimal rate of a code with relative distance
8. Let C be a family of codes of growing length with limit rate R(6),0 < § <
(¢g—1)/q. Then both time and space complexity of trellis decoding for these codes
are at least ¢"*1(®) where

mg}f}-‘z(&——le(m’ 0§5<‘12—_1’
ay(8) = ;-6 me g1 5qq_1 (3.16)
<o < .
(6), 7 <654

75

Vi 0 M1 0 Y1 0 Y 0 Vi

o o

o

[y

Vo3

Vo4

Figure 3.2: Trellis diagram for the [4,2,2] code

Algorithm 3.8: Syndrome trellis decoding

o Forevery v;; € V set r;; = 0.

e Repeat the next step for i = 1 to n.

e For every j, 1 < j < |Vj], inspect all arcs entering v;; and set
rij = r?}ln (ri—1,e+4 vi()). Store the values £ and o that furnish this
minimum in the vertex v;;.

e Retrieve the decoded codeword (eq, ..., ¢,) moving from vertex
v;; to vertex v;_1 against the arrows and taking ¢; = a.

Remark 3.9 In fact, this quantity is a parameter of the code. Note that it
is not invariant to permutations of coordinates. Therefore, it is reasonable to
study the minimum over all permutations of the maximal size of V;. The base
q logarithm of this quantity is called the trellis complezity. This term does
not seem especially successful because it suggests links to the complexity of
decoding. Lest the reader think that they exist, we note that while making a
syndrome trellis is sufficient for maximum likelihood decoding, it is by no means
necessary. Moreover, below we show that for decoding purposes the size of the
trellis can be considerably reduced. This is the reason that we always refer to
the syndrome trellis which points to the representation of the code as defined
above.

In view of this it is no surprise that for most long codes trellis complexity
meets the above bound with equality. Namely, the following is true.

Theorem 3.31 For most long [n, k] linear codes, both time and space complez-
ity of syndrome trellis decoding equal g™ (kn—k)(1—o(1)),

74

(hi,...,h,;) and ¢ € C a vector. Computing the product 0 = Hel can be
viewed as successively adding columns to the already accumulated vector s;.
The initial value sg is set to 0. In the first step, the vector s; can take on g
values depending on ¢1, namely, 81 = sg 4+ ¢1h1. Continuing in this manner, in
step i, s; can take on ¢' < ¢"~F values depending on the contents of (c1, ..., ¢;).
To these values we associate a subset V; of vertices of 1" by making a vertex v;;
for every possible vector s;. Vertices v;—1 ; and v;; are connected with an arc
b;k(a) if there exists an o € Fy such that

8; = 8;_1 + ah;.
All the arcs are directed away from the source and marked with the correspond-
ing a’s.

To qualify as a codeword, a vector must have a zero syndrome s, = (00...0).

Therefore, |V,| = 1 with v,1 corresponding to s8,. Therefore, we do not
draw arcs from vertices in V,,_; other than those leading to v,; and keep in
V=1, Va—a,... only those vertices from which one can walk to v,; along the
arcs of T.

Definition. The graph T(VoU---UV,,, B) is called a syndrome trellis of the
code C.

Actually this definition is but a way to store all ¢* codewords in the memory.
An interesting observation is that we sometimes can use a smaller size of memory
(of order ¢"~*) by storing common parts of the codewords only once.

Example 3.8 Let C be a binary [4, 2, 2] code with the parity-check matrix H =
[0110

1101] Its trellis is shown in Fig. 3.2. Vertices are arranged into 4 levels,

each corresponding to a certain value of the accumulated syndrome, shown on
the left. The code consists of 4 vectors, 0000,1001,1110,0111; therefore, the
trellis has two outgoing forks, namely, at vertices vy and w15. The common
part of vectors 1001 and 1110 is stored only once as is the common part of
vectors 1001 and 0111, etc. Therefore the graph has only 12 edges (rather then
16).

Examining the trellis representation, we immediately arrive at a maximum
likelihood decoding algorithm called syndrome trellis decoding (shown in the
tabular form). Here v;(«) is the weight function defined above. To save on the
computation time, one should pre-compute and store the ¢ x n log-likelihood
matrix W(y) = [v;(a)].

Clearly, both the time and space complexity of this decoding algorithm are
determined by the number max|V;|. To estimate it, first note that every path

I3

from vy to v, in T corresponds to a codeword. Hence we have

max |V;| < min (¢*,¢"~").
I3

73

generalization of the minimal-vectors algorithm in Sect. 3.3.3 (Algorithm 3.7).
Here C'is a binary linear code. Recall that M C C is the set of minimal vectors

m C.

Algorithm 3.7: Minimal-vectors ML decoding

e Sete=0.
e Find m € M such that vy(c+m) < vy(e). Let ¢ — ¢+ m.

¢ Repeat until no such m is found. Output c.

Proposition 3.30 For any binary linear code C' Algorithm 3.7 performs com-
plete mazimum likelihood decoding.

Proof: Let ¢ be the current approximation to the decoding result. Suppose
there is a ¢’ € C such that vy(c+ ¢’) < vy(c). By Lemma 3.12 it is possible to
write ¢’ as a sum of minimal vectors. Therefore, let

CI:Zmu’ muEM

Note that since the code is binary, the supports of different vectors in this
expansion are disjoint. Since ¢’ improves the current decision, so does at least
one of the minimal vectors in its expansion. To prove that this process eventually
converges, note that if € = (I:l;lﬁlg luy(e) — vy(c’)|, then every decoding iteration

reduces the weight by at least e. |
Lemmas 3.14 and 3.15 imply that most long codes have many minimal code-
words; therefore, there is little hope on improving the decoding complexity with
this algorithm. This is further complicated by the fact that though the previ-
ous theorem proves convergence of the algorithm, it is not clear that one and
the same minimal vector does not appear in several different iterations. There-
fore, we do not make any formal claims about the complexity of this decoding.
A number of other heuristic methods appear in the references following this
section. We move to decoding methods with provable complexity estimates.

3.4.1 Syndrome trellis decoding

As mentioned above, syndrome decoding can be implemented by building a
code trellis. Trellises form a subject of Chapter xx (Vardy) in the present
volume. We give a constructive definition and prove bounds for the complexity
of syndrome trellis decoding. An interesting fact is that this decoding forms
a so sharply restricted class of algorithms that they admit exponential lower
bounds on their complexity, which is quite an exception in computer science.

A trellis T(V, B) associated with a code C'is a directed tree with a source
vg and a sink v, connected by ¢* paths of length n. We give a constructive
definition of this graph. Let H be the parity-check matrix of C' with columns

72

If C' is linear, this is equivalent to finding a code vector ¢ such that
Pr(yle) > Pr(yle—¢') V' e C. (3.13)

If the channel is memoryless, we can also write (3.12) as
H r(yiles) > H (yilci) V' eC. (3.14)

Still another formulation is obtained if we introduce the function (“analog
weight”)
vi(a) = —log Pr(yi|la), a€F,,

and put vy(e) = 3 wi(c;). Then our problem is to find a codeword with

1=

vy(e) < vy(e) Ve eC.

. . . . Pr (y:|0
In particular, in the binary case, if we put ¢; = log Pr Ey :1) then the goal of
Yi
maximum likelihood decoding is to maximize the sum Z(1) ;.
i=1

ML decoding is also known to find a codeword ¢ with the maximum a pos-
tertori probability:

Pr(ely) > Pr(c'ly) Ve' e C. (3.15)

This simple remark allows us to transfer the study of maximum likelithood de-
coding algorithms into a purely combinatorial context and serves a basis for

Sect. 3.4.2.

Example 3.7 (Gaussian channel) Suppose the binary data is transmitted with
two antipodal signals X = {—1,+1} (binary phase shift-keying) over a memo-
ryless channel with additive white Gaussian noise (AWGN). Then the output
alphabet ¥ = R can be written as Y = Uy>o{%a}, which shows that the bi-
nary AWGN channel is symmetric. Likewise, the ¢-PSK used over a memoryless
channel with 2-dimensional AWGN yields a symmetric channel.

A trivial implementation of ML decoding is to inspect all codewords (time
complexity O(ng*)) 3

As remarked before Lemma 3.9, hard-decision decoding is a particular case
of this problem, so all the results of this section carry over to it. Moving
in the reverse direction is a very difficult task. However, (3.13) prompts a

3Speaking of complexity one should take into account that we have to perform compu-
tations over an infinite domain (a typical example is real numbers). This complicates the
foundations and we prefer to leave this question behind the scenes. Practically reals are re-
placed with rational approximations since the probability that this causes an error is remote.
Another option is to count separately the number of operations with real numbers.

71

more narrow classes of codes that meet the GV bound (see Barg and Dumer
[20], Kudryashov and Zakharova [103]).

Bounded distance decoding of Reed-Solomon codes beyond d/2 was consid-
ered in Dumer [51], Sidelnikov [144], Sudan [153]. List cascade decoding and
Theorem 3.27 are due to Zyablov and Pinsker [170].

Constructing covering designs is discussed in Furedi [67], Gordon et al.
[78],[77], Grable [79]. Paper [78] also lists tables of good covering designs for n

up to 32. Deterministic construction of coverings with linearly growing k& and ¢

is discussed in Dumer [54], Fedorenko [61].

3.4 Soft-decision decoding

As we have mentioned in the introduction, soft-decision decoders use informa-
tion about the reliability of the received signal. Let us specialize the problem
setting. Let X be a set of ¢ input signals and Y D X a set of output signals
(possibly, infinite). We assume that Y forms an additive group. A channel is
a set of probability distributions on (X" x Y™), n > 1, known to the decoder.
A channel is called discrete if Y 1s a discrete set. A channel is called additive if
Pr(z,y) =Pr(z+2,y+2),z€ E}.

Often instead of joint we prefer to consider conditional probabilities. To sim-
plify this transition, we assume for the rest of this section that messages (code-
words) are equiprobable. Then additivity implies that Pr (y|z) = Pr(y—=), i.e.,
that for additive channels the error process is independent of the transmitted
message. Note that implicitly we assume that X and Y form additive groups.
By abuse of speech we continue to call elements of X™ and Y™ vectors.

A channel is called memoryless if Pr (e, y) = [Pr (i,).
i=1

The last property of information transmission channels that we need is sym-
metricity. Suppose that Y” can be decomposed into a disgjoint union of finite
subsets Y™ = U,V where |Y?| = Q. Then we can describe the channel by
a set of ¢” x Qo matrices P, = [Pr(y|z)]. A channel is called symmetric if for
every matrix P, there is a row of), numbers and a column of ¢” numbers such
that every row (column) of P, is a permutation of this row (column).

Let ¢ : Y* — C be a decoding mapping. In particular, the mazimum

likelihood (ML) decoder is a mapping ¢,,,; such that
y—ceC:Pr(y,e)>Pr(y,) Ve'eC.

The error probability pg of a decoding ¢ equals the total probability that a
transmitted code vector ¢ is outside the preimage ¢~! of the received vector y:

Py = ﬁ S Pr(e, Y™\ 671(e)). (3.11)
ceC

Since codewords are equiprobable, one can say that ML, decoding finds ¢ € C
such that for all ¢’ € C,

Pr(yle) > Pr(yl|c). (3.12)

70

codes including the Hamming and 2nd order Reed-Muller codes. Lemma 3.15
is from Ashikhmin et al.[16]. From the combinatorial point of view minimal
supports of a code correspond to cycles in the matroid represented by this code,
see Welsh [165].

The zero-neighbors algorithm for binary codes is due to Levitin and Hart-
mann [110]. Their definition includes the minimality condition in (3.8). Drop-
ping it does not affect the result and simplifies the presentation. The boundary
of a set A in the Hamming space can be defined in several ways. Under a more
topological approach, the boundary is defined as A minus its interior points, see
Katona [94]. Theorems 3.21 and 3.22 are from [13].

3.3.4. Information set decoding was introduced by Prange [131]. One of
the first papers to mention the use of coverings for decoding was Chan et al.
[37], though for cyclic codes coverings (covering polynomials) were discussed
already in Kasami [93]. The minimal collection of information sets for the
extended Golay code Gq4 (Example 3.3) is found in Gordon [77], Wolfmann [167].
An application of information set decoding to the bounded distance decoding
problem is considered in Chapter xx (Huffman) under the name of permutation
decoding.

The covering set decoding algorithm is discussed in numerous publications
devoted to the security of the McEliece cryptosystem beginning with McEliece’s
original work, [121]. See Canteaut and Chabaud [36], van Tilburg [156] and
references therein (see also Ch.xx (van Tilborg)). The asymptotic analysis of
this algorithm was made possible by Lemma 3.9 and Theorem 3.4. Tt was
performed in Coffey et al. [42],[43], Krouk [101].

This algorithm can be applied to finding minimum-weight codewords in a
linear code (see Sect. 3.5.1). In this form it has been advanced by Leon [108]. A
version of this procedure based on looking for certain covering systems has been
proposed in Stern [152]. Observe that no algorithm based solely on coverings
can be asymptotically better than covering set decoding since the bound for
M (n,m,t) is asymptotically tight (Remark 3.8(it)).

The version of covering set decoding with bit swapping was suggested by
Omura in 1969 (see [41, Sect. 3.2]) and rediscovered by van Tilburg [156]. Tts
applications were studied by van Tilburg [156] (cryptanalysis) and by Canteaut
and Chabaud [36] (cryptanalysis; finding the minimum distance of BCH codes,
see Sect. 3.5.1). The complexity reduction in Example 3.4 was obtained in
[36], [156].

Example 3.5 is due to Krouk and Fedorenko [102]. This is probably not
the simplest known decoder of this code. For other methods see Blaum and
Bruck [29], Elia [57], Pless [130]. We chose to include this method because it is
easy to describe and is applicable to other linear codes. The general punctured
split syndrome decoding algorithm and Theorem 3.25 are due to Dumer [54].
Example 3.6 is due to E. Krouk, see [22]. The supercode decoding algorithm
and Theorem 3.26 are due to Barg et al.[22].

In this section we studied the asymptotic behaviour of decoding algorithms
applicable to all linear codes. Another approach is to study the decoding for

69

the same size as above can be constructed deterministically. As remarked after
Theorem 3.24, the size of the minimal covering is of order (?)/(n:k) This can
be expressed more precisely as follows.

Lemma 3.28 min [M(n,m,)| < [1+log <T)] <’:)/<T)

Proof (outline): Compute the fraction of ¢-subsets that are not covered by a
probabilistic procedure. Add one m-set per each uncovered t-set and compute
the average size of the covering. Then there exists a covering of size at most
the average. |

The following theorem can be proved by a recursive construction.

Theorem 3.29 Let k and t grow linearly in n. A covering M(n,n — k,t) of

size u = o(n) (’;)/(n;k) can be constructed with time complerity O(ulogu). |1

Thus, it is possible to implement the covering set decoding by a deterministic
algorithm with asymptotically the same complexity as the probabilistic one

(Theorem 3.24).

3.3.5 Notes

3.3.1. Lemma 3.9 is from Evseev [60]. Actually for the lemma itself, as is readily
seen from the proof, reference to the g-ary symmetric channel is quite irrelevant.
Already in [60] it was proved for all discrete channels with additive noise. See
Sect. 3.4.2 for formal definitions and generalizations of this result. Based on
his lemma, Evseev [60] suggested a decoding algorithm with time complexity of
order gF(1—F)

3.3.2. Split syndrome decoding was suggested by Dumer [53]. Sorting algo-
rithms and networks are discussed in Knuth [96], Cormen et al. [45].

3.3.3. Terms like steepest descent and gradient-like decoding should be used
with caution because they refer to optimization in discrete space. There have
been numerous attempts to reduce the decoding complexity by embedding E7'
into R™ and applying classical gradient methods. However, in this case local
optima hinder the successful decoding and any significant results still remain
out of reach.

Hwang [86],[87] was the first to introduce minimal words in binary codes
in the decoding context. Moreover, he showed that minimal codewords can be
used in the more general setting of soft-decision decoding. This is related to
an observation of Agrell [1], which states that if a binary code is considered as
a subset of points of the unit cube in R”, then zero neighbors (vectors whose
Voronoi regions have a common n — 1-dimensional facet with the Voronoi region
of 0) are precisely the minimal vectors of this code. We comment further on this
in the next section. Minimal supports are interesting in several other respects.
They define access structures in a linear secret-sharing scheme associated with
the code. Ashikhmin and Barg [13] found minimal supports for several classes of

68

We shall assume that as the length of both A and B grows, the code C
meets the GV bound, i.e. dist(C) = ng6o(R). Suppose m = n = ,/ng. Let
v = (yy,...,Y,) be the received vector, split into n parts of length m. Let
e> 0.

Algorithm 3.6: List cascade decoding
e Sete=0.
e Forevery i, 1 <i<n, form a list
Ly ={a € Aldist(a,y;) < do(m, £) —em}.
Form a corresponding list K; = {w | A(w) € L;}.

o LetW e (",\cf) Encode every k-vector
w=(w1,...,wr),w; € Kj,i €W,
with C to form a vector ¢'.
o [Ifdist(y,¢') < dist(y,c), assign ¢ — ¢'.

e Repeat the last two steps for all W € ('Il\cf) and every possible
choice of w. Output e.

List cascade decoding corrects an error if there is a k-subset W with at most
do(m, £) — em errors in each of the vectors y;. Hence it corrects all errors of
weight less than

t=(1/2)(n — k)(do[m, f] — em) = (1/2)ng (1 = k/n)(80(£/m) —)

for any given € > 0. As shown in Chapter xx (Dumer), the parameters can be
chosen in such a way that 2¢t > n_ 6g(R) for small values of R, in the binary
case for 0 < R < 0.02.

Theorem 3.27 Let C = AKX B be a concatenated code of length ng and rate
R. The time complexity of list cascade decoding is (‘)(né exp(\/ﬁn))‘ For small
values of R there erist concatenated codes for which the algorithm performs
bounded distance decoding up to ngéo(R)/2.

Proof: By Lemma 3.3, the size |K;| does not grow with n . Then the com-
plexity is determined by the number of choices of W, which is (Z) < exp(\/ﬁu).

Encoding with the code C takes at most (‘)(né) operations.

CONSTRUCTING COVERINGS

In the beginning of this section we said that it is possible to consider bounded
distance decoding in a purely combinatorial context. Then the problem carries
no inherent probabilistic element, and we would like to derandomize the decod-
ing algorithm itself. The only “random” part of the algorithm is the probabilistic
construction of the covering M (n,n —k,t). However, coverings of exponentially

67

a a
0.4
d
0.12
0.3 BN
0.1
b !

d N)

Figure 3.1: Complexity of hard-decision decoding algorithms for binary codes
(z-axis—code rate, y-axis—complexity exponent):

(a) min(R, 1 — R),

(b) zero-neighbors decoding, Theorem 3.19,

(¢) split-syndrome decoding, Theorem 3.10,

(d) covering set decoding, Theorem 3.24,

(e) punctured split-syndrome decoding, Theorem 3.25,

(f) supercode decoding, Theorem 3.26.

that we are going to discuss. This algorithm applies to a class of linear codes
called concatenated codes, which form the subject of Chapter xx (Dumer) of
the present volume. We have briefly mentioned them in Sect. 2.1. As explained
in Chapter xx (Dumer), this class contains codes meeting the GV bound. We
are going to present a decoding algorithm in the sphere of a large radius ¢ that
depends on the rate R of the code. It will be seen that for a certain finite
range of rates, the relative error weight exceeds éo(R)/2. The complexity of
this algorithm behaves as exp (y/n). This is the only known example of codes
meeting the GV bound and decodable up to néy/2 errors with a subezponential
complexity.

Let A be a g-ary linear [m,f] code and B a @Q-ary [n, k] Reed—Solomon
code, Q@ = ¢*. TLet C = AR B be their concatenation, i.e., a g-ary linear
[ng = mn, kg = (k] code. Each vector @ € A corresponds to a @-ary symbol
w. Having fixed a basis of Fg, we can write this correspondence as a function

a=Aw).

66

Properties of the entire procedure, which we call supercode decoding, can be
summarized as follows.

Theorem 3.26 The supercode decoding algorithm for almost all long linear
[n,k] codes of rate R = k/n has error probability equivalent to that of mini-
mum distance decoding. The time complexity of the algorithm for almost all
codes is at most q”C(q)(R)(l‘i'o(l)), where

C(Q)(R) = min {E] (R, @) + max [%EQ(R, a,v,0)+v,e(R,a,v,0) — EU] }

v, ol

and the functions €1(-) and e3(-) are defined in (3.10) and (3.9), respectively.
The optimization parameters are restricted to

max(0,60 + R— 1) < @ < min(6y, R), fv<1-—R.

The space complexity of the algorithm is estimated from above as

1/ 2nea(Ry 00 0)(1+o(1))
|

Let us write out an explicit expression for the complexity exponent for binary
codes:

=i (225) - (3)

- 5o () - (- (=)

We collect the results of this section in Fig.3.1.

BOUNDED DISTANCE DECODING

We have formulated Algorithms 3.1, 3.4, and 3.5 for bounded distance decoding
in a sphere of radius néy(R). They can be adjusted to decoding in a sphere of
any other radius ¢. If ¢ < dy, they will correct any t or fewer errors for almost
all codes. In this case we should simply discard a decoding candidate if the
distance between it and the received vector y exceeds .

The complexity estimates should be changed accordingly. For instance, the
complexity of Algorithm 3.4 would be n*(log n)q“(tﬁ)”(l""’(l)), where

alt, R) = log, 2 [Hy(t/n) — (1 - R)Hq<1t/nR)]
and so on for the other algorithms.

Of particular interest is the case of t = [(d — 1)/2]. Some results for the
[24, 12] Golay code Go4 were already discussed in Examples 3.3, 3.5. Algorith-
mically this problem has few specific features if any; therefore, there are not
many general results available. A notable exception is one decoding algorithm

65

less for which dist (4;e7,s;) < 1.

The decoding is repeated for each of the two check sets. For a given check
set, we compile a list of error patterns that appear in 3 out of 4 tables T; in
the record corresponding to the received syndrome s;. FEach error pattern is
subtracted from the 24 coordinates of y that correspond to the message part.
The obtained message set is then encoded with the code. As usual, from the
code vectors obtained in this way we choose the vector closest to y.

The total size of memory used by tables T; is 8Kbytes. The decoding requires
about 3000 operations with binary vectors of length 24 and seems to be the
simplest known for this code. |

We propose to do the same thing in the general case, namely, to partition
the syndrome s into a number of consecutive segments of a certain length, say
y, and combine lists of codewords obtained from check equations that involve
the corresponding parts of the syndrome. The total number of segments (lists)
is s = [”y;k] The final list of candidates will be formed by those codewords for
which the corresponding message symbols appear in at least £ of s lists, where
£ 1s another parameter.

Thus, in the first stage of the algorithm we want to decode a number of
[k+y, k] codes C(y) each of which is a supercode of the original code C'. We shall
assume that the weight of the error on the information positionsis e;. To ensure
this, we perfgrm Ln(k,e1) = (n.log n)[(;g)/ (ekl) (dr;:]e“l)] independent choices of
k positions, aiming at constructing a covering system Na(n;e1,do—er; k,n—k).

Fach [k+y, k] code C(y) will be decoded using split syndrome decoding. To
apply it we not only need to bound the weight of the error on the message part,
but also on the check part y. Suppose this weight is es. Let us compute the
minimal value of ey such that s — £ 4+ 1 y-segments of the error vector cannot
all be heavier than e; assuming that the total weight of the error on the n — &

check coordinates is dg — e1. Therefore, we obtain for e5 the inequality

dog — €1

> Gttty

Thus, we apply the split syndrome decoding algorithm to decode s = O(n) codes
C(y), where the weight of the error is ey on the k-part and e; on the y-part of
the received vector. Let y = vn,e; = an. The (time and space) complexity of
each decoding is at most ¢(1/2)ne2(Rv,8)(1+0(1)) where

e2(R, v,) = [RHq(%) + A, (%)] (3.9)

The entire procedure is performed L,(k,e1) < g1 (Re)(1+0(1)) times, where

e1(R, a) = (log, 2) [HQ(«SO) - RHZ(%) . R)Hz(élo__g)]. .

The formal description of the algorithm is too technical to be included.

64

mo| .| o 0 0 A sy

H3 0 0 .. 0 A3 - |83

Nl NQ NS N4

Let y be a received vector and s = Hy” be its syndrome, where H =
[I24] A] is the parity-check matrix that corresponds to the chosen check set. Let
H;, 1 < i < 4, be the submatrix of H formed by rows 6(i — 1) 4+ j, 1 < j < 6,
and let s; = H;y" be the corresponding part of the syndrome. Denote by
A; the corresponding 6 rows of the matrix A. The partition into submatrices
defines a partition of the first 24 coordinates of the code into 4 parts, N; =
[6(:—1),6(i—1)+1,...,6(:—1)+5], 1 <7< 4. The syndrome s is divided into
four parts 81, ..., 84, where part s; 1s formed by the sum of the columns in H;
that correspond to the positions of errors. If a part, say N7, is error-free, then
there is an error pattern e of weight wt (e) < 2 in the information part such
that Aje” = s;. Any single error in N affects one coordinate in the syndrome.
Therefore, if A7 contains one error, by inspecting all error patterns e of weight
< 2 in the information part we shall find a syndrome s’ = Aje” at a distance
one from s7.

Therefore, the decoder can be constructed as follows. For each ¢, 1 < i <4,
we make a list of error patterns e with wt (e) < 2 that yield a syndrome 8’ = A4;e
at a distance < 1 from 8;. An error pattern is a plausible candidate if 1t appears
in 3 out of four lists. This covers all possible cases. Indeed, if a check set
contains 3 (4) errors, then 3 of the 4 sets A; contain at most one error. The
complement of the check set (the message set) contains 2 errors (resp., 1 error).
Thus, this error pattern of weight 2 (resp., 1) will appear in 3 lists. If a check
set contains 5 errors, then the message set is error-free, and the empty error
pattern will appear in all 4 lists.

Thus, to construct a decoder, we need to store 4 tables of error patterns for
each of the 2 check sets. Each table consists of 64 records, one for each possible
value of s;. Finally, each record is formed by all error patterns e of weight 2 or

63

We shall choose the values of 4 and « that minimize the complexity. Let
ﬂq(R) = rlgli(ln((logq Ln(k) U, O‘)) + GQ(R: U, a)),

with R < u < 1 and max(0,80 + u — 1) < @ < min(ép, u), and let ag = ag(R)
and ug = ug(R) be the values that furnish this minimum. The properties of
punctured split syndrome decoding can be summarized as follows.

Theorem 3.25 For most long codes the punctured split syndrome algorithm
has error probability equivalent to that of complete mintmum distance decod-

ing. Iis sequential implementation for a code of rate R has time complexily
q”/GQ(R)(]‘l'O(])) and space (;()mplg'lqty q(]/z)“U”HQ(aU/“U)(]+o(])). I

For binary codes the function 82(R) has the following form:

Ba(R) = Ti{ymax{(l —u) [1 - H2(5 - a)],

) 1—u

e (%)~ ()]

Algorithm 3.5: Punctured split syndrome decoding

e For agiven R find the values u and a that minimize the function

B4(R). Set @ = 0.

e Choose randomly a u-subset W C N. Put C' = C(W) and
y' = y(W). Perform split syndrome decoding of C’ w.r.t. y'. Form
alist L(W) ={c € C" | dist(¢/,y') < an}.

e TFormalist K(W)={c€ C|Jeerw)c(W)=c}.

e [If there is a ¢ € K(W) such that dist (¢, y) < dist (a, y), assign

a «— C.

e Repeat the last three steps L, (k, u, @) times. Output a.

Theorem 3.25 can be further improved by performing repeated decoding
attempts based on a part of the received syndrome least affected by errors.
Decoding based on a part of the syndrome amounts to restricting oneself to a
part of parity checks defining the original code C| i.e., decoding in a supercode
of C'. The following example captures some features of this algorithm and shows
the ways of generalizing information set decoding and split syndrome decoding.

Example 3.6 (The [48,24,12] binary extended QR code). We aim at con-
structing a decoder that corrects 5 errors. Suppose the first 24 coordinates form
a check set of the code. Since the code is self-dual, the last 24 coordinates also
form a check set. At least one of these sets will contain no fewer than 3 errors,
in which case the remaining information part contains at most 2 errors.

62

algorithm discussed. For instance, for ¢ = 2 it is better than covering set
decoding for R > 0.954. Therefore, if we puncture the code C (i.e., cast aside
some of its parity symbols) so that its rate becomes large, we then can gain
in complexity by applying split syndrome decoding to the punctured code C".
By Lemma 3.5 we may regard any symbols as parity ones provided that their
number is less than n — k.

Let us elaborate on this idea. Assume that the length of C’ equals n’ = un
and the number of errors on these coordinates is an. Let y’ be the projection of
the received vector on the coordinates of C’. Since the distance of C” is small,
the number of its codewords in a sphere of radius an around y' equals with high
probability

<n1>(q _ 1)—n(u—R) — qn(“H‘l(a/“)_(“—R))(1+o(1))

an

by Lemma 3.2. By Remark 3.5, we can use split syndrome decoding to find these
codewords. For each of them, recover the appropriate codeword of C' (strictly
speaking, a list of at most ¢¥™ such codewords, see Cor. 3.8) and choose the
one closest to y.

The time complexity of the described procedure is the sum of the complexity
of split syndrome decoding and the inspection of this list,

n' 1/2 n'
O<n4<) +n<)(q - 1)_”(“_R)).
an an
To minimize the sum of two exponential functions we have to equate exponents.

Therefore, the time complexity of this algorithm equals

qnsq(R,u,a)(1+o(1))’

where |
(Ru,) = max{gqu(%),qu(%) —(u— R)};

and the space complexity equals that of split syndrome decoding.

As usual, we are interested in the correction of up to dy errors. In order to
control the weight of 3, we construct a covering system

No(n;un, (1 —u)n;an, (6o — a)n).

This can be accomplished with high probability in

Ln(k, u,a) = (nlogn) [(ZD/(ZD (Ezlo_—lg:)]

_ s, 2)[Ha(60)—ubs(2) = (1—uw)Ha (222) | (140(1))

independent attempts, which is proved exactly in the same way as Theorem

3.24.

61

Then we can use the residual code C' = C(S) to correct one error. This decoding
yields a codeword of €, say ¢’. Since dim ¢’ = dim C' — 1, there are 2 codewords
of C whose projection on S equals ¢’. Since we do not know which residual code
to decode, we need to repeat this for all |A| of them. Each decoding yields a pair
of codewords of C' or reports a decoding failure. Finally, out of all codewords
of C' obtained in this way we choose the one closest to received word.

Thus, we need to construct the set A. This set is constructed using the
following artifice. Suppose the set of coordinates is split in two halves of size
12. Then if on each half we have a covering M (12, 8, 2) formed by codewords of
weight 8, then out of every 3 coordinates there is a pair covered by one of these
codewords.

A covering M (12,8, 2) is formed by 3 codewords of weight 8 constructed as
follows. Take any 4 coordinates of the code. Adding a fifth coordinate to them
defines a unique codeword of weight 8 (see Ch. 1, Example 11.10). Denote this
codeword by ¢1. Next, take another quintuple formed by the same 4 coordinates
and a fifth one outside the support of ¢;. This again isolates a codeword of
weight 8, say ¢y. Finally take e3 = €1 + ¢2. This gives a covering M(12,8,2)
of size 3 which is responsible for any two errors in the 12 coordinates. Repeat
the same procedure for the remaining 12 coordinates. This gives a total of 6
codewords of C.

Therefore, we need to decode six [16,11,4] codes. The 6 parity-check ma-
trices of C' can be stored in memory, which is about half the space needed for
information set decoding (14 matrices). The time complexity of both methods
is roughly the same.

For instance, if we define code C' by the generator matrix G = [I15| A], where
A is a circulant matrix with the first row (110111101000), then one can take
the 6 codewords in the following form:

1234567891011121314151617181920212223 24
cp 1 11 1111 1
cy 1 111 1 111
c3 111 11 11 1
cy 11 1 1
Cy 1
Cg 11

11 11
111 1

1
11 1

—_
—_
—_

This algorithm 1is fairly general and can be worked out for other codes,
which may be less well studied than the code Go4. For instance, decoding of the
extended [48, 24, 12] quadratic residue code can be reduced to 28 decodings of
[36, 23, 6] codes, which also yields a considerable saving on the complexity (either
time or space, depending on the implementation chosen). Another decoder for
this code is given in the next example. |

Let us turn to asymptotics. To improve on the complexity of covering set
decoding we need an algorithm that performs better than this on shortened
codes. Looking at the derivatives of complexity exponents for R — 1, we see
that the time complexity of split syndrome decoding is better than any other

60

any given number of errors. The correctness of this algorithm rests on a number
of facts that hold with large probability for very long codes. For codes of a
fixed length its application is not fully mathematically justified. Cryptanalysts
nonchalantly assume that these properties hold for the code generated by G.
This assumption is supported by the presence of the random matrix S.

As follows from Remark 3.3, the average corank of a large square binary
matrix is 0.85. Therefore, we can assume that the number of codewords that
project identically on a given k-set does not exceed 2 (the dimension of the
space of solutions of the linear system of equations does not exceed 1). Per-
forming (’;)/(”?k) independent choices of k out of n coordinates, we see that
the probability of not constructing a covering M (n,n—k,t) is about 1/e = 0.37.
Therefore, the probability of success is 0.63, which is a sufficiently serious threat
to the security of the system. Then the average number of computer operations
needed to perform the decoding is at most 2(nk? + k2)(’;)/(";}”) ~ 2827 (we
allow ourselves the order of k? operations for each encoding)?.

An improvement of this estimate is based on an already mentioned obser-
vation that choosing successive information windows independently requires in-
dependent diagonalizations of the generator matrix. We can save on this by
swapping a coordinate in the current information window and a coordinate out-
side 1t. This newly chosen subset is also likely to form an information window.
In this version of the algorithm the successive choices are not independent and
the proof of Theorem 3.24 has to be replaced by a more accurate argument. On
the other hand, reducing the matrix to diagonal form now becomes at least n
times easier. Calculations show that the complexity is brought down to at most
270 operations. For further details see Chapter xx (van Tilborg). |

SHORTENING AND THEN DECODING

Instead of decoding the code C' directly, we can make several attempts at de-
coding shortened codes and choose the closest codeword in the resulting list.
We begin with an example.

Example 3.5 In Example 3.3 we discussed the information set decoding of the
extended binary Golay code C' = Go4. Here we present another decoder that
combines information-set decoding and shortenings. Let ¢ be a codeword of

weight < 2d — 1 in the code and let S = supp (¢). Then the code C' = C(S),

i.e., the original code projected on the zero coordinates of ¢, has the parameters
[n—wt(e),k—1,d— |wt(e)/2]]

(called the residual code, see Ch.1, Sect.3). In particular, if wt(¢) = 8, then
the code C” has n = 16,k = 11, distance at least 4, and will be used to correct
one error.

Suppose we can find a set A of codewords of weight 8 in C' such that any triple
error hits the support of at least one vector ¢ € A in at least two coordinates.

2By varying the parameters of the code it is possible to raise this complexity up to 28°
operations.

59

(see Chapter xx (Huffman)). For Go4 this yields |M (24,12, 3)| > 14; therefore,
the collection of information sets constructed in the previous example has the
minimal possible size.

More generally, one can define a covering system N,(n;mi,ma, ..., my;tq,
ta, ..., t,) as acollection F of r-tuples of pairwise digjoint subsets (Fy, Fa, ..., F})
of respective size m; with UF; = A such that every r-tuple of pairwise disjoint
subsets (Ey, Ea,..., E.), |E;| = t;, is contained in at least one element of F in
the sense that £y C Fy,..., E. C F,. Then

M(n,m,t) = Nao(n;m,n—m;t,0).

(7i7) Algorithm 3.4 has a variety of different applications. In Sections 3.5.1,
3.5.2 we explain that the problems of computing the minimum distance and
weight spectrum can be approached with in essence the same techniques as de-
coding. Covering set decoding can be reformulated as a probabilistic algorithm
for these problems.

(iv) Here is another version of covering set decoding that uses the parity-
check matrix H. Pick a random (n — k 4+ O(y/n))-subset E of N. By Lemma
3.5, for almost all matrices H, submatrix H(F) will be nonsingular, and H can
be transformed to the form H' = [B | I,,_;], where the identity matrix is located
within E. Performing the order of L, (k) independent attempts, we ensure, with
high probability, that in one of them all dy (or fewer) errors are located within
E. Therefore, any attempt that yields the syndrome s’ = H'y” of weight at
most dy, supplies us with a plausible error vector e’. This error vector should
be formed by taking zeros on A\ E and nonzero symbols in those coordinates
of E that correspond to nonzeros in the syndrome (cf. Remark 3.4(1i7)).

Example 3.4 (CRYPTANALYSIS.) One convenient setting for examples is that
of public-key encryption schemes based on computationally difficult coding
problems. This application is particularly attractive because these schemes use
relatively long codes that sustain brute force attacks.

The McEliece cryptosystem is based on the use of an [n = 1024,k = 524]
binary linear code A with a relatively simple decoding algorithm correcting
t = 50 errors (for instance, a Goppa code). Let A be a generator matrix of A
and x a plaintext of k bits. The ciphertext is calculated as

z=xG+ e,

where G = SAP with S a k x k nondegenerate scrambler matrixand P an nxn
permutation matrix, and e is an n-vector with ¢ ones. Matrix GG is a public
key and its decomposition is kept secret. A legal user calculates y = zP~! =
2SA+ eP~! and decodes y using the decoding algorithm of A in order to find
u = xS. Then z is found as uS~!. An unauthorized person presumably has to
perform the decoding of a random-looking linear code with the generator matrix
G.

Let us analyze the complexity of this decoding. We shall discuss only the
covering set decoding algorithm. Clearly, it can be adjusted to the correction of

58

Theorem 3.24 Covering set decoding for almost all codes has error probabil-
ity equivalent to that of complete minimum distance decoding. The decoding
can be implemented by a sequential algorithm with time complexity at most

O (n*(log n)q"*a(F)+y/nHa(R)log, %) = greaR)A+e(1) yhere

)
g (R) = (log, 2) [Ha(80) — (1 = R)H: (1 _OR)] .
Proof: A decoding error can occur if the transmitted codeword is not the
closest one in the code to the received word, which happens with probability p.,
or if the repeated choice fails to find an error-free k-set. The probability that a
randomly chosen k-set W is not error-free equals

= (/G)

Performing the choice independently L, (k) times we observe that the probabil-
ity of this falls as e=™1°8™, This term declines faster than the error probability
of minimum distance decoding p.; hence, its contribution to the overall error
rate is negligible. This proves the first part of our claim.

The complexity of each independent decoding attempt is formed by the time
needed to diagonalize the matrix G with respect to W, which takes at most n3
operations, and a number of linear-time subroutines. Hence the overall com-
plexity is at most O(n®L,(k)|L(W)|). The required expression for the exponent
follows by (1.1). |

Remark 3.8 (i) In implementations, the independent diagonalization on each
step is quite impractical. It is possible to pass from one information window
to the other by swapping a pair of columns in the matrix. For codes of length
1000 this allows to speed up the computations by several thousand times; see
the next example.

(11) A covering (covering design) M(n,m,t) is a collection of m-subsets of /'
defined as follows

M(n,m,t)={F CN™: Vgent Ires(E C F)}.

In words: M (n,m,t) is a collection F of m-subsets of A such that every ¢-subset
is contained in some F' € F. Coverings are studied in combinatorics. It is known

that L
n n—
min |M(n,n —k,dg)| ~ .
e o) <d0)/ (do)

The upper bound in this equality (Erdés and Spencer [59, Thm.13.4]) is proved
by a probabilistic argument of which Theorem 3.24 is derived.

It is easy to bound the number |M(n, k,)| from below. Namely, a standard
double counting argument shows that k|M(n, k,t)| > n|M(n—1,k— 11— 1),
which combined with |M(n, k, 1)| = [n/k] yields the following lower bound:

M (n, b, 1)] > [%[Z:i[’;:ziﬂ H

57

r 1 1001111100017
1 010100111011
1 001101010111
1 111100001110
1 100010011111
oo 1 101001111010
= 1 110001100111
1 111011010100
1 010111001101
1 |001110111100
1 011111100010
I 1111010101001

Form a collection of 14 information sets by applying the following permutations
on the set {1,2,...,24}:

glooh, 0<i<1,0<j<6,
o1 swaps halves: {1,2,...,12} « {13,14,...,24},
o2 = (4,7,16,10,22,19,13)(5,8, 17, 11, 23, 20, 14)(6, 9, 18, 12, 24, 21, 15).

It can be shown that these information sets are sufficient to correct any 3 er-
rors. Furthermore, in Remark 3.8(i¢) we argue that 14 is the minimal possible
number of sets. If the 14 generator matrices are stored in the memory, then the
decoding amounts to 14 encodings and comparisons, i.e., about 180 operations
with vectors of length 12. In greater detail this example is considered in Chapter
xx (Huffman). |

To implement the general algorithm, we have to specify a way of choosing
the information sets. One obvious suggestion is to take random uniformly dis-
tributed k-subsets of A'. We call the next algorithm covering set decoding (the
name will be clear in a while). Let

Ln@):(nbgm<;>/(n%k>.

Algorithm 3.4: Covering set decoding

e Sete=0.

e Choose randomly a k-subset W. Form a list of codewords
LW) = {c € Cle(W) = y(W)).

o [If there isa ¢’ € L(W) such that dist (¢/,y) < dist (¢, y), assign
c—c.

e Repeat the last two steps L, (k) times. Output c.

We know from the previous section (Corollary 3.8) that for most codes, for
any choice of W the list L(W) will be of small size. Therefore, the time com-
plexity of this algorithm is determined by the quantity L, (k). Let us formulate
the properties of this algorithm as a theorem.

56

3.3.4 Information set decoding

Algorithms considered below in this section restrict themselves to decoding in
the sphere of radius dy = nég(R). By Theorem 3.4, for most long codes this is
sufficient for complete decoding. Denote by p. the error probability of complete
minimum distance decoding.

Let G be a generator matrix and H a parity-check matrix of C'. Let W be the
collection of all information sets of C'. Given a message a we find the codeword
corresponding to it as ¢ = aG. If for a certain k-subset W C A the submatrix
G(W) = I, the symbols of a will appear on this subset of coordinates in e.
Using our notation,

a(W) = e(W).

If the error vector e has zeros on W, we shall be able to find the transmitted
word ¢ from the received word y = e 4+ ¢. This enables us to formulate the
following general decoding method.

Algorithm 3.3: Information set decoding

e Sete=0.

e Choose an information set W. Compute the codeword ¢’ =
y(W)G. If dist (¢/, y) < dist (¢, y), assign ¢ — ¢'.

e Repeat for all information windows. Output c.

Recall that if W is an information set, the remaining subset B = A"\ W is
called a check set. Clearly, rank (H(B)) = n — k.

Theorem 3.23 The information set decoding algorithm performs complete min-
tmum distance decoding.

Proof: Let s be a nonzero syndrome and I a leader of the coset defined by it.
Let E = supp (I). We have to prove that A\ E contains an information set or
that E is contained in a check set. Indeed, for any nonzero 8 and any check set
B there 1s a vector e such that

HeT = s, supp (e) C B.

Hence |E| < n — k. Moreover, I is a vector of minimal weight in the coset
and therefore, in particular, for no other vector e with the same syndrome,
supp (€) C F. This implies that rank H(E) = |F|; hence F can be augmented
to form a check set. |

Example 3.3 Let C' = Goy be the [24,12, 8] extended Golay code given by a
generator matrix G. We want to use information set decoding for the correction
of 3 errors. Let

55

Theorem 3.21 Let C' be a binary linear code all of whose codewords have even
weight and let T C C be a test set. Then |T| > Zmin. |

Therefore, general improvements of zero-neighbors decoding within the gra-
dient-like approach are impossible.

Theorem 3.21 also implies that for even codes |M| > Zmin. However, for
these codes the following stronger result holds true.

Theorem 3.22 Let C be as in the previous theorem. Then the set Zmin can be
chosen so that Zmin C M. |

Remark 3.7 Generally, zero neighbors need not to be minimal codewords. In-
deed, consider the code C' = {0000,1100,0011,1111}. Vector 0110 is equally
far from all the codewords meaning that they all, except 0, are zero neighbors.
However, 1111 is not minimal.

Note that gradient-like algorithms require a nontrivial preprocessing for the
construction of the test set of codewords. For simplicity we have included pro-
portional codewords into the test set. In implementations there 1s of course no
need to store them.

Finding zero neighbors and minimal codewords usually is a difficult task.
However, note a difference: whereas checking whether a given vector is a zero
neighbor seems computationally hard, the question of a vector being minimal is
solved immediately by Property (1) of minimal vectors.

Example 3.1 Binary [n = 27 — 1,k = n — m, 3] Hamming codes. The code
is perfect; therefore, its zero neighbors are exactly (1/3) (TZL) words of weight 3.
Generally, there are

=))

vectors of weight w in the code; it can be shown that

w—2

1 m By
Mw:mH(Q —2%)
i=0

among them are minimal. For instance, for m = 6 this gives [M| = 4994493 =
2223 7 in = 651.

Of course, the simplest way to decode in this case is syndrome decoding. To
perform it, we only need to compute the syndrome of the received vector.

Example 3.2 Binary [n = 2™ k = 1 + m + m(m — 1)/2,2™~?] second order
Reed—Muller codes. The number of zero neighbors in the code can be estimated
by the number of all code vectors of weight < 2d — 1 = n/2 — 1. For instance,
let m = 6, then the code has at most 1183084 zero neighbors. The number of
minimal codewords equals 3821804. The entire code has 222 = 4194304 vectors.
The number of cosets is much higher; therefore, the table of zero neighbors has
much smaller size than other possible decoding tables. |

54

Let us formulate properties of the zero-neighbors decoding.

Theorem 3.19 Let C be an [n,k = Rn] linear code. For any y € EY, zero-
netghbors decoding always finds a closest codeword. For almost all codes it can

be implemented by a sequential algorithm with both time and space complexity
q”aq(R)_ I

For instance, for ¢ = 2, the complexity of this decoding is exponentially smaller
than that of exhaustive search for R > 1 — H(1/4) = 0.189, and thus also
smaller than the complexity of minimal-vector decoding.

The only property of the set Z that is essential for successful decoding is
formulated in (3.7):

X(D(0) c [J D(=). (3.8)
zed

Thus, we may further restrict the test set of vectors by choosing a smallest subset
of Z with this property. Denote this subset by Zmin. Note that though the set
Zmin may be not unique, its size is well defined. Therefore, let Zmin = |Zmin|-

The set Zmin has the following property that confirms an intuitive picture
of zero neighbors.

Lemma 3.20 Let z € Zmin and let y; € X(D(0)) N D(2z). Then there exists a
chain of immediate descendants {0 = yo < -+ < y;_1 < y; < -+ < z} such
that every member satisfies y; € D(0) ory;, € D(z) ory, € D(0)N D(z). If
furthermore y; € D(z) then y; & D(2'), 2" € ZLimin, 2’ # 2.

Proof: Let z € Zmin. Since Zmin is minimal, there is a y € X(D(0)) N D(z)
such that y # D(z') for any other 2z’ € Zmin. Let wt(y) = w and let < y be
a point in D(0) of weight wt () = w — 1. Form a chain

0:y0'<""<yw—1:m'<yw:y'<""<za

where each member y; is an immediate descendant of g, . It can be seen that
¥, € D(0),0<i<w—1. Tfw<i<wt(z), then

dist (y;, z) = dist (y, 2) — dist (y,y;) < dist (y, 2’) — dist (y, y;)
< dist(y;,2z') Vz'€C,
dist (y;, z) < dist (y, 2') — dist (y, ;) < dist (y;,2’), Vz' € Zmin, 2’ # 2.

Thus, y;, € D(z) and y; € D(2'),2' € Zmin, 2’ # 2. |

For the set Zmin the upper bound in Lemma 3.17 can be made one less.
Indeed, minimality of the subset Z,,;, implies that @ in the proof of the lemma
must be contained in D(z). Therefore, dist (&, 2) < ¢t. Unfortunately, better
estimates of Z,i,, than those in Lemma 3.18 seem difficult to achieve. However,
as 1s shown by the following theorem, stated here without proof, the size of Zmin
gives, in certain cases, a lower estimate on the size of any test set.

53

Remark 3.6 This definition is motivated by the following example. Let C' =
{eo = 000, ¢; = 111}, then D(¢g) is formed by ¢g and the vectors of weight one
and D(e1) by ¢ and the vectors of weight two. Thus, if points outside D(-)
are not included in the boundary, dD(eq) and 0D(c1) would be disjoint, which
seems unreasonable.

Definition. A nonzero codeword z € C is called a zero neighbor if its
Voronoi region shares a common boundary with D(0), i.e., if 9D(z)NAD(0) # 0.

Clearly, if z is a zero neighbor, then so are all of its scalar multiples. Let Z be
the set of zero neighbors. The definition has the following simple consequence:

(X(DO)ND(z)#0) = =z€Z. (3.7
Indeed, =z € X(D(0)) N D(z) implies that there is a y € D(0) at a distance 1
from =. Hence y € 0D(0) N 0D(z).

Decoding with zero neighbors proceeds in the same way as with minimal
supports except that now we choose the test set T in Algorithm 3.2 equal to Z.
This version of the algorithm is called zero-neighbors decoding.

The zero-neighbors decoding always converges to the closest codeword. To
justify this we again verify that Z is a test set.

Theorem 3.16 The zero-neighbors algorithm performs complete minimum dis-
tance decoding.

Proof: Let y ¢ D(0). Consider a chain of inclusions 0 = yy < y; - < y;_1 <
y; < -+ <y, where wt(y;) = 1. Clearly there exists a number 7 such that
y;_1 € D(0) and y; € 9D(0) \ D(0). Then y,; € D(z) for some z € Z. We have

wt (y — z) = dist (y, z) < dist (y, y;) + dist (y;, 2)
< dist (y,y;) + dist (y;, 0) = wt (y).
Hence Z 1s a test set and the theorem follows. |

The complexity of zero-neighbors decoding is determined by the size of Z.
This can be easily estimated from the following lemma.

Lemma 3.17 For all z € Z, wt(z) < 2t + 2, where t is the covering radius of
C.

Proof: Let # be a point in dD(z) N dD(0). Then dist(z,0) < dist(z,®) +
dist(z,0) < (¢ + 1)+ (t + 1). 1
Hence, combining Lemma 3.2 and Theorem 3.4 we get the following.
Lemma 3.18 For almost all codes, |Z| < ¢"*F) where
q—1
<rR<1-H,(12)
R, o< R<1- (1),

ay(R) = _
(0 (H,(280) — (1 — R))(1 + o(1)), 1-1@(%) <R<1.

52

Lemma 3.15 VarM, < EM,(1+ Q_d/QEMw). |

Passing to the exponential form, we see that

9=d/2E pf, < on(Ha(w/n)=(1=R)=(d/2n))

By property (2) below, w/n < 1 — R+ 1. Plugging this in and taking codes
meeting the GV bound, we see that this exponent is negative for 0 < R < 0.26.
Thus, at least for this range of code rates, Var M,, < EM (14 o(1)). Therefore
by (1.5), the worst-case complexity of minimal-vectors decoding for most binary
codes has the same order of magnitude as the average-case complexity.

We conclude this part by stating some further properties of minimal supports
in binary linear codes.

Properties of minimal supports.
(1). Let E C N be a support of a codeword in C. Then E is minimal if and
only if rk (H(FE)) = |E|— 1, where H is the parity-check matrix of C.

(2). (E is minimal) = (|E|<n—k+1).
(3). Every support of size |E| < 2d — 1 is minimal.
Proof: The only if part of Property (1) is obvious as is Property (3).
(1), <. Let h; be the ith column of H(E). By the assumption, there exist
w = |E| nonzero numbers A; such that

i Aih; =0
i=1

and some w—1 of these columns, say the first, are linearly independent. Suppose
there exists ¢/, ¢’ < ¢, i.e., there exists a vanishing linear combination of columns
that does not involve at least one of the first w — 1 columns, for instance,

with gty # 0. Multiply this sum by A, /g, and subtract from the first one. This
gives a linear dependence between the first w — 1 columns, a contradiction.

Property (2) is implied by (1).
Examples are deferred until the end of the section.

7ZERO NEIGHBORS

Let us show that it is possible to reduce the number of codewords inspected by
the gradient-like search while preserving the decoding performance.

Let A C EJ and let X(A) be formed by all the points of E7 at distance 1
from A:
X(A) = {x|dist (x, A) = 1}.
Define the boundary of A as follows:

9A = X(A) UX(ED\ A).

51

case, minimal supports define a set of lines in the code. Note that no minimal
codeword covers a nonzero codeword with a smaller support (thus justifying the
name).

From here until the end of this part we consider only binary codes. Set
T = M in the gradient-like decoding algorithm. We call this version minimal-
vectors decoding.

Theorem 3.13 The minimal-vectors algorithm for binary codes performs com-
plete mintmum distance decoding.

Proof: Let y ¢ D(0). Then there is a codeword ¢ such that
wt (y + ¢) < wt(y). (3.6)

Expand ¢ into a sum of minimal vectors according to Lemma 3.12. The sup-
ports of these vectors do not intersect. Therefore, at least one of them satisfies
Eq. (3.6). The proof now follows from Theorem 3.11. |

The complexity of this algorithm is determined by the size of the set M. Let
us determine it for long linear codes. Let C' be a random linear code and N,
(resp., M,) be the number of vectors (resp., minimal vectors) of weight w in it.

Lemma 3.14 Let w=(n—k+1)—{, { — co. Then

w—2

EM, = <”>2—<ﬂ—k> [[(1-27"*)~ EN,.

w -
1=0

Proof: Let H be the parity-check matrix of C'. Let m, (w) be the probability
that a given support is minimal, then EM,, = (Z)”n,k(w)~ The event considered
is that some (say, first) w — 1 columns of H among the chosen w columns are
linearly independent and the remaining column is their linear combination with
w — 1 nonzero coefficients. The number of collections of w columns that satisfy

the above conditions equals
(2n—k _ 1)(2n—k _ 2) o (2n—k _ 211)—2)

and the total number of choices is 2¢(*=%) The probability 7, 1(w) equals the
quotient of these quantities.

The asymptotic equality follows by (1.7). |

For £ fixed, the quotient EM,, /EN,, tends to a positive constant less than
one. For small £ its values are shown in Remark 3.3.

This enables us to conclude that on average the time complexity of minimal-
vectors decoding for long codes does not improve the complexity of examining
all codewords or syndromes. In addition this algorithm requires a space of size
|IM|. To bound the worst-case complexity one should find the variance of M,,.
We discuss it only for the binary case. The following lemma can be proved along
the lines of the proof of Lemma 1.1.

50

Let us prove that this algorithm always converges to the nearest codeword.

Theorem 3.11 For any set of codewords satisfying (3.5) the gradient-like al-
gorithm performs a complete minimum-distance decoding. The time complezity
of the algorithm equals O(n?|T|). The space complexity equals O(n|T]).

Proof: Let y ¢ D(0). The algorithm expands y into a sum of test vectors.
Suppose that after m steps no further test vectors satisfying (3.5) are found.
This means that we managed to bring y “down” to D(0):

e:y—ZzuED(O).

u=1

However this means that y € D(3""_, z.). |
Submitting a codeword ¢ # 0 to this algorithm, we observe that it constructs
a decomposition of zero in the form

OZC—ZZu.

In addition we can observe that in each step the algorithm produces a vector of
a strictly smaller weight. Let us formulate this as a lemma.

Lemma 3.12 Let T C C be a test set. Then any codeword ¢ # 0 can be
decomposed into a sum

c:Zzu, zy €T, m>1
u=1
where
wt(e) >wt(e—z1) >wt(e—(z1+22))>-->0 1

Thus, the linear hull of T equals the entire code C'. We discuss two ways of
constructing the test set T.

MINIMAL VECTORS

Let supp () = {i € N'|2; # 0} be the support of ®. If supp (2) C supp (y)
(resp., C), we also write < y (resp., X).

The above lemma suggests to try to construct 7 in such a way that every
codeword ¢ outside T covers a certain codeword z from this set, i.e., z < ec.
Then T can be viewed as a set of minimal codewords. Let us give a definition.

Definition. A codeword ¢ € C' is called minimal if 0 # ¢’ < ¢ implies that
¢’ = ac for a nonzero constant a. The support of a minimal codeword is called
minimal with respect to C.

Let M be the set of minimal codewords of a given code C. For binary
codes, M can be also viewed as the set of minimal supports. In the general

49

Algorithm 3.1: Split syndrome decoding

Precomputation stage: For every weight ¢, 1 <t < dg, find the point
m such that the tables X, and X, have an (almost) equal size. Store
the pair (m, u) in the set E(t).

e Compute s = Hy” and set ¢t «— 1.

e For every entry of F(t), form the tables X, and X, as described.
e Order X; with respect to the entries s,.

e For every entry of X, check whether X; contains the vector
8y = 8 —s,. If this is found, then output ¢ = y— (e4|e,) and STOP.

e Otherwise set ¢ «— ¢ + 1 and repeat the last three steps while
t < dy.

In the remaining part of this section we are going to discuss two principles of
minimum distance decoding with reduced complexity, namely, steepest descent
and information set decoding.

Remark 3.5 Note that generally this algorithm is a way of generating the list
of solutions of the equation s = HeT of weight wt (e) < t for a given ¢. The
complexity of this algorithm is for high code rates exponentially smaller than
that of the exhaustive search.

3.3.3 Gradient-like decoding

Methods of steepest descent are harder to implement in Hamming space than in
real space. A general principle of decoding is to construct a set T of codewords
in such a way that every vector y either lies in D(0) or there exists a z € T such
that

wt(y — z) < wt(y), (3.5)

where D(0) is the Voronoi region of the all-zero vector. Any set T C C' satisfying
this property will be called a test set.

This suggests that decoding of a vector y can be accomplished by recursively
inspecting the test set for the existence of such a z and subtracting it from the
current vector. Let us formulate the algorithm. It assumes that the test set has
been precomputed and stored in the memory.

Algorithm 3.2: Gradient-like decoding

e Sete=0.
¢ Find 2z € T such that wt(y — 2) < wty. Let ¢ — ¢+ 2z, y —
y—z.

e Repeat until no such z is found. Qutput e.

48

product s, = Hyel and store it, together with the vector e, as an entry of the
table X,. The total size of X, thus will be

o(n <’Z> (4= 1").

Likewise, form the table X, of size

o (2 =)

and look for a pair of entries (s¢, s,) that add up to the received syndrome
8. Therefore, for every given s, occurring in X, we should inspect X, for the
occurrence of 8 — s,.. One practical way to do this is to order X, with respect
to the entries 8, whereupon its lookup can be accomplished by binary search in
O(n) steps. Sorting an array of N = exp?(™) vectors can be accomplished with
both time and space complexity O(Nn). Therefore, sequential implementations
of this algorithm and its generalizations in Sect. 3.3.4 involve exponential mem-
ory. Alternatively, sorting can be accomplished by a logical circuit (in this case
called a “network”) of size O(Nn) and depth at most O(n?).

However, in reality we do not know the number of errors nor their distribu-
tion. Therefore, we have to repeat the described procedure for several choices
of m and u. In doing so, we may optimize on the choice in order to reduce the
total size of the memory used for the tables X, and X,. Since this size is a sum
of two exponential functions, for every error distribution we must choose the
point m so that both tables are (roughly) equally populated. This is possible
since the size of X, grows and the size of X, falls with the increase of m. The
size of the memory is then bounded as O(L(t)), where

, 1/2
L(t) = n((:) (q _ 1)73) S nanq(t/n)/Q.

For every choice of m there are not more than ¢ different options for the choice
of u. Hence repeatedly building the tables not more than nt times, we shall
capture any distribution of ¢ errors and on each iteration use not more than
O(L(t)) memory bits.

Finally, the entire procedure should be repeated for all ¢ = 1,2, ..., dy until
we find the error vector that has the “received” syndrome s.

Below we state the algorithm in tabular form. Let us summarize its proper-
ties in a theorem whose proof can be seen to follow from the above discussion.

Theorem 3.10 For most long codes the split syndrome decoding algorithm has
the error probability equivalent to that of complete minimum distance decoding.
Its sequential implementation has, for any code of rate R, time complezity

O(nd2L(do)) = g2 =R)(1+o(1))
and space complezity O(nL(dy)). The algorithm can be implemented by a Boolean
circuit of size O(nd2L(dy)) and depth O(n?). |

47

contributes to the error probability p.:
pe=Priec £} \ L} (3.4)
For the error probability of bounded distance decoding we have
pp=Priec By \(BNL)} =Pr{ec E{\L} +Pr{ec L\(BNL)}
<p.+Pr{ec B\(BNL)}

The last inequality follows because |B| = |L| and B is formed by the most
probable vectors. Finally, observe that the last term describes a part of the
event in (3.4), so its probability does not exceed p.. |

Remark 3.4 (i) Theorem 3.4 and this lemma suggest another implementation
of syndrome decoding that trades space complexity for time complexity. Namely,
inspect all error patterns in a sphere of radius dg[n, k] around the received word
y. Their number for long codes is ¢"(1=%) and they can be easily generated in
the course of the decoding.

(72) In view of this lemma, we can forget about transmission of information
and think of the decoding in the following purely combinatorial setting:

Hard-decision decoding. Given a vector y € E} with dist (y,C) < do
find the closest (joint closest) code vector ¢ to y.

Thus, we do not care whether ¢ is the transmitted vector and allow ourselves
the assumption that such a vector exists within a distance dy of y.

(i47) Putting the matrix H in systematic form H = [I,,_, | A], we observe that
if the syndrome s = ﬁyT has weight u < d/2, then the nonzero coordinates in
s locate u errors in the check part (first n— k bits). Indeed, every coset contains
at most one vector of weight < d/2; on the other hand, we can form such a
vector by placing u ones in the check part. Thus, syndromes of weight < d/2
need not be decoded.

3.3.2 Split syndrome decoding

We want to reduce the complexity of syndrome decoding by a better arrange-
ment of tables. The idea is to split the syndrome into several parts and build
up a list of candidates for decoding. Let y be a received vector and s = Hy”
its syndrome. Suppose for a while that the actual number of errors is t. Let
us partition N into two parts, L = {1,...,m} and R={m+1,...,n} and let
[H¢|H,] be the corresponding partition of the parity-check matrix H. Any error
vector e = (eg|e,) with

He™ = HleeT +Hre?j =s

is a plausible candidate for the decoding result.

Assume in addition that the number of errors within the subset L equals
u, where the numbers m and u are chosen in accordance with the natural re-
strictions u < m, t — u < n — m. For every possible m-vector e;, compute the

46

3.3 Hard-decision decoding

3.3.1 General remarks

Let C be an [n, k,d] g-ary linear code. We are interested in complete minimum
distance decoding in E7 with respect to C', i.e., a mapping that given a vector
y € By finds (one of) the closest codeword(s) in C'. Consider a partition of £Y
into Voronoi regions D(¢), where

D(c) = {= € E} |dist(z,c) < dist(z,¢'), ¢ # c}.

Thus, some points of Ey may be contained in several regions. The decoding
problem is given a vector y to find in which region it is contained. An obvious
way to do this is to inspect all ¢* codewords. The time complexity of this is
O(ng"*). Another way is to keep the table of 4" ~* syndromes and the correspond-
ing coset leaders. Let H be the parity-check matrix of C. Syndrome decoding
of y is accomplished by computing the syndrome s = Hy” and subtracting the
corresponding coset leader e from y. The space complexity of this is O(nq”_k).
Another implementation of syndrome decoding with the same space complexity
suggests constructing a code trellis. This version 1s discussed in Chapter xx
(Vardy), and in Section 3.4.1.

By Theorem 3.4, for most long codes inspecting all error patterns of weight
< do[n, k] + o(n) is sufficient for complete decoding. However, the following
lemma ensures a very good performance of such decoding even for codes of
finite length.

The transmission model that we consider is a g-ary symmetric channel, in
which the error patterns are distributed binomially. Let B be the set (maybe
not unique) of ¢"~* most probable error vectors. By definition, B C {e €
B lwt(e) < do}.

Lemma 3.9 (Evseev lemma) Bounded distance decoding in the sphere of radius
do at most doubles the error probability p. of complete decoding.

Proof:

Let L be the set of ¢"~F coset leaders. Every error pattern e outside L

45

The last sum is maximal for ¢ = 2. It can be checked not to exceed 0.2. There-
. e, 2 . .
fore, the required probability is at most (Z)q_(k_l) , which falls exponentially

if corank B > 4 /log, (7). |

Remark 3.3 The probability klirn w(k,k — ¢) that a large square matrix over

F, has corank c falls very rapidly as c grows. The following table shows this
probability for 0 < ¢ < 5:

q c 0 1 2 3 4 5

2 2888 5776 .1284 0052 47%x 107 9.7x 1078
3 5601 4201 0197 8.7x107% 4.1x107% 2.1 x 10712
5 7603 2376 0021 6.7x 1077 8.6x107'? 4.4 x 10~'8

Variation on the above argument gives the following results.

Lemma 3.6 For almost all k x n matrices over F, the corank of every £ x m
submatriz B, 1 <{,m <k, is

k
corank B < 4 [log, (n +)

k I

Lemma 3.7 For almost all k x n matrices, every submairiz formed by k +
2log, k (cyclically) consecutive columns has rank k.

The following corollary of Lemma 3.5, which follows by (1.1), is repeatedly used
in this section.

Corollary 3.8 Let C be an [n, k] linear code. The number of codewords that
project identically on any given k-subset of N is at most

n

exp, 1/log, (k) < exp,y/Ha(k/n)log, 2. (3.3)
for almost all codes. |

3.2.1 Notes

Lemma 3.3 is due to Zyablov and Pinsker [170]. Theorem 3.4 is due to Blinovskii
[30]. He also proves in [31] that the lower estimate in Lemma 3.2 holds uniformly
for all ¢" spheres in E” and is valid for all long codes except a ¢°(")™ fraction
of them, o(n) — oo. This again implies Theorem 3.4. Barg and Dumer in
[20] prove that the upper bound in Lemma 3.2 holds uniformly for all spheres.
Lemma 3.5 is largely a folk lore. In coding literature it was mentioned in Coffey
and Goodman [42], Dumer [52], Krouk [101]. The proof in [42] uses Kolmogorov

complexity. The rank of large random matrices was also studied in Gerth [75].

44

An important consequence of this theorem 1s that for most codes, to perform
complete minimum distance decoding, we have to search for the closest code
vector in the sphere of radius do + o(n). A closer look at the proof shows that
o(n) = O(logn).

Even for codes of finite length, bounded distance decoding in the sphere of
radius dg = dg[n, k] provides nearly optimal performance. This will follow from
Lemma 3.9.

The following lemma forms a basis for information set decoding.

Lemma 3.5 Let A be a random k x n matriz over Fy, k < n, k,n — oo. For
almost all matrices, the corank of every square k x k submairiz B 1s

corank B < 4 [log, (Z)

Proof: Let us estimate the probability m(k, u) that a random k x & matrix has
rank u. Every k x k-matrix of rank u corresponds to a linear mapping that takes
Eé“ to a u-dimensional space F' that can be viewed as a subspace of E;“. The
number of subspaces is [5] = H;;g(qk —¢)/(¢* — ¢’). For every choice of the
basis in a subspace F' C Eé“' we have a different linear mapping from E;“ onto
F'. The number of bases in F' equals H;:_()l(qk — ¢7). Therefore, the number of

square matrices of order k and rank u equals H;z_ol(qk —¢)?/(q* — ¢7). Thus,

u—1 : u—1 ;
R § VAR PRIV o S|
a(k,u) = ¢ " AL Y e _—
(k. jgo(q“—qj) Z.ZHOQ“‘Z—I

u—1 ; ul(u— —9 u
vs.lhere. we have boupded .szq (7" — ¢) = g/ =DT](¢*=7 — 1) by ¢**. Es-
timating the Gaussian binomial, we obtain

u—1 qk_i 1 u—1 qu_i u—1 1
_ u(k—u) u(k—u) (1)
].__[qu—i_1<q Hqu—i_1<q H +qi_1
1=0 =0 i=1
u(k—u q 1
:q(k)q_1<1+q2_1+...).

For ¢ > 2, the constant factor here is less than 5 since the omitted terms are
always less than 1. Thus,

w(k,u) < 5q_(k_“)2.

Since there are (Z) possibilities for B, the probability that there is a submatrix
of A with corank > k — £ does not exceed

-1 -1
n —(k-u)? Y _(k-t)? —(k—u)?+(k—2)?
X () <a(p)re L

’
Y _(k—t)? —(i+1)2+1
< 5<k>q ;q .

43

Using (1.4), we deduce that the chance for Cy to have so > ¢*(q"~2%) empty
spheres is at most ¢~ . Let us restrict our attention to the remaining (1 —¢~?)
fraction of [n, kq] codes with sq < ¢"~“.

Hereafter the proof is just first-moment analysis. Tt proceeds by successively
adding cosets to Cg, C1, ... in such a manner that the fraction of empty spheres
falls and at the same time the fraction of codes under consideration remains
large. After logn steps we end up with a (1 — o(1)) fraction of [n, k] codes for
which the number of empty spheres is less than one. Thus, in these codes every
sphere contains a codeword, and w 1s an upper bound on their covering radius.

The argument builds on the fact that the average over all ® € E? fraction of
empty spheres in & 4 Cj is sg/q". Thus if we make a code Cy by augmenting Cj
with @ and taking the linear hull, the average over @ fraction of empty spheres
in it will be at most (sq/q™)? (and their average number at most s2/¢"). By
(1.4), the fraction of @ for which the number of empty spheres in C; exceeds
q°(s%/q"), is at most ¢=7. Hence for a (1 — ¢~#) fraction of vectors @, the code
C'1 has at most

s1=q"s0/q" <" " (3.1)

empty spheres. Since we can take any of codes Cjy within the (1 —¢~%) fraction
of them, we end up with a (1 — ¢=?)(1 — ¢=?) fraction of (ko + 1)-dimensional
codes C with few empty spheres.

We proceed as described basing ourselves now on this subset of codes Cf.
The recursion stops after m = log, n steps when the average over & number 5,
of empty spheres falls below one. Then by (3.1),

S = s [0 = "7 P <L (3.2)

With m = log, n, this inequality is satisfied if @ > # — 1 and holds for a
(1 —q=%)(1 — ¢=#)™ fraction of codes.

Each codeword in a linear code has the same relation to all the other words
in the code; hence, if there is one empty sphere w.r.t. C,,, there are at least ¢*
of them.

(3.2)
Prism > 1} =Pr{sm >¢"} < Prism >q¢"5m} <q "

This leaves us with a (1 —¢=*)(1 — ¢7#)™(1 — ¢=*) fraction of codes with no
empty spheres. If both a and 8 grow slowly in n, this fraction approaches 1. In
each of these [n, k| codes every sphere of radius w is not empty, i.e., contains at

least q‘(”_k); (D(q_ 1)"(1 - o(1))

codewords. By (1.9), this number is positive for large n if w = dg(1 + o(1)).

A lower bound for the covering radius follows from the fact that the ¢*
spheres around codewords must contain all ¢" points of Ei'. Then by definition,
the radius of these spheres is at least dj. |

42

linearly independent s-tuples belonging to the code equals

an(k,) = / H(q)< qmO=Fme

Taking the union bound, the probability that an 1.i. (s+ 1)-tuple of vectors
of weight < ¢ is contained in a coset is at most a,(k, s) times the total number
of (s + 1)-tuples in a sphere of radius ¢:

Lt —(1-R)ns s+1 —(1—R)ns n((s+1)Hq(bo—€)—s(1-R))
<S+1>q < (L)™' <q :

where L; is the volume of the sphere. By concavity,
Hq((SQ — 6) < Hq((SQ) — (H(II((SQ)

From this, the probability that an l.1. s-tuple of codewords is in a sphere of

radius ¢, is at most
qn((l—R)—(s+1)eH;(60))

and falls exponentially if
1-R

§> —.
- CH(II((S(J)

This implies that for most codes the sphere contains no more than ¢* words. 1

The next question that arises is which radius ¢ of the decoding sphere ensures
minimum distance decoding or a similar performance. Roughly the answer is
that one should take ¢ equal to dy = nég(R). The following result explains this
in the asymptotic setting. Tt is proved by a fine analysis of the ensemble of
random linear codes.

Theorem 3.4 The covering radius of almost all long [n, k] linear codes equals

do(l + 0(1)).

Proof: We begin with a random code Cy of dimension kg = k —log, n. Let U,
be the number of codewords of Cy in a given sphere of radius w, i.e., codewords
at a distance < w from its center. By (1.5) the probability that U, is small is
bounded as follows:

Pr{U, < EUy — a} < Pr{|Uy = EU| > a} < VarQUw.
a

Taking a = ¢*+'/2\/EU,, and using Lemma 1.1 (i), we get ¢~2* on the right-
hand side. If a sphere contains fewer than (EU,, —a) codewords, for our purposes
we call it empty (w.r.t. Cy). Thus for the average, over the choice of Cjy, number
sg of empty spheres we have

ESO S qn—2a.

41

3.2 General properties of linear codes, IT

In this section we prove three results of general interest (3.3 to 3.5), which will
be used below to reduce the complexity of decoding. Some proofs are difficult,
but to understand the decoding algorithms in the next section it is sufficient to
know the statements of the results.

A number of hard-decision decoding algorithms search for a closest vector
of C' within a sphere of a large radius around the received word. Therefore, it
is important to estimate the number of codewords in this sphere. Note that
counting the number of codewords in a sphere of radius w with center at a is
the same as counting the number of words of weight < w in the coset C'+ a of
the code C.

We begin where we stopped in Sect. 1.3. Let us formulate its last statement
as a lemma.

Lemma 3.2 The number U, of codewords of a long [n, Rn] linear code in a
sphere of radius w > éo(R)n for most codes is

g Ha(w/m)=(=R(4(1) §0(R) < ;ﬁ < q;_l
Uw = —
£ RO=o(), =l vy
q n

Remark 3.1 Taking m = log?n in (1.10), it is possible to prove that the

fraction of codes that do not satisfy this lemma decays as n=".

The proof is immediate from (1.7), (1.8) and (1.5). The following is a more
surprising result.

Lemma 3.3 Let 6 = 6o(R) be the relative GV distance for the rate R. For
almost all [n, Rn] linear codes the number of codewords in a sphere of radius t,
where t = n(éy — €), is at most

g1 =P eHy(%0)
and does not depend on n.

Remark 3.2 For 8y not too large, i.e., R not too small, H;(é0) > H,(0), and

the number of codewords is at most ¢'/¢. For ¢ = 2 this is true for R > 0.345.
(Here H)(80) = 4 Hy(x)|oms,.)

Proof: According to the remark before Lemma 3.2, we have to estimate the
number of words of weight < ¢ in a coset of C'. We shall count the number of
linearly independent (1.1.) words in a coset.

A coset (C'+ a) contains (s + 1) 1.i. words of weight < ¢ iff there are s 1.1i.
codewords contained in the sphere of radius < ¢ centered at a. Any (s + 1)-
tuple of 1.1. words in a coset gives an s-tuple of 1.1. codewords. The fraction of

40

3 Difficult Problems

In this section, we group algorithmic problems whose solutions involve a large
amount of backtracking and have exponential complexity.

The central part of the section deals with decoding. From the definitions
in Sect. 1.2 we see that complete decoding always outputs a codeword. If the
transmitted codeword was distorted by many errors, the decoder may not be
able to find the codeword, i.e., a decoding error occurs. The probability of this is
known to fall exponentially with the length n of the code. This error is inherent
to any decoding algorithm. In other words, decoding algorithms are inherently
probabilistic.

Incomplete decoding may fail to find a codeword if the received signal is
outside its domain. In this case we may pick an arbitrary codeword as the
decoding result. This event adds an algorithmic error. If the algorithmic error
rate does not exceed the inherent error rate, the overall error probability will
still have the same behaviour as that of complete decoding. The complexity,
however, may be reduced.

Algorithms that we discuss examine a list of plausible candidates for the
decoder output. Our sole concern will be that the transmitted codeword appear
in this list. If later it fails to be chosen, this is part of the inherent error event
rather than a fault of the specific decoder. Note that in practice we often do
not need to store the whole list, keeping only the most plausible candidate so
far.

3.1 Code construction

For small alphabets, the best known families of codes meet the asymptotic GV
bound. Unfortunately, the only known construction “method” is exhaustive
search.

Proposition 3.1 The complexity of constructing an [n, k] linear code meeting

the GV bound is O(n3¢™~*).

Proof: The construction is accomplished by adding columns to the parity-
check matrix so that for every i, 1 < i < n, the ith column is outside the linear
subspace spanned by any d — 2 among the first ¢ — 1 columns. |

Asymptotically good codes of polynomial construction complexity are dis-
cussed in Sect.2.1. These codes have parameters inferior to the GV bound.
Contrary to the decoding algorithms discussed below, no results “in between”
(that is, constructions with complexity higher than polynomial but lower than
exponential whose parameters are better than the bounds of Theorem 2.14) are
known.

39

of errors on each of these segments is encoded as a message in the part of the
codeword on the coordinates within 7.

Then apply the described procedure recursively to 71, /2, and so forth until
for some m both encoding and decoding on I, can be accomplished by exhaus-
tive search in polynomial time.

This solves, in principle, the original problem, but creates another one,
namely, of communicating the locations of I;,j > 1, to the decoder. This can
be done by viewing the codeword output by step 7 — 1 as an error vector and
constructing a code that corrects known errors and localized errors at the same
time. An essential property of the required codes 1s that the decoding into the
nearest codeword reconstructs both the message (which in our case carries the
location of I;) and the transmitted codeword. Tt turns out that there exist codes
with these properties and the redundancy essentially the same as in Theorem
2.25. This implies the asymptotic optimality of the resulting code. An actual
implementation of this plan requires a long and careful analysis.

Thus, both for defects and localized errors, substantially fewer check bits
than for usual errors ensure a unique recovery of the transmitted message.
Asymptotically optimal codes can be constructed, encoded, and decoded with
simple polynomial algorithms.

2.2.4 Notes

2.2.1. The construction of linear-time codes correcting erasures (Theorem 2.21)
is due to Alon et al.[7]. In [7] it is also shown that introducing a small proba-
bility of decoding error allows one to reduce the complexity to O(nlog(1/¢)/¢)
and the packet length b to O(log”(1/¢)). Codes correcting a linear fraction of
erasures with high probability and linear complexity are constructed in Luby et
al.[114]. Applications of codes correcting erasures to enhancing the throughput
of global networks operating in datagram transmission mode, mentioned in [7],
were addressed in Albanese et al.[4], Asmuth and Blakley [15], Kabatianski and
Krouk [92], McAuley [120], Rabin [132].

2.2.2. Codes for memories with defective cells were introduced by Kuznetsov
and Tsybakov [104]. In the same paper they proved Theorem 2.22. Theorems
2.23 and 2.24 are from Dumer [52].

2.2.3. Studying codes correcting localized errors was suggested by Bassalygo,
Gelfand, and Pinsker [25]. A problem complementary to correcting erasures is
decoding given the set of error values, i.e., finding error locations. This has
been studied by Roth and Seroussi [135]. Linear-time binary codes correcting
localized erasures were constructed in [20].

Another well-studied model of transmission assumes that symbols of a code-
word are arranged in a matrix and errors are confined to a prescribed number of
its rows or columns. Polynomial-time codes for this problem were suggested by
Delsarte [49], Gabidulin [68], and Roth [134], see Chapter xx (Blaum, Farrell,
van Tilborg). Asymptotically good codes correcting insertions, deletions, and
transpositions were constructed in [142].

38

segment M. However, this segment also contains some defects; therefore, some
bits of the segment M are used as parity checks of a code correcting das defects.
Finally, the number of the segment M, which consists of O(loglogn) bits, is
transmitted to the decoder using the segment L. Thus, the problem of finding
a code of length n that corrects ¢ = Tn defects is reduced to finding a code of
length n/logn that corrects the same fraction of defects. Now the induction
process can be continued until finally we reach the length logn for which we
again use an asymptotically optimal code with encoding/decoding complexity
of order poly log(n).

2.2.3 Codes correcting localized errors

Under this model, the encoder is informed about the positions of possible errors.
We discuss only the binary case.

Definition. Let ¢ be a codeword and £ C N a subset known to the encoder.
Submitting ¢ to the channel with errors localized at £ means that the received
symbols outside F are correct and symbols within £ may contain or not contain
errors. The number ¢ = |E| is called the error weight.

This model is halfway between defects and Hamming errors. The maxi-
mum number M (n,t) of messages that can be transmitted is determined by the
following theorem:.

Theorem 2.25 (Bassalygo et al.[25].)

1 2n "
< M(n,t) <

3, (}) Yizo (3
The following theorem is the main result of this part.

Theorem 2.26 (Ahlswede et al.[2].) For every ¢ > 0 and 0 < t/n < 1/2
there exists a code of length n with n(Ha(t/n) + €) check bits that corrects i
localized errors. The construction, encoding, and decoding of this code can be
implemented by sequential algorithms of complexity O(n*). |

We shall not attempt to give a proof of this theorem. Some explanations of
it may still be in order.

The construction of codes is recurrent. The idea is to successively reduce the
encoding on the length n to a number of encodings of shorter codes correcting
localized errors until finally both the encoding and decoding for each of them
can be done by exhaustive search with polynomial complexity. The decoder
of these shorter codes needs to know the number of possible errors on each of
these subsets. Therefore, we split A into consecutive segments of length én
and isolate the one, Iy, with the fewest number of possible errors. Then the
set A"\ I is split into consecutive segments of length £ = loglogn. The weight

37

except maybe a small part of these coordinates. The entire ¢ can be found from
its last ¢ bits. They are chosen as follows.

Assume that of the ¢ defects s appear in the last ¢ bits of the n-word. Fix
the corresponding s bits of ¢ to the values of the defect. The remaining ¢ — s
defects are in the check part of ¢. Choose the remaining information bits in ¢ in
such a way that these check bits except possibly e of them satisfy condition (b).
This is possible because the (t — s) x k submatrix of A corresponding to these
check bits has corank at most e (Lemma 3.6). Thus, the entire information set
is determined and we can compute the remaining check bits.

We conclude the first step by the following result.

Theorem 2.23 For almost all codes C, the encoding described uses at most

r =1+ \/nHy(t/n)log,(n —t)

check bits. The n bils read from the memory ensure a unique recovery of n — r
message bits.

Proof: The number of checks equals ¢ plus the redundancy of the e-error-
correcting BCH code of length n —¢. Since writing a into the memory with
defect Ey U Ey leaves the last ¢ bits of @ intact, they can be used to compute
the first n — ¢ checks. By condition (b), this determines the vector b up to at
most e wrong bits. Then we can decode b with code B, correcting e errors. |

Though these codes have optimal redundancy, their construction is difficult.
Therefore, in the second step one applies recursion with respect to the length.

Theorem 2.24 There exist asymptotically optimal codes with redundancy

nloglog n)

t+€o(logn

that correct t = tn defects. They can be constructed with complezity n/<.
The encoding and decoding can be tmplemented by sequential algorithms with
complezity n(log, n/e)® and nlog, n/e, respectively.

Proof (outline): First, the set A is split into segments of length roughly
n/logn. One of these segments, say M, has not more than

n

dM =T
logn

defects. On the remaining coordinates we isolate a segment, say L, of length
O(loglogn) with at most O((loglogn)t/(n — logn)) defects. Finally, the re-
maining coordinates are split into segments ¢; of length logn. Suppose d; is
the number of defects on the segment ¢;. By Theorem 2.22 we can use this
segment to transmit about (logn — d; — o(logn)) bits of the message. The de-
coder will be able to reconstruct them if it knows d;. Therefore, the numbers d;
have to be communicated to the decoder. This is done by writing them on the

36

The number ¢t = |Fq U E4| is called the weight of defect. The set of defects
may vary for different messages and becomes known to the user before each
individual encoding. A code C'is said to correct defects of weight ¢ if for any
pair (Fo, E1) of weight ¢ the message m = (my,...,my) can be encoded with
a codeword ¢ such that the vector ® read out of the memory allows a unique
recovery of m.

Let r(n,t) be the minimal redundancy of a length-n-code C' correcting ¢
defects,
r(n,t) = Crg%(n —log, |C]).

The following theorem gives bounds for codes correcting defects.

Theorem 2.22

t<r(nt)<t+ [logﬂn ((Z)Qtﬂ

Proof: Given a set of ¢ defective positions, the actual bits appearing in the
memory may take on any of the 2! values. The encoding mapping, which de-
pends on these values, has to be injective, otherwise a unique decoding would
be impossible. This implies the lower bound.

A slightly weaker upper bound will follow from Theorem 2.23 below. |
Our goal will be to present asymptotically optimal (up to the main term)
codes with simple encoding and decoding. The description consists of two steps.

First, we prove that a code of length n correcting ¢ defects can be constructed
from a random linear code and a code B correcting relatively few errors.

This step is accomplished in two stages. Let

e = /log, (’;) < \/nHs(t/n).

We begin with n —¢ — elog,(n —t) message bits and stretch them into n —¢ bits
of encoding. For this we use a binary systematic BCH code B of length n — ¢
correcting e errors. Let b= (b1,...,b,_;) be the resulting codeword.

The codeword written into the memory has the form
a=(c1+by,...,enot+bo_y,Cnsq1,...,n),

where ¢ = (e1,...,¢,) is a vector in a linear systematic code C' with generator
matrix G = [A|];], where A is a random matrix. Vector ¢ should satisfy the
following conditions:

(a), in the message part (n —t 4+ 1 <i < n),
c;=0if1€ Eyand ¢; = 1if i € Ey,
(b), in the check part (1 < i< n—t),

c;=b;ifi1€ Fgande; =1+ b; 1f 1 € EYy,

35

blocks. For this purpose we permute symbols of a codeword in Cs, changing
the contents of the blocks in a pseudo-random fashion. More specifically, take a
cb-regular graph on ny/b vertices with the expanding properties similar to those
discussed above. We make ny/b packets from ns/b blocks as follows. Number
the vertices of the graph and let (¢, u1),..., (%, up) be the edges incident to a
vertex 7. Then the jth symbol of block i is placed into packet P,;.

The proof of the following lemma will not be included.

Lemma 2.20 Fvery set T C {1,...,na/b} with |I| > k(1 + €)/cb has the fol-
lowing property:
For at least a fraction of (1 — %1?_’%) of i €{l,...,ny/b}, at least b symbols of
block i are contained in the set of packets indexed by I.

Both the described mapping and its inverse have complexity O(k). |

By combining these four lemmas, we immediately arrive at the main result
of this section.

Theorem 2.21 For a certain ¢ > 0 and any R, 0 < R < 1/(1 + 4«), there
exists an easily constructible [n, Rn] systematic q-ary code, ¢ = 2'7/Re*, such
that

(i), codewords are formed by packets of length O(¢~*) each,

(i1), the message can be recovered from any set of packets containing the total
of at least (1 + €)k g-ary symbols, and

(i1i), the complexity of both encoding and decoding is O(ne=*). |

2.2.2 Codes for memories with defective cells

In this and the next subsections we shall study transmission models under which
the encoder is informed about the actual errors in the channel. The problem is
to use this information to reduce the code redundancy.

We discuss only the binary case. Suppose that the n bits of the encoded
message are stored in memory with defective cells, which always contain 0 or 1
irrespective of what was written into them.

Definition. TLet ¢ = (c¢1,...,¢,) be a codeword and (Fy, F1) a pair of
disjoint subsets of /' known to the encoder. The word x read out of the memory
has the form (21, ..., 2,), where

¢ 1EN\(FEoUE),
xr; = 0 iEEQ,
1 icF.

Thus, writing into memory with defect (Fqo, E'1) has the effect of changing
coordinates of ¢ within Eg(F1) to 0(1) and leaving the remaining coordinates
intact.

34

the number of edges in F' does not exceed

k(v* + %(7 =7),

which should be greater than 7@%. An easy computation shows that with our
assumptions on £ and A, this would lead to a contradiction.

The overall decoding complexity is O(v€?) = O(k/€?). |

(b). In this step, we encode the r = ak check symbols (aklog, q check bits) of
a codeword of Cy with a [4r, 7] code of Theorem 2.11, which corrects fr erasures,
where f is a certain positive number. This produces a linear-complexity code
C'y correcting a linear fraction of erasures (however, much smaller than the
optimum). In the sequel we assume that ¢ < 966, i.e., o < 86 or

ka?/8 < Or.

Lemma 2.18 By encoding the check symbols of C1 we obtain a [ny = k(1 +
4a), k] q-ary systematic code Co that corrects ka’/8 erasures. The encoding
and decoding can be implemented with time complerity O(k/e) and O(k/€?),
respectively.

Proof: According to the condition before the lemma, The code recovers ka?/8
erasures in the last 4r = 4ak symbols. The same number of erasures in the first
k symbols can be corrected by the preceding lemma. |

(¢). This step serves to enhance the erasure recovery of code Cy. Let b =
4/a*. A codeword ¢ € C is split into ny /b blocks of b symbols each. Each block
is then encoded with a [cb, 5] MDS code, (1/¢) = R(1 + 4«), whose existence is
ensured by our choice of ¢ since

1 1 4 1 3 4.12¢ 1
b= — — = — — = < ——_9l034 .
¢ Rl14+4a ot R3+4+¢ ¢t <Re4 3 <4

This gives a codeword in a code Cj of length ng = cns.

Lemma 2.19 Suppose a fraction of at least (1 — élfza) blocks of a codeword
i C3 contains no fewer than b not erased symbols each. Then we can recover
the message (mq, ..., my) with time complexity O(kb). The encoding complezity

of C3 also equals O(kb).

Proof: At least the claimed fraction of blocks will be recovered due to the
properties of the MDS code. Then by the preceding lemmas, we shall be able
to correct all possible

1 a’nsy B ka?

81+4a ~ 8
erasures. The time of both encoding and decoding using a quadratic-time MDS
code is (ng/b) - O(b?) = O(kb). 1

(d). In the final step we achieve the goal of the complete message recovery
irrespective of how the claimed n — k(1 + ¢) erasures are distributed among the

33

erasures, which is the best possible erasure recovery. The major example of
MDS codes are the Reed—Solomon codes for which practical decoding methods
have complexity of order n? (faster methods are competitive only for very large
n). The aim of this section is to present a slightly less powerful coding method
for very large alphabets with linear decoding complexity.

Note that in view of Lemma 3.5, long random [n, k] codes ensure almost
optimal erasure recovery. Namely, a codeword can be reconstructed with high
probability from any k(14 o(1)) of its symbols. However, this requires inversion

of k x k matrices and has complexity greater than order n2.

Let € < 1 be a fixed constant and suppose k = nR. We shall construct g-ary
systematic [n, k] codes, ¢ = 2'7/(Re*), with the property that the codeword is
partitioned into packets of a certain length b and the decoder can recover the
entire message from any set of packets that in total contain k(1 + €) unerased
symbols. The decoding complexity is O(ne~*). The construction is based on
two ingredients, explicit families of expanding graphs (Lubotzky et al. [113],
Margulis [118]) and linear-time codes of Theorem 2.11, which also make use of
these graphs. It is accomplished in several steps.

(a). Let @ = €/12. The goal of this step is to present systematic codes
correcting erasures in the message part. Let mq, ..., my be the message symbols.

Lemma 2.17 There ezists an easily constructible [ny = k(1 + «), k] q-ary sys-
tematic code Cy that corrects ka?/8 erasures in the message part. The encoding
and decoding can be implemented by sequential algorithms with time complexity

O(k/e) and O(k/e?), respectively.

Proof: Fix an integer ¢, 64/a? < ¢ < 128/a?, and take an f-regular graph
G on v = 2k/L vertices whose second largest eigenvalue has absolute value A.
By [113], [118], there exist families of such graphs with A = 24/¢ — 1. Message
symbols will be identified with the edges of G.

Let C be a g-ary systematic [((1 4 §),¢] MDS code'. Let my 1,...,muy
be the symbols incident with a vertex u. Encode these symbols with € using
£-al/2 = O(L/c) time units and repeat this independently for all vertices u of
G. Any vertex gives rise to £(1+ %) symbols, £ message symbols and %af check
symbols. Every message symbol is associated with 2 vertices. Thus, the total
number of symbols is v(% + %”) = k(1 4 «), as claimed. The overall encoding
time is O(vf/e) = O(k/e). The resulting string forms a codeword of C.

Clearly, any af/2 = dist (€) — 1 erasures in the message part of a codeword
of € can be recovered from the remaining part of the codeword. Therefore, to
decode in (1, we successively inspect vertices of G and, having found a vertex
with at most af/2 edges incident with it erased, recover them. This is repeated
until there are no more vertices with < af/2 adjacent erasures left. If at the
end some erasures are not corrected, this means that there is a subgraph F' of
G with minimum degree greater than «f/2 all of whose edges correspond to
erasures. Let the number of vertices of F' be yv; then Lemma 2.8 implies that

1Such a code exists since £ < q.

32

[157]. This book also gives tables of the bounds for ¢ = 2,4, 16, 64,256, and lists
the asymptotic behaviour of these and many other bounds in coding theory for
§—0and é —1—(1/q).

Heuristic algorithms of constructing good short codes are addressed in Honkala
and Ostergard [83].

2.1.3. Theorem 2.15 is a rephrasing of a result by Simonis [145]. Finding
a basis formed by minimum-weight codewords seems to be a difficult problem.
A related algorithmic problem of finding a basis with a minimal total weight of
all vectors in it was studied by Chickering et al. [40], Horton [85]. Theorem
2.16 is due to Gelfand et al. [74]. In an earlier related work [73] Gelfand and
Dobrushin proved that there are codes for which the encoding circuit has size

O(nlogn) and depth O(logn).

2.2 Other models of noise

We intend to take a brief look at codes correcting other types of errors. Of
numerous models of noise we chose to treat codes correcting erasures, localized
errors, and codes for defective memory cells. In each case it is assumed that the
part of the codeword affected by noise has size that grows linearly in n. We give
bounds on the size of codes and outline polynomial-time constructions. The
construction of erasure-correcting codes requires a large alphabet size. In the
last two parts we treat only binary codes.

Note that in principle we are interested in recovering symbols of the message
rather than the transmitted codeword. This plays no role for codes correcting
Hamming errors but becomes important for codes correcting errors of other
types.

The main idea behind the constructions is actually the same. Tt suggests
reducing the encoding on the length n to encoding on a growing number of
intervals of smaller length.

2.2.1 Codes correcting erasures

In this section we assume familiarity with regular-graph codes of Section 2.1.1,
particularly, Theorem 2.11. The problem is, given a part of the codeword with
some symbols missing, to reconstruct the transmitted message. In practical
situations, a received symbol is declared erased if the a posteriori probability for
all letters of the code alphabet i1s roughly the same, so no reasonable decision
can be taken. Another practical setting for this problem is transmitting the
message over a global network dividing it into a number of relatively short
packets. Different groups of packets may take different routes and in general
the overall delay of the message may be difficult to control. However, if packets
correspond to groups of symbols of a codeword, then treating a part of them as
erasures enables the receiving party to reduce the average decoding delay.
First, let C' be a g-ary [n, k, d] linear MDS code. Then every k x k submatrix
of its generator matrix is nonsingular. This implies that C' corrects any n — k

31

Lemma 2.6 is also from [147], though our proof is simpler. As remarked in [147],
it is possible to concatenate codes from Theorem 2.10 with short codes meeting
the GV bound to obtain linear time decodable asymptotically good codes. This
idea is the same as discussed in Theorem 2.14(a) and Remark 2.4(i). For the
spectral theory of expanders see Chung [39]. The complexity of encoding for
expander codes is studied in [105].

Asymptotically good codes of rate 1/4 with linear-time encoding and decod-
ing in Theorem 2.11 were constructed by Spielman [150].

Decoding with error-correcting pairs in its general form it has been formu-
lated by Pellikaan [127]. For short cyclic codes error-correcting pairs were found
by Duursma and Kotter [56]. They list error-correcting pairs for all cyclic codes
of length up to 63. For all but four of these codes the constructed pairs provide
decoding up to their frue minimum distance. Examples 2.2,2.3 are also bor-
rowed from [56]. This paper also discusses relations to the Berlekamp—Massey
algorithm and its generalizations.

2.1.2. Theorem 2.14 is a summary of developments that took place in coding
theory during the last 30 years. Forney’s discovery of concatenated codes led to
the Zyablov bound in part (a). The complexity of constructing codes meeting
this bound is not uniform in the parameters of the code (the degree of the
polynomial grows as é approaches 1 — (1/¢q)). Justesen’s codes have uniform
construction complexity of order n? but are inferior to the Zyablov bound for
large values of 6. The last statement of part (a) was proved by Shen [139]. He
used the Justesen construction with code A constructed from a Hermitian curve
rather than a Reed—Solomon code. This accounts for codes meeting the Zyablov
bound for large 8, and the whole result follows by combining this fact and the
classical Justesen bound.

Alon et al. in [5] use expanders to improve the Zyablov bound for very low
code rates for arbitrary q. For ¢ = 2 the improvement holds for R < 2-10~°
(6 > 0.4991). The complexity of their construction is uniform in 6. Apart
from this, the bound by Sugiyama et al.in (2.10) is the best known result for
uniformly polynomial nonbinary codes. This has been achieved by replacing the
Reed-Solomon code A by a longer code that is inferior to the Singleton bound.

The last two parts of this theorem are related to codes from algebraic curves.
A very detailed discussion of these results is carried out in the monograph by
Tsfasman and Vladut [157]. In particular, a polynomial-time construction of
codes in part (¢) (due to V1adut [162]) is given in Chapter 4.3 of that book. The
order n3? has been recently reduced to n'7 in Lopéz Jiménez [112]. At the time
of writing this there is ongoing research towards reducing this complexity to n?
or n® (see Voss and Hgholdt [163]). Part (d) simply uses these codes in the
standard concatenated construction (2.7). To compute a lower estimate of this
bound, one takes a number of good binary linear codes. This gives a number of
points. Gaps between them are filled by shortening or puncturing, The bound
in part (d) can be further improved by using multilevel concatenations, but
this has never been done because of apparently little interest. The best known
bounds for asymptotically good polynomially decodable codes are also found in

30

Theorem 2.15 If there is an [n, k,d] binary linear code C, then there also is
an [n, k,d] binary linear code C' that can be encoded with kd additions.

Proof: We shall bound the number of nonzero entries in the generator matrix
G of C'. Let M be a maximal set of independent vectors of weight d in C' and
suppose M| < k. Pick a code vector a outside span(M) of lowest weight,
say w, and extend the set {M,a} to a basis B of C. Now change a into
a vector a’ of weight d by changing any of its w — d coordinates into zeros.
The new set, B', generates a code C’ with distance d since M is unaltered
and the vectors in C' \ span(M) have changed in at most w — d coordinates.
The dimension of C’ is k since otherwise the vector a’ would be spanned by
B’ \ a. Since the weight of both a’ and @ — a’ is less than w, they would
be spanned by M and so would be their sum, a, a contradiction. Thus, we
have constructed a new code with the same parameters, whose maximal set of
independent minimal-weight vectors is one greater than that of C'. By induction
we conclude that there exists a code C’ with the same parameters as C' generated
by vectors of weight d. The number of additions to encode it is not more than
n x (# nonzero entries in a column of G) = kd. |

Note that this theorem also gives a way of constructing C’ given C'. A way
to do encoding even more economically is related to the fact that when we
compute different symbols of the codeword independently, one and the same
addition is sometimes performed several times. The following theorem, stated
here without proof, guarantees the existence of good codes with a very simple
encoding circuit.

Theorem 2.16 There exist codes meeting the GV bound that can be encoded
with a circuit of both size and depth O(n). |

The proof involves constructing a special ensemble of linear codes. Note that av-
eraging over the ensemble of all linear codes gives complexity of order n2/log” n.

2.1.4 Notes

2.1.1. Low-density parity-check codes were introduced by Gallager [69]. He
studied the error probability of maximum likelihood decoding and the minimum
distance of these codes. In [69] Gallager also suggested a sequential decoding al-
gorithm of 1.-d.p.-c. codes but stopped short of estimating the number of errors
corrected by it. Zyablov and Pinsker [169] introduced the “iterated majority
voting” decoding technique and studied its performance for the random ensem-
ble of 1.-d.p.-c. codes. Theorem 2.2 has been proved by Kovalev [99]. The
construction of codes from bipartite graphs is due to Tanner [155]. Margulis
also used graphs and bipartite graphs with expanding properties to construct
codes, see [116] and [117], respectively. However, their analysis relied on the
girth (length of the shortest cycle) of graphs, which proves insufficient to secure
asymptotically good behaviour.

The analysis of regular graph codes, including Algorithm 2.3 and Theorem
2.10 is by Sipser and Spielman [147]. The bound on the level of expansion in

29

b=y
—
N

d [
e \\
&\
0.1 0.2 0.3 0./4 0/5 —

1)

Figure 2.4: Lower bounds for polynomially constructible binary codes: (a)

Bound (2.9), (b) Rpz, (¢) Rz, (d) Ry, (¢) Bound (2.10); (f) GV bound.

This is better that the Justesen bound (but worse than the Zyablov bound) for
large 6. We collect the bounds in Fig. 2.4 (¢ = 2).
(73) For any fized s, there exists a family of codes (concatenations of order

s), whose parameters lie above the Zyablov bound but below the bound in part
(b) of the theorem. The function in part (b) is called the Blokh—Zyablov bound.

(7i7) For q > 49 there exists an interval of values of é on which the bound
in part (c¢) is better than the GV bound. However, the construction complexity
is still very high and the algorithm can be only nominally regarded as easy.
The bound in part (d) is better than the Blokh—Zyablov bound for all 0 < 6 <
1—(1/q) for any ¢ > 2. |

Concatenated codes form a subject of Chapter xx (Dumer). The reader is
referred to this chapter for an extensive discussion of this concept as well as for
the proof of parts (a) and (b) of the theorem. For codes from algebraic curves
see Chapter xx (Hoeholdt et al.).

2.1.3 Encoding complexity

The following simple result bounds the encoding complexity of binary linear
codes.

28

and construction complezity O(n23/(1_H‘1(5))),

(¢) (codes from algebraic curves) Let q be an even power of a prime. It is
posstble to construct a family of codes C' with

R=1-6—(yg— 1)
The time complexity of this construction is O(n3").

(d) (concatenations with codes from algebraic curves) There exist codes C
with

R:max{(l—(qlﬂ—l)_l)%—gé} (2.9)

where the mazimum is taken over all g-ary linear [m, ¢, d] codes such that ¢* is
a square. The construction complexity of the codes is O(n3"). |

Remark 2.4 (i) In part (a) we have combined two code constructions, which
have complexity estimates given as the two cases for y(u). From the statement
we see that there exist g-ary linear codes with

)
F2 = 2%, (= Fa) (1 7).
This expression is usually called the Zyablov lower bound. The construction
complexity of these codes is given as the first case of part (a). A certain dissat-
isfaction caused by this result is that the construction complexity is very high
for large code distance (low rate). The complexity is greater than order n? if the
maximum in the expression for Ry is attained for u > Hq_1(2/3). For instance,
for ¢ = 2 this happens for 0.1 < § < 0.5.
Another version of the concatenated construction, called Justesen’s codes,
has construction complexity bounded uniformly in é. The achieved code rate
behaves as

6
s= max (= H)(1-3).

The construction complexity of these codes in O(n?). This gives the second
condition on v(u) in part (a) of the theorem. This bound is inferior to the
Zyablov bound when the maximum in the expression for Rj is attained for
u > 8p(1/2). For & > 63(1/2) the function Ry is negative and hence the Justesen
bound is vacuous. The construction complexity of the Justesen codes is less or
equal than that of the Zyablov codes. However, for ¢ = 2 these complexities are
equal for 0 < 6 < 0.1 and for § > 8g(1/2) = 0.11 Justesen codes do not exist.
Moreover, in the interval 0.1 < § < 0.11 their parameters are inferior to the
Zyablov bound. Hence in the binary case the latter codes are uniformly better.

Both constructions use a Reed—Solomon code as code A in (2.7).
Still another version is due to Sugiyama et al.[154]. This paper gives con-
catenated codes with uniform construction complexity of order n? that meet

the bound
R = max (l—[—@(u))(l—%(l—{—]n %)) (2.10)

 5<u<i—(1/q)

27

it is possible to notably improve the guaranteed error correction of the codes.
The major steps that account for the improvement of the bounds, have been

e construction of Reed-Solomon codes with simple decoding;

e concatenations and multilevel concatenations of codes;

e the discovery of asymptotically good codes from algebraic curves;

e the discovery of a simple decoding algorithm for codes from plane curves.

Definition. Let Q = ¢° and suppose A : Eg — Ej and B : Ef — BT are
two linear codes. A linear concatenated code C, sometimes denoted A ¥ B, is
defined as the image of the mapping

A n n B MmN ¢
Efy = E} — (EH)" — (E7)". (2.7)

The basic idea is to combine a very good short code B and a long Q-ary code
A to come up with a family of asymptotically good codes C'. The construction
complexity of good long codes over large alphabets is polynomial in their length
n. Therefore, if we choose the parameters so that the overall length nm is
dominated by the quantity n, the complexity of its construction/decoding will
also be polynomial.

Unfortunately, the derivation of the bounds involves many interlaced argu-
ments and the whole picture seems far from being definitive. For referential
purposes, we shall quote the bounds in the theorem that follows. The bounds
are compared in the remarks after it. Some comments and references appear in
the notes following this section. A comprehensive account of these and other
results related to multilevel codes is given in Chapter xx (Dumer).

Theorem 2.14 Let C be a family of q-ary linear codes with parameters [n, k, d)
.k . d
such that lim — = R and lim — =§.

n—o00 N n—oon
(a) (concatenated codes) Let u be such that § < u < 1— %. There erist codes
C with

R= (1~ Hy(u)(1- ﬁ). (2.8)

u

The codes can be constructed by a sequential algorithm with time complexily

O(n"W), where
1
o= U=
2, §<u<éo(1/2).

—1),2}, f<u<l-1

For q = 2 codes meeting the bound (2.8) can be constructed with time complezity
O(n?) for any u.

(b) (multilevel concatenations) Let s — co. There exist codes C' with
1-Hg(6)
RBzzl—Hq((S)—(S/ du/éo(u)
0

26

We have dim U = 3, dist U = 5, dist V1 = 3; therefore, conditions (2.2)-(2.5) are
satisfied. Suppose the received vector is y = ¢+ e = (1411211). Computing the
matrix S(y) = GvY G, we arrive at the following system of linear equations:

40 5\ (™
ms =0.
0 5 4
ms
Solutions to this system include, for instance, m; = (421) and my = (214).
They yield two error-locating vectors, u; = m Gy = (4055043) and uy =
myGy = (2066025). Suppose we want to use 4 to find e and e¢. Denote by

a1, as, az the message symbols of ¢, unknown to the decoder. To find them, we
form a system (y — (a1, as,a3)G¢) *uy = 0. This yields the equations

a) = 1,

a; +as+az =1,

a1+ 3az =1,
whence we finally get (a1azas) = (100). The corresponding code vector is
¢ = (1111111) and the error vector is e = (0300100). |

Example 2.3 Let C be a binary cyclic code of length n not divisible by 3 with
locator field K = F4'. Suppose C' has zeros a,(1/a), where a is a generating
element of K. Then the distance of C' is known to be 5 (for instance, [n =
22m=1 _ 1 n — 2m,5] Melas codes or [22™ + 1,n — 4m, 5] Zetterberg codes,
m > 2). Let U and V be two cyclic codes with generator matrices

[D R) \ -
Gy = la3a32. . . g 301 Gy = ? a_ z_z _ -
lata=2.. a1
1 a® a2 ... a?0=D
Conditions (2.2)-(2.5) are checked immediately. |

Decoding with error-correcting pairs is an outgrowth of decoding algorithms
for codes from algebraic curves and the classical BCH decoding. Not every code
has an error-correcting pair as is shown by the following theorem, cited without
proof.

Theorem 2.13 (Pellikaan [128]) An [n,n — 4,5] code over ¥y has a 2-error-
correcting pair over a finite extension of ¥, if and only if it is an extended
generalized Reed-Solomon code. |

2.1.2 Construction complexity

So far we have considered asymptotically good codes with very low construction
and decoding complexity. By passing from this to polynomials of larger degrees

25

The vector uw = mGy locates the nonzero coordinates of e : e; # 0 implies
u; = 0. Moreover, the condition e xu = 0 determines e in a unique fashion.

Proof: Put u = mGy and rewrite Eq. (2.6) as

(y,u *v) (22) (e,u*xv)=0.

Hence any vector w with u * e = 0 yields a solution to (2.6). By (2.3), there is
a nonzero solution w. Again rewrite the last equation as 0 = (e *u, v) implying
exu € V1. Then by (2.4), u; = 0 whenever ¢; # 0. This proves the first part
of the theorem.

To prove uniqueness, suppose that y = e + ¢1 = e3 + ¢2 with €1 xu =
ey *u = (. This would imply that ¢s —¢; = e1 —es € C and

(e1 —e3)*xu =0.

This implies that supp (e1 — e2) Nsupp (u) = @, whence by (2.5) e; —es = 0. I

Observe that conditions (2.2)-(2.4) are sufficient to locate the errors with the
help of the vector u. Therefore, a pair of codes (U, V) satisfying these three
conditions is called an error-locating pair for the code C'. If it also satisfies (2.5),
it is called an error-correcting pair. Note that codes U and V may be defined
over an extension field of F,.

The actual decoding, i.e., finding the error vector e given y and an error-
correcting pair amounts to (1) solving the system of linear equations (2.6) which
gives a nonzero locator vector u = mGy, and (2) solving a system

exu=(y—c)*xu=>0

with respect to the unknown message symbols of the code vector ¢. The com-
plexity obviously does not exceed O(n?). If codes U and V are defined over
F,=, the complexity is O((nm)?).

The most important application of this technique is decoding cyclic codes
up to the true distance.

Example 2.2 Let C be an extended RS code over F7 with parity-check and
generator matrices given by

and minimum distance d = 2t + 1 = 5. Define codes U and V by generator
matrices

24

random low-density parity-check codes are known to possess very good error-
correcting properties. This belief was further confirmed by experiments carried
out in [147], in which codes of length 40000 and rate 1/2 constructed from ran-
domly chosen graphs corrected 1720 random errors with a very high probability.
The GV bound for this length guarantees the correction of 2200 errors.

We have seen in the proof of Lemma 2.9 that one decoding round removes a
constant fraction of errors. This can be used to construct asymptotically good
binary codes with linear decoding complexity. The construction is multistage
and applies regular-graph codes codes to recursively encode parts of the code-
word. To give full details would take us too long. Let us formulate the main
result.

Theorem 2.11 (Spielman [150]) There exists a polynomial-time constructible
family of binary codes of rate 1/4 that can correct any ¢ < 4-10~7 fraction
of errors. Both encoding and decoding of these codes have complezity O(n). A
parallel implementation requires a circuit of size O(n) and depth O(logn) for
encoding and a circuit of size O(nlogn) and depth O(logn) for decoding.

In the next section we shall see an application of this result to the construction
of low-complexity codes correcting erasures.

ERROR-CORRECTING PATRS

We end this part by discussing a general decoding technique applicable to any
[n,k,d] linear code C. We are interested in the bounded distance decoding
of up to t = |(d — 1)/2] errors. The decoding algorithm of Theorem 2.12
has complexity of order O(n®). However, to build the algorithm one needs to
perform much preprocessing work and though this technique is shown to be
applicable to many short codes, given an arbitrary linear code, it is not at all
clear whether it has an error-correcting pair..

For any two vectors u and v let wxv = (uyv1, ..., unvy,) be their component-
wise product. Suppose U and V are two linear codes that satisfy the following
conditions

UxvV c Cc* (2.2)
dmU > t (2.3)
distVt > ¢ (2.4)
distC' +distU > n. (2.5)

Let y be at a distance at most ¢ from C, say y = ¢+ e, wt (e) < ¢t. Form an
n x n diagonal matrix Y = [y;6;;].

Theorem 2.12 Let Gy and Gy be generator matrices for U and V. There
exists a vector m € Eg'mU, m # 0, such that

(GvYGEH)ymT = 0. (2.6)

23

Let us compute the parameters of the code C'. As remarked above, its rate
is at least R = 2r — 1 = 1 — 2H(f). The distance of C' is easily estimated
from Remark 2.3(i¢). Indeed, take a set M of an 2-regular vertices in V5. The
set L of its neighbors in V] has size at least yv; hence the average number of
neighbors of a vertex in L is no fewer than 2an/yv. Recalling that n = fv/2,

we obtain o /0 2) \

2an v(y + v =7 .

—_— = = f(—(1—)

o o 7+ (1=7)
This number cannot be smaller than the minimum distance of €. Thus if ¥ is
such that

(v + MO =7)) <8,
ie, vy < (B—=(N0)/(1—=(A/L)), the code C does not contain a vector of weight

an. Since a > 72, we conclude that

A

[)) _ 7N\ 2
(Y
1-2
L
i.e., & is close to 2. This gives for the parameters (R, &) of C,, the bound

R=1- QHZ(\/E) and the estimate né/48 for the error-correction capacity of
Ch.

1
RO.S
0.6
a b
0.4
0.2
0.1 0.2 0.3 0.4 0.5

1)

Figure 2.3: (a) Bound for asymptotically good codes from Theorem 2.10, (b)
GV bound.

Thus, for codes C,, we have R > 0 for 0 < § < 0.0121. The bound from this
theorem is shown in Fig.2.3 together with the GV bound.

Note that the guaranteed error correction of codes in Theorem 2.10 is much
smaller than that of random codes in Theorem 2.3. However, generally, long

22

decoding round. By Remark 2.3(7), the number of such errors (vertices) is not

more than
(57 +()3)

. . . . 3
A decoding round adds errors if there exists a subset X; with | X;NE| > Zﬁ/

This again happens for at most QTn/(%d) subsets. Each of them is responsible
for not more than d/4 false alarms, which makes a total of at most 2nr/3
miscorrections. Thus after one decoding round the number of remaining errors

is not greater than n (%7—4- (4ﬁ_")2 + %%) . Let us compute the difference between

the number of errors before and after one decoding round:

2 (47)2 (47) A 1 4\Xx 167
nlr—-r—(—=) —(=)=]=nr||l-=-=|--—=|.
3 g gL 3.p)t B
If 7 satisfies the assumption of the lemma, this is positive, which proves our
claim. |
To construct an infinite family of good codes we need an explicit family of

graphs G, for which the quotient A\/¢ vanishes as v grows. Such families were
discovered in Lubotzky et al.[113], Margulis [118].

Theorem 2.10 There exists an easily constructible family of binary linear codes
Cyn of length n, of minimum distance arbitrarily close to né and rate R =
1 - QHQ(\/E) for which Algorithm 2.3 corrects up to né/48 errors in O(logn)
rounds. The decoding circuit has depth O(logn) and size O(nlogn). The time
complezity of its sequential implementation is O(nlogn).

Proof: Let C), be a regular-graph code C(G, €), where G is an f-regular graph

with n edges and C an [{, rf, 3f] binary linear code. Suppose we want to correct

aT= % — ¢ fraction of errors. Let us show that we can choose G and € so that
this is possible and compute the parameters of the code C,.

Choose £ so that %% < €. This is possible since in the construction of ex-
pander graphs that we are going to use, A is known to behave as 2v//. From the
previous lemma we know that one parallel decoding round applied on the code
C', removes a constant fraction of errors, and thus, O(log n) rounds are sufficient
to correct any error of weight 7n. Since £ is a constant, we can allow ourselves
to choose a code € of length ¢ whose rate r and relative distance G satisfy the
GV bound r = 1 — Hy(). The complexity of its decoding does not grow with
n. Thus the decoding circuit has depth O(logn) and size O(nlogn). The com-
plexity of a sequential implementation of the algorithm equals the complexity
of each round times the number of rounds, i.e., O(nlogn).

Note that by our choice of the code C, its relative distance £ is a much
larger fraction than A/f & 2/+/¢. Therefore, the condition of Lemma 2.9 is not
vacuous.

21

Lemma 2.8 (Alon—Chung [6].) Suppose all eigenvalues of G other than £ have
absolute values at most X. Then the number of edges in a subgraph of G induced
by a subset F of vertices of size yv is at most an, o = v? + %(7 —~2). |

Remark 2.3 (¢) The degree of every vertex in V3 is 2. Therefore, this lemma
gives a bound on the number of vertices in V5 for which both edges incident
with them have their other ends in F.

(7i) This lemma also implies that any subset of an 2-regular vertices in
V5 has at least yv neighbors in Vi, i.e., that T is an (2,4, &, yv/an)-expander.
Indeed, suppose a set M of an 2-regular vertices has few, say ev, neighbors,
€ < 4. Denote the set of these neighbors by L. Take any vertex in V5 outside
M, add it to M and add its two neighbors to L. Continue in this manner until
the size of I achieves yn. Then the number of neighbors of I connected to L
by both edges violates the bound in Lemma 2.8. |

In the following lemma we prove that if the number of errors is relatively
small, one decoding round of Algorithm 2.3 reduces the weight of error in the
received vector by a constant factor. The proof goes along the lines of the proof
of Theorem 2.4.

Lemma 2.9 Let G be an (-regular graph on v vertices such that all its eigen-
values other than £ have absolute values at most A, T its edge-vertex incidence
graph, and C a linear [£,m,d = pf] code. Suppose y is a received vector,
c € C(G,C) is the code vector closest to y and dist (¢,y) < Tn, where
g2 B

TS®mTar
Then after one parallel decoding round the distance dist(¢,y) is reduced by a
constant factor.

Proof: Let e be the error vector of weight 7n and let € = supp (e), € C V5. Fix
a coordinate e € € and let e; be the part of the ith column of H contained in the
rows from the subset X;. If this part is not all-zero, we say that e intersects X;
and that X; and € have a common coordinate. Any coordinate e € € intersects
two subsets, X; and X, say. A decoding round removes some of the errors,
failing to notice the remaining ones, and adds some errors. It will fail to correct
an error e if both X3 and X5 have more than d/4 common coordinates with €.
The inequality | X; N &] > d/4 will hold for at most

21E] 4r
= = —
rC
subsets X;. This collection of subsets corresponds to a group F of f-regular

vertices in V;. Every 2-regular vertex in € for which both edges incident with
it have their other ends in F', corresponds to an error not corrected after one

20

€, €, 8; €,6, €,6,65€

—
a, a, a;a,a; a4
r
G

1 01 00 00 0 01
100100000
1000300000
a1 01100000 0 1T 1T 000000
as 110010000 01000100 O
a3 011001000 H=|g70v 0T 00T 00
as 000100101 0001 00UO0O0 1
as 000010110 0000 1T 0100
ac 000001011 000O0T1TTO0GO0T1D0
0 00001010
Lo 0000100 1.

Figure 2.2: Codes from regular graphs

that this definition also gives us a way to construct codes from arbitrary regular
bipartite graphs. For instance, if T' is an (¢, h)-regular bipartite graph with the
parts of size v and n = (¢/h)v, then the corresponding code has length n and
rate at least b — (h —1).

Knowing the eigenvalues of GG one can estimate the expansion level of T.
Combining this with the fact that every error affects only two blocks of £ — m
checks in H, it is not difficult to estimate the error correction of C(G,€). In
total, there are v blocks of checks, each involving £ coordinates of the received
vector. Denote these subsets of coordinates by X;, 1 <i < w.

Example 2.1 Let G be a 3-regular graph on v = 6 vertices and C a [3, 1, 3] code

with the parity-check matrix H = [%(1)(1)] . Figure 2.2 shows the construction

of the parity-check matrix H of C(G, €) from the incidence matrix of G. The six
sets X; are formed by subsets of edges incident with a; in G: X1 = {1,3,4}, Xy =
{1,2,5}, etc. Thus, a subset X; is determined by vertex a;. |

Let G be an f-regular graph on v vertices and T' its edge-vertex incidence
graph. T has the vertex set Vi U Vs, |Vi| = v, |[Va] = n = vf/2.

19

Proof: Let U C V2 be a subset of vertices of size an. The probability that
a vertex in Vq is connected to a given subset U C Vi of size an is at least
1—(1-a) |

To present an explicit family, let us modify the code construction. The idea
of this modification is as follows. In low-density parity-check codes we wanted
that each group of ¢ coordinates corresponding to ones in check equations satisfy
an overall parity check. In the following definition we require that each group
of £ coordinates satisfies check equations of a certain binary code.

Definition. (Regular-graph codes) Let H be a parity-check matrix of a
binary C[¢, m, 8¢] code and A the v x n vertices vs. edges incidence matrix of
an f-regular graph G with v vertices and n edges. The parity-check matrix H
of the regular-graph code C(G, €) is obtained by replacing the ith row in A by
its £ — m copies and then replacing the £ all-one columns in these £ — m rows
by ¢ columns of H, 1 < i < w.

The code C(G, €) has length n and rate at least 27 — 1. If € has parameters
[£,£ — 1,2], then these codes form a subclass of low-density parity-check codes
with h = 2.

Regular-graph codes can be decoded by the following algorithm, which will
be shown to correct a linear fraction of errors.

Algorithm 2.3: Parallel decoding

e In parallel, for each of the v subsets, if the current setting of
coordinates is within distance 8£/4 of a codeword of €, mark all the
coordinates that should be flipped to obtain this codeword. Invert
the marked coordinates.

e Repeat O(logn) times.

We remark that the qualitative properties of the algorithm do not change if
we replace 1/4 with another fraction of S¢.

Our plan is to begin with explicit constructions of regular graphs that have
the expanding property, meaning that every subset of vertices of a given size has
“many” neighbors, i.e., vertices outside this set adjacent to a vertex in it. One
practical way to prove that a graph has the expanding property is to bound from
above the number of edges with both ends inside any given subset of vertices of
fixed size. This gives a lower bound on the number of neighbors in this subset.

Instead of working directly with the incidence matrix A of a given regular
graph G(V, E), we shall relate a bipartite graph T to it by associating V and F
with the two parts of T.

Definition. Let G(V, E) be a graph. Its edge-vertez incidence graph I' is a
bipartite graph with the vertex set V U E. Two vertices u € V and e € £ are
connected if u is incident with e in G.

The relevance of this definition will follow from Remark 2.3(i7) below. Note

18

A to be the parity-check matrix of a code, which in this case is denoted C(G).
The rate of C(G)is R>1— h/L.

Lemma 2.6 Suppose every group of e < a = an h-regular vertices has at least
(2 + €)he neighbors, € > 0. Then Algorithm 2.1 applied to C(G) corrects an/2

ETTOTS.

The key property of GG is that any not too large subset of h-regular vertices
has not too few neighbors. Generally, a bipartite graph is called an (¢, h, &, 7)-
expander if every set U C Vi of at most an « fraction of h-regular vertices has
at least v|U| neighbors:

Ul <an = |{u' € Vs : Jyev such that (u,u’) € E}| > y|U]|.

Proof of Lemma 2.6: We shall prove that choosing G with the claimed ex-
pansion ensures e < eg. Indeed, the total number of checks containing errors
equals the weight wt (s) of the syndrome plus the number, «, of satisfied checks
that contain errors. By the assumption of the lemma,

wt(s) +z > (3/4)he.

Every unsatisfied check contains at least one error. Every satisfied check with
an error connects at least two errors. Hence

wt (8) + 2z < he.

These two inequalities imply wt (s) > eh/2. Since this argument holds for any
error vector of weight up to e, we conclude that ¢ < e¢q by the definition of eq. I
Note that this lemma corresponds to simply choosing the graph so that w,(e)
is (almost) equal to eh/2. Unfortunately, the level of expansion required in it
is by far greater than that of the known explicit constructions, though on the
average random bipartite graphs probably have a good expansion. To choose
a random (£, h)-regular graph one can choose a random matching between two
sets of nh vertices and then glue together consecutive sets of h vertices in one
set to get n h-regular vertices and glue together consecutive sets of £ vertices
in the other set to get nh/f f-regular vertices. Occasional multiple edges are
discarded. Averaging over this ensemble, we get the following theorem.

Proposition 2.7 Let G = (V1UVa, F) be a randomly chosen (£, h)-regular graph
with |Vi| = nh/t and |Va| = n. Then for all0 < a < 1, a set of an vertices in
Vo will, on the average, have at least

h ¢
nz(l—(l—a))

neighbors.

17

A coordinate, say i, appears in h checks. Every such check involves /—1 other
coordinates. Let us call these coordinates connected with the ith coordinate.
Flipping the ith coordinate changes the value of A checks and affects at most
h(£—1) other coordinates connected with it. Suppose that before this flipping
they all were contained in more than h/2 unsatisfied checks and should have
been inverted during the current decoding round. Suppose also that inverting
the i¢th coordinate changes their status so that inverting them does not reduce
the weight of the syndrome, and the algorithm leaves them unchanged. Thus,
if we mark all the coordinates that need inverting during the current round, a
single flipping can remove at most A(¢— 1)+ 1 marks. Therefore, the number of
coordinates inverted during one decoding round is no fewer than ¢/(h(£—1)41).
Inverting one coordinate reduces the weight of the syndrome by at least one.
Thus, the weight of the syndrome after this round is not greater than

¢ < (1 2s — eh)
s———————<s§|l - —————].
h(6—1)+1— sh(h(¢—1)+1)
The amount in the parentheses is less than 1, and we are done. |

Remark 2.2 Whereas the lower bound on the weight of correctable errors in
Theorem 2.3 is proved only for codes from Gallager’s ensemble, the decoding
complexity estimate is valid for any low-density code.

The iterated majority voting algorithm has the following parallel analog.

Algorithm 2.2: Parallel iterated majority voting

e In parallel, mark all coordinates contained in more than h/2
unsatisfied checks and invert them.

e Repeat until no coordinates can be marked.

Theorem 2.5 Parallel iterated majority voting corrects a linear fraction of er-
rors. It can be implemented with a Boolean circuit of size O(nlogn) and depth

O(logn).

To prove this is easy and we shall not stop here to do so.

Powerful results from algebraic graph theory enable us to present an explicit,
1.e, easily constructible family of low-density codes for which the value eg 1s also
linear in n. Let us formulate the condition e < e in terms of a bipartite graph
associated with the code. Let G = (V4 U Vs, E) be such a graph. G is called
(£, h)-regular if the degree of every vertex in V; is £ and the degree of every vertex
in V3 is h, h < {. Let |V5| = n, then by counting edges we see that the number
of £-regular vertices is |Vi| = nh/f. Form the (h/€)n x n “adjacency” matrix A
of G with rows numbered by vertices from V; and columns with vertices from
Vs. Let u; € Vi and u; € Vs, then a;; = 1if (u;, u;) € F and 0 otherwise. Take

16

syndrome|
weight

Figure 2.1: Visualizing the iterated majority voting

randomly its columns. Repeat this independently h times to form an (mh x mf)
parity-check matrix of the low-density code. As m — oo, this procedure defines
an ensemble of low-density parity-check codes of growing length.

Suppose a code is chosen randomly with uniform distribution from this en-
semble. The following theorem characterizes the typical performance of the al-
gorithm and relates the fraction of correctable errors to the Gilbert-Varshamov

distance ég(R).

Theorem 2.3 (Zyablov—Pinsker [169].) For almost all codes in Gallager’s en-
semble of low-density codes, the value eg/n is strictly positive. If R — 1, the
fraction of errors corrected by the iterated majority voting algorithm is not less

than 6y(R)/22. |

The proof is difficult and will be omitted. Although the decoding of codes
is easy, their construction would involve a large search. Theorem 2.10 pro-
vides easily constructible codes with a similar error protection and in this sense
supersedes this result.

Let us estimate the complexity of the algorithm assuming that ¢ and h are
constants.

Theorem 2.4 The iterated majority voting algorithm has complezity O(nlogn).

Proof: Every check involves only £ coordinates, therefore, computing it has
complexity O(1). Then clearly every decoding round can be accomplished in
O(n) time units. The proof will be complete if we show that every round reduces
the syndrome weight by a finite fraction.

Let € be the number of errors and suppose that ¢ of them are contained in
more than h/2 unsatisfied checks. Let s = wt (s), then s < ¢h + (e — ¢)h/2 and

so,

>2s—eh
‘=T

15

Let us give a lower bound to the number of errors corrected by the algorithm.
Suppose e is an error vector of weight ¢ and let s = Hel be its syndrome. We
assume that there exists a function w,(e) bounding the weight of the syndrome
from below that depends only on the weight of e. The existence of this function
is a crucial ingredient of the proof. Thus,

wyi(e) < wt(s) < w*(e) := eh. (2.1

Lemma 2.1 If wt(s) > eh/2, there exists a coordinate, i, such that wt(s +
h;) < wt(s), h; being the ith column of H.

Proof: The average number of unsatisfied checks per coordinate is wt (s)/e >
h)2. I

The assumption of the lemma will be satisfied if wy(e) > eh/2. This in-
equality is valid for e = 1. Hence, there exists a nonempty region 0 < e < eq
where it holds true for any error vector of weight e. Furthermore, suppose eg is
the maximal number with this property. Thus, there may be errors of weight
> g that are not corrected by the algorithm.

For any error vector of weight e < eq, there exists a coordinate that is
contained in more than h/2 unsatisfied checks. Inverting it, we reduce the
weight of the syndrome and either add or remove an error. In the worst case,
the number of errors becomes one greater and the weight of syndrome one less.
To visualize the decoding process, let us represent it as a trajectory in the “phase
plane” showing the weight of syndrome vs the multiplicity of errors (see Fig. 2.1).
Starting from an (integer) point in the plane, in the worst case we advance to its
south-east neighbor. Thus, for successful decoding, it is sufficient that moving
along the worst-case trajectory, we do not leave the region wt(e) < eg. We
conclude that for the algorithm to converge, it is sufficient that the initial point
is below the line drawn from the point (eg, egh/2) with slope —1. Denote by e
the value of e for which this line and the upper bound w*(e) intersect. This is
a lower bound on the number of correctable errors.

Theorem 2.2 For any error vector e of weight

wt (e) < r; :—iﬂ,

the algorithm performs a successful decoding.

Proof: Any decoding trajectory that originates in the stroked region in Fig. 2.1
cannot leave this region throughout the decoding. Indeed, by the above argu-
ment, the trajectory cannot cross the straight line connecting points eg and e;
and inequalities (2.1) bound it from above and below. |

Remark 2.1 In particular, if e < e, the algorithm corrects any e/2 errors.

Gallager’s ensemble of low-density parity-check codes is specified as follows.
Take £ copies of the identity matrix I,, and form an (m x mf) matrix. Permute

14

2 Easy Problems

This section is devoted to problems of constructing asymptotically good codes
and their decoding that have polynomial complexity in the length n of the
code. For a problem to be really easy, i.e., practical, we want the degree of this
polynomial to be small, for instance, 2 or 3. A part of the best known results for
error correcting codes is achieved using concatenations of good codes of smaller
length. Tn this case we refer to Chapter xx (Dumer) for the proofs.

The main results of Section 2.1 are Theorems 2.3,2.4, 2.10, and 2.11. The
accent here is on decoding complexity. Theorem 2.14 outlines the best known
results with respect to construction complexity. Section 2.2 consists of 3 parts,
each discussing one construction.

2.1 Error-correcting codes

2.1.1 Decoding

We begin with asymptotically good binary codes with a very low complexity of
decoding. The idea is to assume that every row of the parity-check matrix H
contains £ ones and every column h ones, £ > h. If n grows and £ and h are small,
then every check (row) connects a vanishing fraction of coordinates and every
coordinate appears in a vanishing fraction of checks. For this reason, such codes
are called low-density parity-check codes. This property allows one to bound the
number of computations of their decoding. Gallager [69] proved that a code from
a random ensemble of low-density codes probably comes close to the asymptotic
Gilbert—Varshamov bound. Unfortunately, due to the lack of structure, a simple
decoding realizing this distance seems difficult to achieve. However, it is possible
to decode a received word by successively flipping coordinates if doing so reduces
the weight of the syndrome. More specifically, we propose to inspect coordinates
from left to right and invert the first coordinate that appears in more than h/2
unsatisfied checks. Then we recompute the part of the syndrome affected by this
inversion and continue the inspection. We call one complete pass a decoding
round. Our goal will be to prove that after log n rounds we can correct a linear
fraction of errors. Though this fraction is much smaller than the distance of the
code, it still provides an algorithmic lower estimate of the distance and ensures
asymptotically good behavior.

Let us formulate the decoding algorithm.

Algorithm 2.1: Tterated majority voting

e Find a coordinate contained in more unsatisfied than satisfied
checks. Invert it and re-compute the syndrome.

¢ Repeat until no such coordinates are found or stop after O(log n)
decoding rounds.

13

1.4 Notes

1.2.1. An expanded informal discussion of models and complexity classes for an
expert is given in the first two chapters of the Handbook of Theoretical Com-
puter Science, Van Emde Boas [58] and Johnson [89]. Books by Cutland [46]
and Savage [137] provide an easy introduction to computability. The logical
foundations are treated in Manin [115], Rogers [133]. Uspensky and Semenov
in [158] give a detailed overview of the literature. The monograph by Wagner
and Wechsung [164] is an up-to-date mathematical treatise of the subject. The
book by Papadimitriou [125] reflects a computer scientist’s viewpoint and dis-
cusses some fundamental recent discoveries briefly mentioned in Sections 4 and
concluding remarks.

1.2.2. Inequalities cited in this subsection form a particular case of estimates
of large deviations for the binomial distribution (see Gallager [69]). A more
recent reference is Alon and Spencer [8] which also contains many other similar
results.

1.2.3. The following books and papers treat systematically general algo-
rithmic problems for codes: Barthélemy et al. [24], Bassalygo et al.[26], Savage
[136].

We study Problems 1-4 and 6. Computing automorphism groups of codes
has been studied by Leon [107]. Leon’s algorithm has been implemented in the
computer algebra package GUAVA, see Simonis [146]. This package also solves
a number of algorithmic problems for codes of small and moderate length such
as computing the minimum distance, weight distribution, covering radius, and
so on, and is useful for constructing examples of codes. GUAVA is available
from ftp.math.rwth.aachen as a part of the GAP package.

Some other algorithmic problems that we have chosen not to include deal
with the construction of combinatorial arrays closely related to coding theory,
see Cohen et al.[44], Fiiredi [67], Gordon et al.[78],[77], Grable and Phelps [79].
For the construction of covering codes see Chapter xx (Pless, Litsyn, Brualdi) of
this volume. Complexity of computations in finite fields is covered in Jungnickel
[90], Shparlinski [141].

1.3. The general technique of this section is due to Gallager [69]. More
refined results on the average behavior of the weight spectra of codes were
proved by Blinovskii [30]-[32], Delsarte [48], Loeliger [111], Sidelnikov [143].
Higher moments of the number of codewords in a sphere are estimated in Barg
and Dumer [23] as follows:

E(Uw)™ < (BUw)™ (1 + ™ /BUW)™ (1.10)

provided that E(U,) > ¢™. Blinovskii [31] studied lower estimates on the
number of code vectors of a random code in a sphere (or any set of a given size).

Note that unrestricted codes on the average are worse than linear codes.
Namely, on the average the parameters (R, §) of a randomly chosen code with
g™ vectors approach the bound 2R = 1 — H,(é).

12

Note that if w/n < éo(R), the exponent is negative. Therefore, the probability
that C' contains a codeword of weight w, 1 < w < (6g(R) — €)n, declines expo-
nentially in n for any fixed € > 0. Thus, if we consider the ensemble of random
linear codes of growing length and fixed rate R, then for any ¢ > 0 the fraction
of codes with relative distance

6 S 50(R) — €
approaches zero. We have proved the following.

Lemma 1.2 Almost all linear codes meet the asymptotic GV bound.

This is the reason that complexity estimates of different algorithms are usu-
ally compared for codes meeting the GV bound. For small ¢ this is also the
best choice of codes available. However, generally dealing with codes meeting
the GV bound is computationally difficult. Often it is possible to reduce the
complexity of algorithms by choosing codes with somewhat inferior properties,
but still asymptotically good.

Definition. Suppose a family of [n, k,, dy] codes of growing length has the

limit parameters R = lim k,/n and § = lim d,/n. Then the codes are called

asymptotically good if R6 > 0.
Since the variance (1.8) of the number of codewords is small, (1.5) implies
the following estimate:

1
Pr{|Ny — ENy| > VnEN,} < L.
n

Thus, for all linear codes except for a small fraction, the number of codewords
of a given weight cannot be too small. This is a heuristic reason that most algo-
rithms for typical codes tend to have a large complexity. Replacing /n EN,, by
EN, , we observe that the fraction of codes with N,, > 2EN,, falls exponentially
inn.

Let 8 be the interior of the sphere of radius w in £y, then L = Sito (:}) (¢—
¥, Let U, := N(8). By Lemma 1.1 and (1.3), the average number of code-
words in 8 for long codes is

EU, = qn[Hq(w/n)—(l—R)](1+0(1)). (1.9)

Thus, if w > néy(R), this value grows exponentially. Therefore, for almost all
codes, the number of codewords inside a given sphere of radius w > nég(R) in
Ey does not deviate sharply from this average value. For w very large, only a
trivial estimate is possible. Namely, if w > w,, where w. = n(qg—1)/q is a root

of
qn(Hq(w/n)—(l—R)) — an’

then the sphere of radius w tends to contain most codewords, and the best
possible estimate is ¢".

Some further results of this kind are delayed until Section 3.2.

11

Let § C E7 be an arbitrary subset of vectors, [§| = L. The above formula
enables us to compute the moments of the random number N(8) of code vectors
of C' contained in this set.

Lemma 1.1 Suppose Lq~" grows exponentially in n. Then
Lq™", 0¢Ss,

1) EN(8) = .

(i3) Var N(8) < { EZ - 3&‘1__1)(8 iz } < (q—1EN(8).

Proof: Number all the vectors in 8§ from 1 to . and let v; = 1 or 0 according
as the ith vector is contained in C' or not. Then Ev; = ¢=" if the ith vector is
nonzero and 1 otherwise. Part (i) follows.

Let us compute the variance.

VarN(8) = E(Z 1/2-)2 —(E Z VZ')Z.

Suppose that 0 ¢ 8; then

L
VarN(8) = EZVZ' + EZZVZ'V]' — L7
i=1 i j
I
= EZW + ZZ Pri{v;=1}Pr{v; = l|ly; =1} = L?¢ "
i=1 i j#i
L™+ L7 (L= (¢=2)a™" + (- 2)) = L*¢™

IN A

(¢—=1DLg™"

In the third line we have assumed that with the ¢th vector the set § contains
all of its nonzero proportional vectors, which certainly are codewords if the ith
vector itself is.

The remaining case is treated similarly. |

In particular, if § = {® € £} |wt(x) = w} is a sphere of radius w around
0 (that is, 0 ¢ 8), then N(8) = N, is the random number of code vectors of
weight w in C| and the moments become

e = (M) -1, (1.7)

Y- (19

Var N, < ¢~ (=% (n

w
Combining (1.7), (1.4), and (1.1), we obtain

Pr{Nw 2 1} S EN“) S q_n((l_R)_HQ(w/n)).

10

This combinatorial setting corresponds to transmission over the g-ary sym-
metric channel, i.e., a discrete memoryless channel in which a transmitted letter
is received correctly with large probability 1 — € and substituted by any of the
other ¢ — 1 letters with probability ¢/(¢ — 1). This group of problems is also
called hard-decision decoding as opposed to soft-decision decoding.

Soft-decision decoding takes into account reliability information of the code
symbols, supplied by the demodulator. Let y = (y1,...,yn) be the received
signal, whose components are no longer restricted to the code alphabet. Mathe-
matically this means that the transmission defines a random mapping from E7
on a certain space Y (a common example is R"). Let y € Y be the received
signal and suppose we can compute the joint probability Pr(y,¢) for all e € C.
Then the value of the decoding mapping ¢(y) is the codeword ¢ that maximizes
this probability.

4. Numerical parameters. Given a linear code €', compute its minimum
distance d, covering radius p, number of code vectors of weight w,

5. Permutation group. Find the set of permutations that preserve C' as
a subset of vectors of EJ.

Generally, all the above problems except encoding are difficult. For encoding,
there is a trivial upper bound O(kn).

6. Codes for non-Hamming errors. Study the complexity of Problems
1-3 under other models of noise. (This sometimes requires the use of unre-
stricted codes).

1.3 General properties of linear codes, 1

Most algorithms below will deal with long codes. Therefore we treat here the
typical behavior of linear [n, k, d] codes of large length, 0 < k£ < n. By a “long
code” we mean a sequence C), of codes of growing length and dimension. We
are interested in the number of codewords of a given weight and in the number
of codewords in a sphere of given radius (this is important for the study of
decoding).

A code C will be specified by a parity-check matrix H whose entries are
chosen from the underlying alphabet independently with uniform distribution.
This defines the ensemble of all linear codes with uniform distribution. Let h
be a row of H and ¢ # 0 a vector of Ef'. Then

Pri(h,c)=0}=¢"".

Since all r = n — k check equations are independent, the probability Pr{c € C'}
equals

Price C}=Pr{Hc =0} =¢". (1.6)

Remark. More generally, this is the probability that ¢ has a given syndrome
s, 1.e., 1s contained in a given coset of C.

Given a g-ary code of length n, size M and distance d, R = log, M/n is its
rate and & = d/n is its relative distance.

Definition. The Gilbert- Varshamov distance dg 1s defined as the maximal
number such that s
0— n)
— 1)y <q".
1y (7)==

The relative Gilbert-Varshamov distance éo(R) is the smallest positive root
of the equation

R=1- Hy(x)

(cf. Theorem 3.5 in Ch.1).
If a € £} and X C EJ, then the distance from a to X is defined in the
usual way:
dist (@, X)) = min dist .
ist (a, X) min dis (a,x)
Notation C always means a proper inclusion in contrast to C. If the base of
log 1s not given, this means that it is irrelevant. The symbol 0 means zero or
the all-zero vector as appropriate. The symbol o(1) always denotes a positive
infinitesimal. We say that two infinitely small (large) quantities are equivalent
if their quotient tends to 1.

3. ALGORITHMIC PROBLEMS FOR CODES

Let us formulate the main algorithmic problems for linear codes.

1. Code construction. Given a set of parameters ¢, n, k, d, find a generator
matrix G of a ¢g-ary [n, k, d] code C.

2. Encoding. A code may be viewed as a linear injective mapping C' :
Eé“ — EY defined by the matrix G. The problem is then to implement this
mapping.

3. Decoding. The decoding is a mapping f : Ef — C such that

Veep; dist(z, f(x)) = dist (z, C).

If for a certain @, this is satisfied for many code vectors, the value of f(x) is
chosen arbitrarily from them. This procedure is called (complete) minimum
distance decoding.

If the domain of complete decoding is restricted to those vectors in E7 that
lie within a given distance ¢ from the code, this partial mapping f; is called
bounded distance decoding:

fo: {z € E} :dist(z,C) <t} — C.

Of particular interest is the case of ¢ equal to half the distance of C, ¢t =
|[(d —1)/2], because this is the largest value of ¢ for which, for every vector in
the domain, the decoding result is unique.

2. NOTATION AND USEFUL FACTS

By EJ we denote the set of all n-words over the g-ary alphabet. Speaking of
linear codes, we assume that £y is a linear space over the field Fy. Let G be a
k x n generator matrix of a linear k-dimensional code C' and H its (n — k) x n
parity-check matrix.

We use a short notation N for the set {1,2,...,n}. Let W C A and let A
be a matrix with n columns. By A(W) we denote the submatrix of A formed
by the columns of A labeled with indices from W. Thus, y(W) is a projection
of a vector y on its coordinates in W.

Definition. Let C be a linear code. An information set (message set) is a
k-set W C N such that the corresponding k x k submatrix G(7) is nonsingular.
The remaining n — k coordinates are called a check set.

Knowing the information (message) symbols, we may uniquely compute the
codeword. If the message symbols form a part of the codeword, the code 1s said
to be represented in a systematic form.

Below we often consider the probability that a randomly chosen code in E7'
satisfies a certain property. If this probability tends to 1 as n — oo, we say
that this property is satisfied for almost all codes (or simply for most codes).
Speaking of random codes, we call the corresponding sample space an ensemble.

The entropy function is defined by
Hy(z) = zlog,(¢— 1) —zlog, 2 — (1 — z)log,(1 — z).

In the asymptotic setting, we always assume that n grows and ¢ is fixed. We
shall make frequent use of the following inequalities:

n 1 nHa(k/n)
(k) < k(1 — (1;:/71))2 ’ (1)

an(u)a 0 < H < (q - 1)/{1;

\/W 7" < Z() (417 - (1.2)

and their asymptotic corollary

long< > (= 1) ~nH,(n), n— oco. (1.3)

The Chebyshev inequality in its various forms is used in the proofs of most
facts about the ensemble of random codes. For a nonnegative-valued random
variable X,

Pr{X > a}
Pr{|X —EX| > a}

EX/a, (1.4)
Var X/a”.

IN A

environment is provided by Random Access Machines (RAMs), which perform
certain Boolean operations and additions and some flow control instructions. It
is assumed that the RAM has an unrestricted number of registers with instant
access. This model is realistic if the space complexity is not too high and fits
into the main memory of a computer. In order to preserve the formalism, each
instruction of the RAM is simulated by a Turing machine program, thus relating
the time complexity of the two machines. We assume that an operation of the
Turing machine corresponds to a binary operation of the RAM (logarithmic cost
model). Transforming informal descriptions of algorithms into RAM programs
usually does not cause principal difficulties.

A usual abstraction of parallel computations is a logical circuit. This is a
directed tree with nodes (gates) corresponding to Boolean operations from a
chosen basis. An input string is fed to the input nodes of the circuit and the
result of the computation appears on the output nodes. Complexity is measured
by the number of gates (size) and the length of the longest path from an input
to an output (depth).

Decision problems are joined in complexity classes using the concept of re-
ducibility. A decision problem A may be viewed as a subset of {0, 1}* formed by
instances with the answer yes under A. Thus, a decision problem is, in essence,
a string relation. To solve A means to construct a machine recognizing this rela-
tion. Let B be another decision problem. Suppose that for every instance A € A
of length £ we can construct an instance B € B such that A has the answer yes
under A if and only if B has the answer yes under B, and the time required for
this construction is at most f(£), where f is a certain fixed polynomial. Then
one says that A is polynomially reducible to B.

Given a class of problems A, it is sometimes possible to show that every
problem in it is polynomially reducible to a certain problem, A € A. Then A
is said to be complete in A. This means that the worst-case complexity of any
problem in A is bounded by a polynomial in the complexity of A. Therefore,
the complexity of A is universal for the whole class of problems A.

Problems of polynomial complexity are joined in the class P. They are
usually deemed easy. Many combinatorial problems heuristically known to be
difficult are contained in the class NP (and are complete in it). A problem in this
class can be solved in polynomial time by a nondeterministic machine, which
at each step checks in parallel all the existing possibilities of the computation.
A widely accepted conjecture is that (deterministic) polynomial algorithms for
the class NP do not exist. Therefore, NP-complete problems are often termed
intractable.

In computability theory a problem is called constructive if there exists an
algorithm solving it. In the vernacular of discrete mathematics, however, con-
structive or explicit has come to mean soluble with polynomial complexity in
contrast to non-constructive which just means involving exhaustive search or
table lookup.

about the polynomial hierarchy of complexity classes). The most important re-
sult is the NP-hardness of minimum distance decoding of general linear codes.
This shows that, basically, algorithms better than exhaustive search are highly
unlikely to be found. This belief is further supported by the fact that even ap-
proximating the number of errors up to any constant is NP-complete (Theorem
4.6). We also present a recent proof [161] of the long-standing conjecture about
the NP-hardness of computing the minimum distance of a code. The results
in this section provide conditional lower bounds on complexity. Unconditional
lower bounds are not known except for a rather restrictive setting of syndrome
trellis decoding (see Sect. 3.4).

We have attempted to include as many proofs as the chosen format could
allow. Often we rewrote the existing proofs and sometimes replaced them by
new ones.

Historical remarks and attributions are given in notes following the sections.

1.2 Conventions
1. ALGORITHMS AND COMPLEXITY

We are used to say and think that complexity of algorithms is measured by the
time of the computation and the size of memory used for it. Though the defi-
nitions of computation and complexity will not be given, some hints of possible
formalizations may be in order.

An informal notion of an algorithmic problem includes a class of objects and
a property that some of these objects may enjoy. The goal of the computation
is to produce objects from this class with this property or to check whether a
given object has it. Often the problem depends on varying certain numerical
parameters from which one produces an infinite series of individual instances
of the problem. The class of instances is then called an (algorithmic) mass
problem. These concepts are formalized by introducing a suitable encoding of
objects which turns an instance into a binary string. An answer to the problem
may be an object, a number, or simply yes or no. In the latter case, the mass
problem is called a decision problem.

A computation is a way to solve a given algorithmic problem A. To formalize
this notion, one introduces an abstract computing device (machine) which, given
a string corresponding to an instance of the problem, produces an answer to it.
Consider all instances that can be written as strings of a certain length ¢. The
(worst-case) time complexity of A is a function of £ defined as the maximal,
over all instances of length £, time of the computation. Depending on the
assumptions, it may be necessary to consider separately the space complezity of
A, i.e.,; the number of registers used in the course of the computation. This is
not essential for single-tape Turing machines, whose running time combines the
time and space complexity. The omnipresence of Turing machines relies on the
Church thesis which asserts that any computation can be modeled by a Turing
machine program in a reasonable fashion. However, writing such a program for
a complicated algorithm is a notably time-consuming task. A less restrictive

check matrices. The entries of the matrices are chosen independently and with
uniform distribution; therefore, all the probabilities that appear below have a
purely combinatorial sense of the fraction of favorable cases out of the total
number of cases.

As far as coding is concerned, the order of complexity can be either polyno-
mial in the length n of the code, which is considered easy, or exponential, which
is difficult. We shall mostly concentrate on linear codes, the reason being that
they admit a simple description in terms of the generator matrix. The size of
this matrix is at most n?, which makes it sensible to speak of polynomial com-
plexity. On the contrary, to define a nonlinear code one has to explicitly specify
all of its codewords. In this case the input data has size commensurate with
the total size of the code M. Most algorithmic problems of coding theory allow
an exhaustive search with complexity of order M, i.e., linear in the size of the
input. Therefore, studying complexity problems for unrestricted codes usually
attracts less attention (except when the complexity grows essentially faster than
the size of the code; see Theorem 4.4).

We begin with easy problems. They are grouped in Section 2. There is a
developed theory of codes with algebraic structure, which have a low construc-
tion complexity and admit a simple decoding. This theory is covered in other
chapters of this Handbook. We focus our attention on codes without apparent
structure, often codes chosen randomly from a conveniently defined ensemble.
Though these results are not always practical, they provide a frame of reference
in the field of complexity. We first study error-correcting codes and then review
results related to other models of noise, namely, erasures, defective memory
cells, and localized errors.

However, the majority of coding problems are computationally difficult. One
of the most important problems of this type is decoding, which forms the subject
of Sections 3.3,3.4. We begin with hard decision decoding. This group of
problems has a relatively established history. We cover most general results up
to very recent developments. We make an essential use of general properties of
linear codes, most of which we prove in Sections 1.3,3.2. Then we proceed to
soft decision decoding. This is a much more difficult problem and until recently
general results have been scanty. However, now the general theory of hard
decision decoding finds it parallels in the field of soft decision, which makes our
exposition satisfactorily complete.

Another group of problems deals with computing important numerical pa-
rameters of codes such as the minimum distance (Sect. 3.5.1) and the weight
spectrum (Sect. 3.5.2). General algorithms for these problems are closely re-
lated to those for minimum distance decoding.

These two sections form the main part of the chapter. For some problems
we present a number of solutions that reflect different ideas. However, for each
problem we always present an algorithm that has the best, to our knowledge,
asymptotic complexity.

Section 4 lists algorithmic problems related to codes that are presumed to
be computationally difficult (i.e. based on conjectures from complexity theory

1 Introduction

1.1 Outline

Coding theory is motivated by a practical problem of transmission over noisy
channels. Therefore, along with the question “Do good codes exist?” there is
always another question, namely, “How to construct and decode them?” The
words construct and decode hint of algorithms and those suggest studying com-
plexity. However, defined in this way, the topic would be too broad for a chapter
since almost every problem in coding theory 1is linked to the algorithmic com-
plexity of actually presenting a solution to it. We intend to study primarily
problems related to the construction of block codes, their decoding, and com-
puting important numerical parameters of codes.

The topic of complexity involves a number of conventions related to the
computation models admitted and particular details of implementation of al-
gorithms. This makes the comparison of results related to specific short codes
complicated if not impossible at all. To make the exposition mathematically
sound, we shall mostly focus on the asympiotic behavior of the algorithms con-
sidered, which seems to be the best theoretical framework available. We shall
also mostly discuss algorithms with provable performance and complexity esti-
mates. For this reason, many heuristics, especially dealing with decoding, for
which only simulation results are known, are left out. This decision also helps
to bring down the number of references which otherwise would occupy scores of
pages. For instance, an electronic search for papers on decoding in the Mathe-
matical Reviews database in July 1996 brought a response of 599 titles. With
keyword search available electronically, the reader can produce a comprehensive
bibliography himself.

In Section 1.2 we discuss models of computation. Formal definitions of com-
putations, algorithms, and complexity can be given, in particular, in terms
of Turing machines. However, descriptions of specific algorithms as Turing ma-
chine programs may prove unwieldy. A step towards more practical descriptions
is taken by defining more liberal computation abstractions and simulating them
by Turing machines. A sufficiently convenient model is provided by the Ran-
dom Access Machine (RAM), which better corresponds to “real-life” comput-
ers. Accepting this model roughly means that the complexity of a (sequential)
algorithm is measured as the number of basic operations needed for its imple-
mentation. For parallel computations, logical circuits seem to be a convenient
formalization. Their complexity is measured by the size (number of gates) and
depth (computation time).

The general framework of studying specific coding problems is complexity
vs performance. In other words, we shall be interested in the least known (or
possible) complexity of constructing codes with given properties or the best
known parameters of codes with a specified order of complexity. In Section 1.3
we outline the typical properties of long codes. By this we mean the average
behavior of the parameters of codes from the random ensemble given by parity-

Contents

1 Introduction

1.1
1.2
1.3
1.4

Outline

Conventions o i e e e e e e e

General properties of linear codes, T

Notes

2 Easy Problems

2.1

2.2

Error-correcting codeso o0 o000
2.1.1 Decoding
2.1.2 Construction complexity00
2.1.3 Encoding complexityo
214 Notes e
Other models of noise 000000
2.2.1 Codes correcting erasures
2.2.2 Codes for memories with defective cells
2.2.3 Codes correcting localized errors
224 Notes L

3 Difficult Problems

3.1 Code construction L e
3.2 General properties of linear codes, IT
3.21 Notes o o e
3.3 Hard-decision decoding Lo
3.3.1 General remarks Lo 0oL
3.3.2 Split syndrome decodingo
3.3.3 Gradient-like decoding o000
3.3.4 Information set decoding 0L
3.3.5 Notes e
3.4 Soft-decision decoding L L oL
3.4.1 Syndrome trellis decoding 0oL
3.4.2 Maximum likelihood decoding with reduced complexity
3.4.3 Notes o e
3.5 Computing numerical parameters of codes
3.5.1 Minimum distance 0oL
3.5.2 Weight spectrumo
3.5.3 Notes e

4.1

Intractable Problems
Notes

O Ut W W

12

13
13
13
25
28
29
31
31
34
37
38

39
39
40
44
45
45
46
48
55
68
70
72
76
83
85
85
88
92

94

COMPLEXITY ISSUES IN CODING THEORY

Alexander Barg

Bell Laboratories, Lucent Technologies
600 Mountain Avenue, Room 2C-375
Murray Hill, NJ 07974

abarg@research.bell-labs.com

Abstract. This paper deals with complexity issues in the theory of linear error-correcting codes. Algo-
rithmic problems that we study are constructing good codes, encoding and decoding them. According
to their complexity. problems are divided into easy, i.e., polynomial in the length n of the code, and
difficult, i.e., exponential ones. The first part deals with easy problems. We present a construction
of codes that correct a linear fraction of errors with complexity nlogn. The construction is based
on well-known since the late 80ies explicit constructions of good expanding graphs. Another group of
problems in this part is related to codes for non-Hamming errors, namely, erasures, defects (codes for
memories with defective cells), and localized errors.

The second part, which forms the core of this paper, deals with difficult problems, first and foremost,
maximum likelihood decoding of linear codes. We study separately the complexity of hard-decision
and soft-decision decoding. For the hard-decision decoding case we present algorithms grouped in two
classes, gradient-like decoding and information-set decoding. It turns out that this general approach
is sufficient to study most if not all known general decoding methods. In the soft-decision decoding
context, we first discuss possible problem settings and then implementations of decoding with reduced
complexity.

The last part of the paper overviews most known NP-hard decoding problems including some recent
nonapproximability results.

The supporting material includes many general properties of linear codes from well-known to rather
sophisticated, and a brief discussion of models of computations and relevant settings for the study of
complexity issues in coding theory. We also give examples of many methods studied. Sometimes they
just illustrate concepts and definitions, but sometimes capture the most essential features of the proofs
and on occasion even replace them.

Generally we give complete and self-contained proofs of the results.

The coverage is extended from classical algorithms up to very recent developments. We thoroughly
study and compare different algorithms, especially those applicable to several seemingly non-related
problems. This unified approach to algorithmic coding problems enables us to organize previously
independent results in a self-contained part of coding theory.

This paper will appear as a chapter in Handbook of Coding Theory, V. Pless, W. Cary Huffman and
R. Brualdi, Eds., Elsevier Science, to be published.

Keywords: linear code, complexity, encoding, regular-graph codes, maximum likelihood decoding,
Gilbert—Varshamov bound, soft-decision decoding, NP-hard problems.

