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The Shortest Vector Problem in L, is NP-hard for Randomized Reductions.

M. Ajtai
IBM Almaden Research Center

Abstract. We show that the shortest vector problem in lattices with Ly norm is N P-
hard for randomized reductions. Moreover we also show that there is an absolute constant
e > 0 so that to find a vector which is longer than the shortest non-zero vector by no
more than a factor of 1 4+ 27" (With respect to the L, norm) is also N P-hard for ran-
domized reductions. The corresponding decision problem is N P-complete for randomized
reductions.

1. Introduction. A lattice in R™ is the set of all integer linear combinations of n
fixed linearly independent vectors. The question of finding the shortest non-zero vector in
a lattice with repsect to the L., was proved to be N P-hard by Van Emde Boas. However
the corresponding problem for the L, norm (or any other L,-norms for 1 < p < oo)
remained unsolved. Van Emde Boas conjectured almost twenty years ago (cf. [vEB])
that the Ly shortest vector problem for lattices in Z™ is N P-hard and the corresponding
decision problem is N P-complete.

The a-approximate version of the problem is the following: find a non-zero vector v in
the lattice L so that its length is at most a||vg|| where vg is a shortest non-zero vector of
the lattice. It has been shown by J. Lagarias, H.-W Lenstra and, C. P. Schnorr (cf. [LLS])
that if the a-approximate problem is N P-hard for any o > n'® (where n is the dimension
of the lattice) than NP = co— NP.

In this paper we show that the shortest vector problem is N P-hard for randomized
reductions. That is, there is a probabilistic Turing-machine which in polynomial time
reduces any problem in N P to instances of the shortest vector problem. In other words this
probabilistic Turing machine can solve in polynomial time any problem in N P, provided
that it can use an oracle which returns the solution of the shortest vector problem if an
instance of it presented (by giving a basis of the corresponding lattice). We prove the same
result about the 1+ 2~™ -approximate problem where € > 0 is a sufficiently small absolute
constant and n is the dimension ot the lattice.

Adleman proved in 1995 (see [Adl]) that factoring integers can be reduced to the shortest
vector problem in random polynomial time, using some very reasonable but unproved
assumptions. The work of the present paper has started as an attempt to give a proof of
Adleman’s theorem without the unproven assumptions.

Adleman has defined a lattice for his proof, using the logarithms of primes. This lattice
plays a crucial role in our proof as well. Actually we use a modified and extended version
of the original lattice. Adleman has used his lattice to factor the integer n. By finding a

short vector in the lattice it is possible to find supersmooth congruences modulo n, that is,
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different products of primes (not greater than a polynomial of logn) which are congruent
modulo 7.

Let pi1, ..., pm be the first m prime numbers, where m is polynomial in logn. Adleman
has defined a lattice V' whose basis vectors are rational approximations of the rows of the

following matrix:

Viegpr ... 0 Mlog py

0 ... logpm Mlogpn,
0 e 0 Mlogn
The number M is defined so that it balances the contribution of the last component
to the norm against the contribution of all of the others. The essential property of the
lattice V is that if the length of the shortest non-zero vector v is below a certain bound
v; < 0} then logn + Y i~ | log p; is close to 0, that is n% is close to 1 and therefore

and its coeflicients in the given basis are ~1,...,Ym+1 and P = [[{p)

H{Pz

s = nP — @ is so small that all of its prime factors are among p;, ..., pm. Therefore from

such a small vector we get a congruence modulo n among the products of small primes.
(An unproved assumption, formulated in a different more natural way, guarantees that the
shortest vector is really below the given bound.)

For the motivation of the defintion of our extended lattice we note that if n is square
free and of the form n =[]~ p/* then (with the right choice of M) (=71, ..., —Ym, 1) will
be a very short vector in the lattice. Of course this does not help much because in this
case we can find 71, ..., ym easily without using the lattice. We add a new basis vector to
the lattice in a way that even if n has larger prime factors, but one of the numbers n + lw
(w is a fixed intger [ = +1,...,£[nf], € > 0 ) is good, that is, it is squarefree and of the
form n + lw = [[i~, p;* then the vector (—71,..., —Ym,1,l) is a very short vector in the
lattice. Actually we will be able to this in a way that the shortest vector must be of this
form if there is at least one good number in the given segment of the arithmetic sequence

n 4 lw. (We will prove that for a random choice of n, with a suitable distribution, with a

positive probability there is always at least 2"El good numbers.)

It may seem surprising that the additive structure of the arithmetic sequence n + lw
fits in the multiplicative structure of numbers only with small primes. The reason is that
n + lw can be very well approximated by n(1 + %)l, so the structure is approximately
multiplicative. We may consider 1 + * as a “new prime” and add the corresponding row
to the lattice.

Since finding the shortest vector in this extended lattice may be helpful in factoring w
(and not n) we change the notation somewhat in the following definition of the lattice L.
The dimension of the extended lattice L is larger by one than the dimension of V' and we
get it by essentially adding a new basis vector to the lattice. More precisely the rows of

the following matrix will be the basis of the lattice L:

2



Viogpr ... 0 0 Blog p;

0 .. logp, 0 Blogp,

0 e 0 0 Bloghb

0 0 w™*k Blog(l-l— %)

As we will show, with the right choices for the various parameters, this lattice will have

the following property:
m—+2
=1

Suppose that vy, ....,vm+2 are the rows of the given matrix and v = ) ~;v; 18 a non-
zero vector of the lattice generated by v1, ..., Vm+2 With v,41 > 0 and ||v|| < (log b+w_1)%.
Then Ymt1 = 1, y1,..,¥m € {0,—1} and if g = [[~; pL’m then ¢ = b + lw for some
[ =0,+1,...,£[b°]. We show that the converse of this statement is also true, that is, if
g = b+ lw for some [ = 0,+1,...,4+[b°] and g is of the form described above then the
corresponding vector is shorter than (log b+ w_l)%. It is also true that the length of every
nonzero vector is at least (log b)% (This result is formulated in Lemma 3.2.)

The original motivation for the definition of L was the following. We try to factor the
integer w. Let us pick a random residue class d modulo w (which is generated as a random
a product of random powers of the primes p1, ..., pm.) After that, we take a representative
b of appropriate size (a constant power of w) from the residue class of d. The important
point is that b does not give any information about which representation of d (as a product
of small primes) is known to us. Then, by finding a short vector in the lattice, we could
get a congruence b = [[ -, pL’m (mod w). By taking enough different numbers b we could
get enough congruences to factor w. The problematic and still not completed part of this
direct reduction of factoring to the shortest vector problem, is to guarantee that for a
b generated by this distribution there will be a good number in the arthmetic sequence
b+lw,l=0,41,...,£[b°]. (We have some partial results in this direction that we describe
at the end of the introduction.) While trying to fill this gap in the proof we noticed that
there is another distribution for b where it can be proved easily that with a probability of
at least % there are always good numbers in the given segment of the arithmetic sequence.
Namely b will be the product of & distinct elements of the set {p1, ..., pm}, for a suitably
chosen fixed h, with uniform distribtuion on the set of all products with this property. (In
this case the number b reveals its known expression as the product of small primes, so we
cannot gaurantee that we get enough independent congruences for factoring.) However,
for this distribution, we have that with a probability of at least %, the lattice L has an
exponential number of vectors v with ||v||2 <logb+n71.

At this point in the attempted proof we have realized that the lattice L can be used
to prove the N P-hardness of the shortest vector problem (even in an approximate sense)
for randomized reductions. Namely the lattice has the nice property that it has a basis
where all small vectors have 0,1 coefficients only (with the exception of the last coeffi-
cient), moreover the number of vectors that are small enough to have this nice property

is exponential (in the dimension of the lattice.) This creates a possibility to reduce the
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subset sum problem to the shortest vector problem. (The N P-completeness of the subset
sum problem was proved by Karp (see [K])). We will look for a solution of the subset sum
problem among the coefliciemt sequences of the short vectors. Although not every 0,1
sequence will occur as a coeflicient sequence, still the number of different 0,1 coefficient
sequences is exponential in the size of the subset sum problem. This will make it possible
to find the solution of the subset sum problem embedded in some way into a coefficient
sequence of a short vector. We will be able to search among these coefficient sequences
for a solution of the subset sum problem, by embedding our lattice L into another larger
dimensional Euclidean space and therefore change the length of its vectors. According to
this new (L3 ) norm every short vector will be short in the original sense too, but they also
have to satisfy some additional requirements. By defining the embedding in a suitable way
this additional requirement can be that the coefficient sequence (in some modified form)
is a solution of the subset sum problem. Therefore, by finding the shortest vector in the
embedded lattice (or one which is approximately the shortest with an exponentially small
error) we will be able to solve the subset sum problem.

As we mentioned above, at some point in the proof, we have to make a transition from
an exponential number of 0, 1-sequences (coefficient sequences of short vectors), to all 0,1
sequences of a certain length, because otherwise we cannot guarantee that the solution
of the subset sum vector problem is among them. As a model for such a transition we
use a theorem of Sauer about hypergraphs. (This theorem is related to the notion of VC-
dimension. We cannot use the theorem itself in the proof because it is not constructive
enough, but we give constructive analogue of it, at least in a probabilistic sense.) Sauer’s
theorem (we give the exact statement in the next section), states that if a set X is a set of
subsets of the set S and |X| is above a certain bound depending on |S| and k then there
isaY C X, |Y| =k so that every subset of ¥ occurs among the sets Y N Z, Z € X. We
may think that S is the basis of the lattice (excluding the last exceptional basis vector)
and for each short vector v in the lattice we have T, € X, where T, is the set of elements
of S where the corresponding coefficient of v is 1. (All of the other coeflicients are 0.)
Therefore the theorem gaurantees that there is a subset Y of the basis vectors where we
get all 0, 1-sequences as coefficient sequences of short vectors. We may look for the solution
of the subset sum problem among the 0, 1-sequences defined on Y. (Sauer’s theorem also
guarantees that |Y| is large enough.) The only problem with this approach is that we do
not have any method which could find such a Y in polynomial time. A random choice
for Y is not satisfactory because X can be unevenly distributed in S. We formulate an
analogue of Sauer’s theorem where a a random Y is a good solution with a probability
close to 1. Namely instead of taking a single subset Y we will take a sequence of pairwise
disjoint subsets C = (C4,...,C%) and for each T' € X we define a function fr(z) = |T'N C}
on {1,...,k}. We show that if every element of X is of the same appropriate size, |X|
contains sufficiently many sets and we take the sequence C1, ..., C} at random, then with

a probability close to one we get every 0,1 functions on {1,...,k} in the form of fr for a
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suitable 7' € X. Theorem 2.2 in the next section is an exact formulation of this statement.
The proof of this theorem is the technically most difficult part of our paper.

There is a third part of the proof, the embedding of L into another Euclidean space which
defines a new norm on it. We may think that we do this by simply adding new columns
to the matrix defining the lattice L. E.g. if we would want to guarantee that from a
shortest vector v = E:’;l ~v;v; we get the solution of a subset sum problem Z:r;l a;z; = b
in the form z; = ~;, « = 1,...,m, then we can add a last column to the matrix whose
elements are —a1 K, ..., —a, K,bK,0. With the right choice of the number K we get that if
there i1s a solution of the subset sum problem of the form z; = «;, then the shortest vector
in the extended lattice L’ (that is in the lattice whose basis consists of the new longer
rows), must provide such a coefficient sequence ;. Of course this is an idealized situation,
because in general we do not get every 0,1 sequence of length m in the form of 1, ..., ym
from a short vector v. However combining this idea with the described generalization of
Sauer’s theorem we can conclude the proof. (See Lemma 2.2 and Corollary 2.2 for an exact
formulation of the related results. Corollary 2.1 is only included as an illustration based
on the simplified picture described above.)

We have described three parts of the proof, and as we have said, the second one, the
constructive analogue of Sauer’s theorem, is the most difficult in a technical sense. Still
we feel that the most difficult step in the proof was to find the three different parts which
together imply our main result and not the proofs of the individual components.

Both the choice of the lattice L and the choice of the sequence C1, ..., Cx which determines
the lattice L' is probabilistic. In the defintion of L we choose the number b at random,
with a given distribtuion, and we are able only to prove that the lattice L has the required
property with a probability greater than % (For the proof that L is good for every choice
of b we would need very strong statements about the uniformity of the distribution of
numbers with small prime factors.) The second part of the proof, the construction of L’
through (', ...,y is also probabilistic. Still there is a possibility that a single sequence
C1, ..., Ck selected at random can be replaced by a polynomial number of deterministically
constructed sequences so that for each fixed subset sum problem at least one of them is
good.

Remarks. 1. Adleman has defined the lattice V, so that the coordinates of the basis
vectors are rationals, they are approximations of the coordinates of the rows of the first
matrix. This way it is possible to perform a computation whose input is the lattice. We
define the lattice L as a lattice in R™12, that is, the coordinates of the basis vectors can
be irrational. We will prove all the necessary properties of the lattice L, and then show
that L can be approximated by a lattice L C Q™%2 (that is, the basis vectors of L has
rational coordinates) and show that L still has the nice properties of L that are needed for
the rest of the proof. Unfortunately both approaches create technical difficulties.

2. The lattice L has been originally defined for a completely different purpose than its
final use in this paper. Therefore it may easily happen that other, perhaps in some sense

simpler, lattices also have the properties that are required from L to complete the proof.
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In the next section we collect these properties in Lemma 2.1. There are different reasons
which may motivate the search for such a lattice: to make the proof deterministic; to
improve the factor in the approximation result; to make the proof simpler.

3. As we have described above we break down the proof into three different parts.
We tried to make the various parts independent, so in each part we are using as little
information from the other parts as possible. E.g. we formulate what are the important
properties of the lattice L and then use only these properties in the other parts of the
proof. This makes the proof more transparent, but we may lose several possibilities for
improvements. (Actually the original version of the proof utilized more of the specific
properties of the lattice L.)

4. There are many related problems to the shortest vector problem, the nearest vector
problem, the nearest codeword problem etc. (for the definitions see e.g. [ABSS]). Van
Emde Boas has proved the N P-hardness of the nearest vector problem in all L, norms
1 < p < oo. Arora, Babai, Stern and Sweedyk (cf. [ABSS]), has shown that even to
approximate the nearest vector within a constant factor is N P-hard. A. Vardy has proved
recently (cf. [V1] or [V2]) that deciding whether there is a codeword within a given distance
is N P-complete. The interested reader may find more detailed information about these
and other related problems in [ABSS] or [V2].

5. The motivation for proving that to find short vectors in lattices is hard, in some
sense, comes partly from cryptography. (See [Ajt], [AD], [GGH1], [GGH2] ). There are
cryptosystems whose security is based on the assumtpion that to find short vectors in
lattices is computationally infeasible. Since these assumptions imply the hardness of even
an approximation of the shortest vector utpo a polynomial factor, we cannot really hope to
prove their NP-hardness, since, as we noted earlier, it would imply NP = co— NP, at least
if the exponent is larger than 1.5, (cf. [LLS]). The fact that the there is no short vector in
the lattice can be demonstrated by giving a short basis in its dual (reciprocal) lattice. Still,
the fact that closely related lattice problems are N P-hard, makes the hardness assumptions
of the cryptographic systems more credible. Therefore it would be particularly important
to improve the a-approximate version of our theorem by proving it for greater values of a.

6. Although in this paper we reduce every problem in NP to the shortest vector problem
(by random reduction) and so in particular we also reduce factoring to the shortest vector
problem, a direct reduction like Adleman’s, gives more information about factoring, and
also shows that the shortest vector problem is more closely related to factoring than to
other problems in N P. Therefore we think that it would be still very important to show
(without any unproven assumptions) that Adleman’s reduction, or any other direct reduc-
tion of factoring, is correct. We have already partly described an attempt of such a proof.
Although we are not able to prove that this reduction works for all intger n we can show
that it works for almost all n (the number of exceptional integers is exponentially small in
log N) that are generated as the products of two primes choosen independently and with
uniform distribution from the set of all primes less than N. (Analogue statements can be
proved about the products of not two but a constant number of primes. At this point it
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is not clear whether there is a limit on the number of primes.) The same technique also
gives that the discrete logarithm problem for almost all primes can be directly reduced to
the shortest vector problem. We intend to return to these questions in a separate paper.
There are signs that indicate that the “almost all” restriction may be avoided. E.g. we
can prove that for each number n we get at least one nontrivial congruence among the
product of small primes (actually we can prove that we get many, just we cannot prove
that there are enough for factoring.) Here we only mention that the proof (of the results
concerning factoring) depend on the method of Large Sieve, which was originally developed
by Linnik and Rényi and is one of the “elementary” but very powerful methods of number
theory. For the result about discrete logarithm the method can be used in its original form
which, roughly speaking, says that a large set of integers in a relatively small interval are
distributed almost uniformly in the residue classes modulo almost every small primes. For
factoring we need a variant given by Montgomery which remains valid if we consider the

distributions modulo small composite numbers as well.

2. The outline of the proof. In this section we break down the proof of our main
result (the theorem below) into essentially three different lemmata and show how they

imply the theorem. We prove the three lemmata in different sections.

Theorem 2.1. The shortest vector problem in Ly is N P-hard for randomized reduc-
tions. Moreover there is an absolute constant € > 0 so that the (1 + 2_"5)—approximate

shortest vector problem is also N P-hard for randomized reductions.

We prove the N P-hardness (for randomized reductions) of the shortest vector problem.
We get the approximate version by minor modifications of the proof.

We will consider probabilistic Turing machines that are using an oracle which returns
a solution of the shortest vector problem (in Lj3) if a lattice is presented to the oracle
(represented by a basis). We will show that the subset sum problem can be solved in
polynomial time by such a machine. Since the subset sum problem is known to be NP-
complete this will imply that the shortest vector problem is NP-hard for probabilistic
reductions. The subset sum problem can be formulated in the following way: assume that
ai,...,a;, b are integers, and we are looking for a solution of the equation Ei:l a;z; = b
where z; € {0,1} for i = 1,...,]. We define the size of the problem as log,(|b| + 1) + [ +
Ei:l log,(a;| + 1). We will not use the subset sum problem directly but we will use a
special case of it, which is still N P-complete.

Definition. The restricted subset sum problem. Suppose that aq,...,a;,b are integers,
max{log, (|b|+1), max!_, log,(|a;]+1)} < 3 and we are looking for a solution of the system
of equations Eé:l a;z; = b, Ei:l T; = [%] where z; € {0,1} for 7 = 1,...,1. The size of the
problem is [° (Il+1).



The (trivial) proof of the fact that the restricted subset sum problem is N P-complete
will be given in another section. (Lemma 4.1)

We will consider problems whose inputs are lattices given in Q™ where Q is the field of
rational numbers. The lattices will be presented by a basis. So, to define the size of the
problem, we have to define the size of a basis.

Definitions. 1. If a1, ..., ay, are linearly independent vectors in R™ for some m > n, then
we call the set { ., a;a; | a1, ..., a, are integers } a lattice. (Sometimes the defintion is
given with the additional requirement m = n. Since the real subspace generated by L can
be isometrically embedded in R™ the two definitions are not essentially different.)

2. If r = g is a rational number, so that (p,q) = 1, then size(r) = log,(|p| + 1) +
log,(|g| + 1), size(0) = 1. If v = (r1,...,7n) € Q™ then size(v) = > -, size(r;). If vi,..., v,
is a sequence of vectors then size(vy,...,v) = Ele size(v;).

3. ||v|| will denote the Ly norm of the vector v unless it is explicitly stated otherwise.

The motivation for the following lemma is to make some connection between the shortest
vector problem and the subset sum problem. The essence of the lemma is that that there
exists a lattice in Q™ where all of the nonzero vectors whose length does not exceed a
certain limit has only 0,1 coefficients in a fixed given basis, (with the possible exception
of the last coefficient for each vector). Moreover the number of vectors below this limit is
exponential in the dimension of the lattice. Later we will look for the solution of a subset
sum problem among the 0,1 sequences which occur as a coefficient sequence of such a
short vector. By embedding the lattice (linearly but not isometrically) into Q™ for some
m > m, that is defining a new Euclidean norm on it, we will be able to gaurantee that the
shortest vector in the new lattice has a coeflicient sequence which provides a solution for

the subset sum problem.

Lemma 2.1. There are positive rationals c1, ¢y, c3,cq so that for each sufficiently large

2(_‘1]

positive integer n there is a positive integer m € [n°,n°!|, a positive rational p < 1, a

lattice L C Q™*2, and a basis v1, ..., Vm, Vm+1,Vmi2 of L so that the following holds:

(1) v € L,v#0 implies |[v|| > 1,

(2) if Z is theset of allv € L, v = E;:'f yv; with Y27y, =n, then [{ve Z | ||v]|* <
Lt p}] 2 2mmoe,

(3) Forallveg Lv#0,if|[v]|2 <14 p2"", v = EZ’:? ~;vi, and Ym+41 > 0, then
vi €4{0,1} fori =1,...,m, Ym41 = 1.

(4)  Ifur # ug, |yl < 14 p2"" and u; = Y iy fyi(j)'ui for j = 1,2 then there is a
1 =1,...,m so that fyi(l) # ’71(2)7

(5) size(p) <n®, 0<p< 2—n* size(v1, ..., Umt2) < n.

(6) \/p is rational.

Moreover there is a probabilistic Turing machine which for each input n gives the follow-

ing output in time polynomial in n: an integer m, a rational p > 0 and linearly independent
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vectors vy, ...,Umi+2 € Q™12 so that with a probability of at least % if L is the lattice gen-
erated by v1,...,Um+2 then m, p,v1,...,Um+2, L satisfy conditions (1),(2),(3),(4),(5),(6).

We will give the proof of this lemma in a separate section. Our next goal is to define an
embedding of the lattice L (given by the previous lemma) into a higher dimensional space
so that any shortest nonzero vector of the new embedded lattice (which has a different
metric since the embedding is only linear but not isometric), has a coefficient sequence
(in the embedded image of the basis {v;}) which provides a solution of the subset sum
problem. Under certain additional assumptions we will be able to do this as our next
lemma will show.

Definitions. Assume that m,p,v1,...,9m42, L are fixed with the properties listed in
Lemma 2.1.

1. We will use the following notation: S1 ={z € L |z #0,||z||> <1+ p,z - vmst1 > 0},
Sy = {:B €L | T # O’H:BH2 <1 +p2nC4a$"Um+1 > 0}

2. For each z €¢ R™*2 if ¢ = E:r:f viv; then let A(z) be the m + 1 dimensional
vector (y1,/p, ..., Ym+1/P). (Note that we do not use the last component of z in this
definition.) Suppose that m' is a positive integer and A is a matrix with m' rows and m+1
columns. If z € R™"2, then let 1 4(z) be the m + 2 + m’ dimensional vector (z, AA(z)).
L(4) C R™+ ™' +2 will be the lattice generated by the vectors ¥ 4(v;), 1 =1,...,m + 2.

3. LMt will denote the set of all w € A with w = ¢4(u) for some u € L, with
U - Vmy1 > 0. Clearly for all w € L{4) at least one of the vectors w, —w is in L(A)*,

Lemma 2.2. Assume that cy,cy,c3,c4 are fixed with the properties in Lemma 2.1,
cs > 0, n is sufficiently large, m,p,v1,...,Um+2, L satisfy the conditions of Lemma 2.1,
m' < n°s is a positive integer, A is a matrix with m' rows and m+ 1 columns and all of the
entries of A are integers with absolute values no larger than n°. If there is a v € S1, so
that || AA(v)||> = min{||AA(z)||?|z € Sa} and w is a shortest nonzero vector of L(4) with
w € LAY then there is a u € Sy so that |AA(w)|| = ||AA(v)]| and w = P a(u).

Definition. Assume that Y C {1,...,m}, Y = {y1,..., i}, |Y| =1 and L,vy,...,0my2 are
fixed with the properties given in Lemma 2.1. For each v € L, v = E:’;—f Vivs, gy,o Will
be a function defined by gy, (¢) =, for all ¢ € {1,...,1}.

In the following Corollary we consider the subset sum problem without the additional
restriction ) .-, z; = [%] This Corollary and the following Theorem are not parts of our
final proof. We use them only to illustrate the main idea of the proof in a much simpler

setup.

Corollary 2.1. Assume that cy,...,c5, m,p,v1,...,Um+2, L are as in Lemma 2.2, [ is
an integer with 1 < [ < m and Y = {y1,...,yi} C {1,....,m}, |Y| = [. Suppose that

Ei:l a; = b is an instance of the (not restricted) subset sum problem so that z; = gy ,(7)
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¢t =1,...,l is a solution of the problem for somev € 51, and K > 0 is sufficiently large. Let
D = {d;;}i=1,j=1,...,m+1 be the (1 by m + 1) matrix defined by dy y, = Ka; fori =1, ...,,1,
d1,m+1 = —Kb, and dy ; = 0 for all other j. If w € L(D)* is a shortest nonzero vector in
LP) and w = Yp(u), then z; = gyu(i), ¢ = 1,...,1 is a solution of the given instance of

the subset sum problem.

We do not prove this Corollary, since it is not part of our proof, but it easily can be
proved even without Lemma 2.2. According to this Corollary we are able to solve the non-
restricted subset sum problem by solving the shortest vector problem in L(P) provided
that we can find an Y C {1,...,m}, |Y| = so that the subset sum problem has a solution
among the evaluations z; = gy(z), v € Si1. The following theorem of Sauer guarantees
the existence of such a set Y provided that [ < 2"’6, where 0 < § < 1 and n is sufficiently
large with repsect to § and c¢;. (For a proof see [S] or [AS]. The theorem is related to the
notion of VC-dimesnion, see [VC].)

Definition. Assume that S is a finite set, X is a set of subsets of S. The pair (S5, X) is
called a hypergraph.

Theorem (Sauer). If (S,X) is a hypergraph and |X| > Ele (l}f') then there is a
Y C S with k elements such that every subset of Y occurs among the sets Y NZ, 7 € X.

For each v € S1, v = E::;Q ~vivi let Ty = {i < m |~ = 1}. We apply Sauer’s theorem
with § = {1,....m}, X = {T,|v € S1}. We have that |S| < n® and by (1) and (4) of
Lemma 2.1 |X| > 2¢ml8"  Since [ < nd, 0 < § < 1 and n is sufficiently large with
respect to ¢; and ¢ the requirements of Sauer’s theorem are met with & — [. (Indeed
Ei:l (l‘?|) Sl(ncl)l §e51°g"e"6°1 logn <2°3n1°g”.) Therefore there is aset Y C S, |[Y| =1
so that every 0,1 function on Y is of the form gy, for some v € S;. This clearly implies
that the solution of the subset sum problem is among them. (The requirement [ < n?® does
not cause any problem since if [ is given and we pick the smallest n with [ < n?, then
the corresponding basis of the lattice L will be still polynomial size in [.) Sauer’s theorem
therefore guarantees the existence of the required set Y, but it does not provide any way
for finding it (finding Y in polynomial time would be necessary to complete the proof this
way). Unfortunately the proof of the theorem is not contstructive (from our point of view).
To be able to use the described approach we generalize the theorem, namely we replace the
set Y with a more complicated structure in a way that makes the proof more constructive.

First we note that it would be sufficient for our proof if a random choice of ¥ would
satisfy the requirements of the theorem with a positive (polynomially large) probability.
(In this case by taking many random choices of Y we could get at least one which is good
for our purposes.) Unfortunately this is not true if ¥ is uniformly distributed, since X
can be concentrated on a small subset of S. In order to avoid this difficulty, instead of
taking a subset Y with [ elements, we will take a sequence of disjoint subsets (1, ...,C}

each with r elements, where r will be a suitably chosen positive integer. Now our goal
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is to get such a sequence (1, ...,C; so that for every 0,1-function f on {1,...,{} there is
aT € X with f(i) = |C;NT| for ¢ = 1,...,I. The original setup can be considered as
a special case of this, namely when each C; has exactly 1 element. We will formulate
an analogue of Sauer’s theorem with this new representation of the 0,1-functions. We
need some additional restrictions on the hypergraph (5, X), (which will hold in our case).
Among other conditions we will assume that all of the sets in X has the same number of
elements. This is not a real restriction since if X is of exponential size (in n) and S is
of polynomial size then X always has a subset of exponential size which contains sets of
the same cardinality. Fixing this common size helps to find the right choice for the other
parameters in the theorem.

Definition. A hypergraph (5, X) is called n-uniform if |T| =n for all T € X.

Theorem 2.2. For all a; > 0, ap > 0 there exist 0 < §1 < 1,0< 3 < 1,0< 83 <1 so
that for all sufficiently large n the following holds:

Assume that (S, X) is an n-uniform hypergraph, n? < |S| < n*, |X| > 202nlogn
k = [n%] and C1, ..., Cy is a random sequence of pairwise disjoint subsets each with exactly
[|S|n=17%] elements, with uniform distribution on the set of all sequences with these
properties. Then, with a probability of at least 1 — n™% the following holds:

for each 0,1-valued function f defined on {1,...,k} there is a T € X so that f(j) =
|C;NT| forall j=1,..,k.

We will use this theorem to complete our proof. First we formulate an analogue of
Corollary 2.1 which is also a corollary of Lemma 2.2 but will be used together with Lemma
2.2 (instead of Sauer’s theorem). In this Corollary we will consider the restricted subset
sum problem.

Definitions. 1. Assume that C = (C4, ..., C)) is a sequence of disjoint subsets of {1,...,m}
and L,v1,...,Um42 are given with the properties described in Lemma 2.1. For each v € L,
v = E:’:ﬁ Vivi, go,» will denote a function defined by g¢,.(7) = Ejeci ;-

2. Let D = {d; ;}i=1,... 142, j=1,...,m+1 be a matrix with [ 4+ 2 rows and m + 1 columns,
defined by

(1) dv; = a;l3 for all j € C;, dimt1 = —bl% and dy,; = 0 for all other values of j

(2) dy,; =13 for all j = Ué:l Cj, dyymt1 = —[%]l3 and dy ; = 0 for all other values of 7,

(3) Forall i =1,...,1,d;j12,; = 1if j € C; and d;42,; = 0 otherwise

If Cy,...,C; are consecutive intervals of {1,...,m} then D is the following matrix:

11



a8 a8 a;l3 a;l3 a1’ ad® 0 0 b
I3 I3 13 I3 3 2 0 0 —[4)3
1 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 0 1 1 0 0 0
Corollary 2.2. Assume that cq,...,c5, m, p,v1,...,Um42, L are as in Lemma 2.2, [ is an

integer with 1 <1 < m and C = (C1,...,C)), is a sequence of pairwise disjoint subsets of
{1,...,m}. Suppose that Ei:l a; = b is an instance of the restricted subset sum problem
so that z; = g¢,(1), ¢ = 1,...,1 is a solution of the problem for some v € Sy. Let D be
the (l + 2 by m + 1) matrix defined above. If w € L(P)* is a shortest nonzero vector in
LP) and w = p(u), then z; = go (i), i = 1,...,0 is a solution of the given instance of

the restricted subset sum problem.

Now, accepting Lemma 2.1, Lemma 2.2, Corollary 2.2 and Theorem 2.2 we can prove
our main theorem. We describe a probabilistic algorithm D using an oracle which gives
a shortest vector of the lattice presented to the oracle. Each use of the oracle will be
counted as 1 time unit. D will find a solution of the restricted susbet sum problem
Ei:l a;z; = b (provided that such a solution exists) in time polynomial in I, with a
probability exponentially close to one,

Assume now that an instance Zi:l a;z; = b of the restricted subset sum problem (which
has a solution) is given as an input. Let c1, ¢, c3,cs be the constants whose existence is
stated in Lemma 2.1. Let é1,0d2,63 be the numbers whose existence is guaranteed by
Theorem 2.2 with a3 — 2¢1, @y — c3. Finally let n = [l%] We apply Lemma 2.1 for
this n. According to the lemma p,m, vy, ..., v;m+2 can be computed in time polynomial in
n, and so in [ too, with the properties listed in the lemma. (More precisely this happens
with a probability of at least % only. So we will perform the algorithm described below
for the given values of p,m,v1,...,Vm+2, if we do not get a solution of the subset sum
equation we repeat it with other random values. Performing this a polynomial number
of times, with a probability exponentially close to 1 it will happpen at at least once
that p,m,v1,...,um+2 satisfy the conditions of Lemma 2.1 ). We take a random sequence
C = (C4, ..., C)) of pariwise disjoint subets of S = {1,...,m} each with exactly [|S|n~17%2]
elements, with uniform distribution on the sets of all sequences with these properties.
Clearly this randomization can be easily performed by picking the sets C; recusrsively.
n = |—l%1 implies that [ < [n%] therefore we may apply Theorem 2.2 with a3 — 2¢;,
as —+ec3, S —{1,....m}, k— [ and
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X ={ZC{l,.,m}|FweS, v=""r Py, Z={i|vi=1,i=1,.,m}}.

According to the conclusion of the theorem with a probability of at least 1 — n ™% we
have that each 0,1 function f(j) on {1,...,m} is of the form f(i) = |C; N T| for some
T € X. If this is the case then there is a T' € X so that z; = |C; N T| is a solution of our
subset sum problem. (We have assumed that there is a solution). By the definition of X
and gg,» we have that there is a v € S7 so that z; = go,v 1s a solution of the subset sum
problem. We may apply now Corollary 2.2 and get that if w € L(P)* is a shortest vector
in LP) and w = ¢p (u), then z; = gou, 1 = 1,..,1 is a solution of our susbet sum problem.
D may find such a w by asking the oracle for a shortest vector in L(P) D presents the
lattice L(P) to the oracle by the basis ¥p(v;), i = 1,...,m. (By the definition of ¢ D the
size of this basis is polynomial in [.) The oracle gives a shortest vector w’ in L(P) since
either w’ or —w’ is in L(P)*, D finds a w with the required property. Writing w as a linear
combinations of the vectors v; and using the fact that ¢p is a homomorphism, D finds the
vector u € L and so the solution of the subset sum problem. This way the algorithm has
found the solution only with a probability 1 — n~%. Repeating this a polynomial number

of times independently we may ensure that the probability of succes is exponentially close

to one. Q.E.D.(Theorem 2.1)

3. Proof of Lemma 2.1. First we reformulate the lemma for lattices in R™*2. We
note that it is sufficient to prove the lemma without condition (6) since if p = % satisfies

all of the other conditions and p < 72 < 2p, ¢ < 52 < 2p and p’ = :—Z then the lemma is
satisfied by p — 4p"? with slightly modified values of the constants c; and cs.

Lemma 3.1. There are rationals ¢,¢5,¢3,¢4 so that for all ¢ > 0 there is a ¢’ > 0 so
that for each sufficiently large positive integer n there is a positive integer m € [n®,n%%],
a positive rational p < 1, a lattice L C R™*2, and a basis w1, ..., Wm, Wmi1, Wmia of L so
that the following holds:

(1) v e L,v#0 implies ||v|| > 1,

(2) if Z is the set of allv € L, v = Zf:f yiw; with S0 4, = n, then [{v € Z | |]v|* <
1 + ﬁ}| 2 2Egnlogn’

(3) ForallvelL,v#£0,ifl|v]|? <1+ ,52”64, v = Z?:;Q Yiw;, and Ym41 > 0, then
vi €4{0,1} fori =1,...,m, Ym41 = 1.

(4)  Ifuy # us, |uj||> <1+ ,52”64 and u; = Y v, fyi(j)wi for j = 1,2 then there is a
t=1,...,m so that 'yi(l) +* 7(2)

1 2

(5) size(p) <n, 0<p< 9"
(8) |det(wi,..., wmya)|] =277

Moreover there is a probabilistic Turing machine C so that for all ¢ > 0, thereis ac’ > 0
so that the following holds. If C gets n and c as inputs then it returns the following output
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in time n° : an integer m, a rational p > 0 and linearly independent vectors ¥1,...,Um+2 €
Q™ "2 with size(v1, ..., Umi2) < n® so that there exist vectors Wi,y Wmao € R™2 50
that ||w; — 3;]| < 27" fori =1,..,m + 2 and with a probability of at least % if L is the
lattice generated by w1, ..., Wm+2 then m, p, w1, ..., Wm+2, L satisfy conditions (1), (2), (3),

(4), (5), (6).

Remark. Condition (6) is not really new, compared to the conditions of Lemma 2.1.
There the fact that v1,...,vm+2 1s a basis implies that their determinant is not zero and
therefore from size(v1, ..., vm42) < n° we get a similar lower bound for the absolute value

of the determinant.

First we show that Lemma 3.1 imply Lemma 2.1. We claim that if ¢, ¢», 3, ¢4 are the
constants from Lemma 3.1, ¢ is sufficiently large with respect to ¢1,¢2,¢3, ¢4, and p, n,
m, U1, ..., Um+2 meet the requirements of Lemma 3.1, then p — 8p, n m, v; — (1 + p)o;,
c1 — €1, Co —+ ', c3 —> 3, C4 — %‘* meet the requirements of Lemma 2.1.

(6), [Jwi — 5] < 27" and the assumption that ¢ is sufficiently large with respect to
¢o implies that if 7' is a linear transformation with Tw; = o; for 2 = 1,...,m + 2 then T
is invertible and 1 — 27" <||T| <14+ 27", 1 — 277" <||T7Y| <1+ 27" where cs is
sufficiently large with respect to ¢1,¢2,¢3,¢s. (We define the norm of a linear transfor-
mation A by ||A| = sup{||Az| | ||z|| = 1}.) Now we can easliy check that requirements
(1),(2),(3),(4),(5) of Lemma 2.1 are met.

(1). v € L, v # 0 implies that v = (1 + p)Tw for some w € L, w # 0 and so
w=(1+4p)" T v, that is ||w|| < (1 + p)~Y||T*||||v||, Using that by (1) ||w| > 1 we get
that ||v| > (1 + 5)(1 —27™°) > 1. (5) implies that 7 > 27" and so ||lv]| > 1.

(2). Assume that w € L, ||w|? < 1+ 5, w = 2:31_2 Yiws, Yooy = n. Clearly
v=(14p)Twe L,v =" yv; and |[o||> <(1+5)2(1+27"")2(1+75)> <1485 =1+p.

(3). Using a similar calculation as in the proof of (1) and (2) and using the fact ¢4 = &,
we get that each v € L, v # 0, ||v]|> < 14 p2™™* can be written in the form v = (1 + 5)Tw
with w € L, w # 0, ||w||1 + ;32"54. Therefore the defintion of 7' and (3) implies (3).

(4). The proof is similar to the proof of (3).

(5). This is an immediate consequence of (5), size(1, ..., Um4+2) < ncl, and the definitions
of v;, p and ¢s.

Proof of Lemma 3.1. For each sufficiently large positive integer we define a lattice £,,.
L = L, will satisfy the conditions of Lemma 3.1. The appropriate choice of c1, ..., c4 (which
do not depend on n) will follow from the properties of £,,. m, 5 and the basis w1, ..., Wm42
will be defined together with £,,. The second constructive part of the lemma will be a
trivial consequence of these definitions.

First we define a larger class of lattices which depends on the choice of several parameters.
We will show later how can we fix the values of these parameters to get the lattice with
the appropriate properties.

Definitions. 1. p; will denote the ¢th prime number, that is, p; = 2, ps = 3, p3 = 5, etc.
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2. Assume that b, w, ¢, k, u are positive integers. We define a lattice L = L(b,w, ¢, k, i)
in R*T2, L will be generated by the vectors vy, ..., v, 1o defined below.

The coordinates of vector v; will be denoted by x; ; forallt =1,...,c 42,5 =1,...,¢.42.
Let B = wkt!

The definition of v;, for 1 = 1,...,¢. xi: = V0ogpi, Xi+2 = Blogpi. xi; = 0 for all
ALt

The definition of v, 1. X,+1,+2 = Blogb. x;; = 0for all j # .+ 2.

The definition of v, 12. X.i42,41 =W ™%, Xot2,42 = Blog(1+%). xi,; = 0forall 7 # ¢+1,
JjFEL+2.

The vectors v, ...,v,42 form the rows of the matrix shown below.

Viegpr ... 0 0 Blog p:

0 ... logp, 0 Blogp,
0 0 Blogb
0 0 w™*k Blog(l-l— %)

The following lemma is somewhat more general than what we need for the proof of
Lemma 3.1 since its original motivation was related to factoring. We will show that if
21'2—11 8;v; is a small vector in the lattice L(b,w,t,x,u) then g = []i_; pLM is close to b
and g = b (mod w). That is, by searching for a short vector in the lattice, we search for
an integer in the arithmetic sequence b + lw (|!| is smaller than a small power of b) which
has only small prime factors. The last basis vector v,12 makes it possible that a short
vector my indicate any number of this arithmetic sequence, without the last vector the

short vector would always indicate b.

Lemma 3.2 . Suppose that «,u are positive real numbers, ¢ > 0 is sufficiently large,
w is an integer sufficiently large with respect to c, and ¢,b are positive integers so that
(logw)¢ < ¢ < (logw)?e, w# < b < 2wk, u >2k+6,xk > 2. If L = L(b,w,t,k,u) then the
following holds:

Assume that w € L, w = Z:;Lf S;v; and 8,41 > 0. If |w|* < w™! +logb, then

(1) 8,41 =1

(2)6; <0 fori=1,..,.

(3) 6.42] < wet!

(4) TTezy P = b (mod w).

(5) if g = [[i—yp; * = b (mod w), where v; € {0,—1} fori = 1,...,¢, and |b — g| <
min{w%_l,w"_%}, then there are integers v,11, V.12, so that w' = :if ~;v; implies
|w'||? <8w™2 +logb <w™! + logb.

(6) For all v € L, v # 0 we have ||v|| > log b.
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Remark. Assume that r is an integer with 1 < r < w. We may define a lattice
L(b,w,t,x,p,7) by changing only the value of v,45 in the definition of L(b,w,¢,x, p).
Namely let us define the last component of v, 5 as Blog(1+ 7), all of the other components
of v,42 remain the same as before. Lemma 3.2 remains tru for L = L(b,w,¢,k,u,r) for
any integer r with 1 <r < w.

First we show that Lemma 3.2 imply Lemma 3.1. Let « = 2, u = 10. Assume that &
1s an integer suffciently large with respect to x and g and let ¢; = %k, Gy = k2,63 =1,
Cq4 = % We show that Lemma 3.1 holds for these values.

Assume now that n is a sufficiently large integer, we will define m, p, w1, ..., wn, as re-
quired by the lemma. L = £, will be defined by £, = (log b)_%L(b,w,L,Kz,,u) after we
heva selected the values for all of the parameters. (By definition oL = {az | z € L} for a
lattice L.) b,w,t will be defined in the follwoing way.

Assume that the integer n is sufficiently large with respect to k. Let J be a positive
log J

océ log J
J clearly exists, its size (the number of bits in its binary representation) is polynomial is

integer so that n = [+ |. Since n is sufficiently large with respect to k such an integer
n, and J (that is, its binary representation) can be computed in time polynomial in n.
Let ¢ be the number of primes less than (log J)*. (Note that ¢ and pi,...,p, can be also
computed in time polynomial in n.)

We select b at random. T' will denote the set of integers that are the product of n
distinct elements of the set {pj,...,p,}. We pick b with uniform distribution from the
set I'. Then we choose the integer w with the property w* < b < 2w*. Finally let
L= @L(b,w, t, &, ) with the defined values of parameters. Lemma 3.1 will hold with
L="Ln, m=1¢ w; = (logh) 3y, fori=1,..,m+2and p = 3w >([logd]) .

The choice of b was the only random step in our construction. We show that if b6 meets
the following requirements then the conditions of Lemma 3.1 are satisfied.

() [l >t
(@) ifr= min{wZ~!,w*"3} = w? then in the interval (b — r,b+ r) there are at least
2nlog ™ elements of T.

First we show that P((z) A (23)) > % In the proof of this fact we will use the following

lemma which estimates |I'| in terms of J and k.

Lemma 3.3. Assume that k is a positive integer, J is a sufficiently large positive
log J
kloglog J-
integers which are the product of exactly [h| distinct primes so that each of them is at

most (log J)*.

integer and h = Then, in the interval [1,J| there are at least JiTE squarefree

Proof. Let D be the set of all squarefree integers in the interval [1, J] that are the product
of exactly [h] distinct primes so that each of them is at most (log J)*. ((logJ)*)? = J
implies that D is the set of all products of [h] different prime numbers less than (log J)*.

Therefore |D| = ("((ITE]J)k)). The Prime Number Theorem implies that if J is sufficiently
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(o) — (o) k
large then 7((log J)*) > 6_1% Consequently |D| > ([Z]) where y = ¢ 1%.
Giving lower resp. upper bounds on y(y —1)-...- (y — [h] + 1) resp. [h]! we get the required

lower bound on |D|. Let z = lc(loggl?gj y(y—1)-...-(y—=[h]+1) > e Pz(z—1)-...-(z—[h]+1) >

exp(—o(l%cgz—J))m(m — 1) (z—[h]+1).
z(z—1) .- (z—[h]+1) > (z —h)*"! > zhz~1(1 — 2)h. We estimate the three factors

separately.

zh = ((log J)*)*(kloglog J)™* = Jk "(loglogJ)™* =exp(logJ — PEE2ES —
klic;lz;]gj log loglog J) = exp(log J — (_kgz_J))

= (log J) "*kloglog J =exp(—kloglog J + log k + loglog log J) zexp(—o(lc}c—gz—‘]))
(1 — 2)» = (1 — log J(kloglog J)~*(log J)~*(kloglog J))* =(1 — W)h >1 —

h _ log J
Tog )F=T = 1 ~ ¥logiog Jl(log 7=z 2 exp(— kloglog J2(log J)k—2) = exp(—o(%))-
[R]! < h* < exph1°8h —exp( 1 (loglog J — log k — loglog log J)) <exp('%-).

The inequalities together yield ([h]) > exp((1 — —)logJ — o(—kgz—)) which implies the
statement of the lemma. Q.E.D.(Lemma 3.3)

Now we return to the proof of P((s) A (ii)) > 3. According to Lemma 3.3 |T| > JiTET
Clearly |I'N [l,Jl_ki—zﬂ <J'~%3. Therefore P(—(7)) < JoREtET < J_(k—l)l(k—2), and
so

(3.1) P((i)) >1— J G067,

Since n < ﬁgm we have that 27198™ < elog2nlogn < exp(log 2ﬁgbj—gjlog log J) <

exp(loi 2 log J) = T2 We will prove that
(3.2) P(T|>J%) > 2.

For the proof of this fact we use the following trivial observation:
(*) Assume that {Q1,...,Qs} is a partition of the finite set Q) and A C Q. If we take a

random element a with uniform distribution from A, and a € Q; then for any A > 0 we

have P("Tng il < A;SI) < A

Indeed let G be the set of all i € {1,..., s} with 5%l < MEL Then 3,140 Qi <

Sice MatlQil < MaE Tice 1@il < MEHQI < A4l QED.(¥)
We apply (*) with @ — {1,...,J}, A — I'. The partition Q; is defined in the following

way. First we cut J into intervals with length between r and 7, then we further cut each

intervall into residue classes modulo w. {@1,...,@s} is the partition that we get this way.
According to (*) for any fixed A > 0 if we pick b with uniform distribution fromI" and b € Q;
then P(lI‘Q)—Q1| < )\%) < A. Therefore Lemma 3.3 implies that P(lrg—Qll < )\J_’*lTl) < A

According to the definition of @ we have |Qz| > [3rw”l] > %w%w_l = %w% So for

A= = we get P(|F NQ;: < J_kl—lcu%) < ﬁ w > b implies that if (i) holds then

w>Jﬂ(1 #=1) > J7 and Wehaveln this case P(|II' N Q;] < J_ﬁJ2#)< 15 + P((%))-

log 2

Since k is sufficiently large with respect to p we have that 1 J w1 ] > J 7% . Together
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with (3.1) this proves (3.2) and so completes the proof of P((¢) A (i1)) > % (Actually this
proof with minor modifications gives a much better lower bound.)

Now we assume that (i) and (ii) hold and we show that the requirements of Lemma 3.1
are met.

(1). This is an immediate consequence of property (6) of Lemma 3.2.

(2). According to property (5) of Lemma 3.2 we have that foralla e TN (b —r,b+ 1)
(where r is define in (ii)) there is a v € L(b,w,t,k,u) so that ||ul|? < 3w™?2 + logb,
u = E:Zf vivi and a = [[i_; p; 7. Let ¥ be the set of all vectors u with these properties
and wich also satisfy > ;7 = n. According to (ii) Y has at least 2"!°8™ elements.
Let 7' be the linear transformation with Tv; = w;. We claim that for each u € Y,
v =Tu € L with |[v||? < 1+ p. v € L follows from Tv; = w;. ||[v|* = (logb)~!|ul]® <
(logb) ™! (3w™2 +1logb) = 1+ 3w 2(logb) ™! < 143w ?([logd])~! = 1+ p, which completes
the proof of (2).

(3). Let T be the linear transformation defined above and assume that v € L satisfies the
assumptions in (3). Let u = T 1v. Then u € L(b,w,¢, &, p) and |[ul]® < (1 + ﬁ?n%)logb =
log b+ plog pan? . (1) implies that w > JH0-E), on < 2(log 7 < w3. Therefore using
that p = 3w 2([logb])~! we get that ||u]|> < logb+ w ™. This and ~,,+1 > 0 implies that
w — u satifies the assumptions of Lemma 3.2 and therefore also the conclusions (1), (2),
(3), (4). Therefore w; = Tv; implies that v = Tzu) meets the requirements of (3).

1

(4). Assume that contrary to our statement v, ’ =2 foralls = 1,...,m. Let y; = T 'u;,
i =1,2. As in the previous part of the proof we get that ||y;||* < logb+ w™'. This implies
that for ¢ = 1,2 either y; or —y; satifies conditions (1), (2), (3), (4). Therefore our indirect
assumption implies that y = y1 — yo is parallel to v,45 for + = 1,2 and we also have that
lylI?2 = (v1 +y2) - (y1 +y2) < 2(|Jyr||* +||y2]|?) < 2(w™! +logbd). This is however impossible
since ||1/L_+_2||2 > B2(10g(1 + %))2 = w2("‘+1)%w_2('“_1) > %w‘l > 2(0.)_1 + log b).

(5). Immediately follows from the defintions of p, J, w.

(6). Switching the last two rows in the matrix whose rows are vi,...,v,42 we get
that |det(v1,...,v.42)] = n_"BlogBH;TIT\/iogpi. Therefore |det(wi,...,wmt2)| =

(log b)_#n_“BlogBH;f VIogp;. The definitions of m and . imply that m < n2%.
B = n*tl therefore Bn™* > 1. logh < log(2n*) < n. Using this inequalities we get
| det(wy, ..., wm42)| > 2" =277, Q.E.D.(Lemma 3.1).

Proof of Lemma 3.2.
Notation. In the following proof we will denote by cord;(u) the ith coordinate of the
vectoru € Lfore=1,...,c + 2.

In the proof we will use the following trivial inequality.

(3.3) If®,x,¥ #0,T are real numbers then |® + x¥| < T implies |y| > 21T

¥
Let go = H{pf“ 1 S 17 S (,,57; > 0} and g1 = H{pz_sl 1 S 7 S L,(Si < O} The fOHOWiIlg

inequality is an immediate consequence of the definitions of gg and g1:

(3.4) |lw|* >loggo +loggi.
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Before we sart the proof we note that ||v,12[|> > (w#*!log(1 + £))? >(wtt! Jw™rF1)2 >

w? > w™! 4 1logb. Consequently w is not parallel to v, 5.

(3) |cord,1(w)] < [Jw]| < (w™' +1ogb)t/? < (1 + plogw)? < plogw implies that
18,4207 " < plogw and so [§,42| < wrulogw < wrtl.

(1) Assume that contrary to our statement 6,41 # 1. (We assumed that 6,15 > 0.)

Case 1. 6,41 = 0. Since w is not parallel to v,y3 and §,417 = 0, we have that at least
one of the numbers gg and ¢g; is different from 1 and so, since they have no common
prime factors, go # g1. Considering only the first . coordinates of w we get ||w|? >
log go +1log g1. Our assumption about the norm of w implies that there is an 75 € {0,1} so
that log g;, < 3(w™'+logb) and so g;, < 2b%, which implies that |log go—log g1 Zlog(?b% +
1) — log(2b3)] >(2b% + 1)~} Z%b_%. Therefore | .;_, 8;logp;| = |loggo — loggi| >
%b_% Z%w_%. Since |cord,t2(w)| < ||w|| € w™ + logb and §,41 = 0 we have that
B_1|cordH_2(w)| = |(Z;’=1 8ilog pi) + 8,421og(1 + %)| SB_l(w_l + log b). Applying (3.3)
with & — >: §;logpi, X = diq2, ¥ — log(1 + %) and T' = B~} (w ™! + logb) we get
Oi42 2(%0.)_% —w P Hw™ +log2 + plog w))%w"_l >w?z~2. Hence cord,+1(w) is at least

B_y : -
w?2w™* > w in contradiction to our upper bound on ||w||.

Case 2. §,40 > 2.

cord,42(w) = B((E;zo §;log p;)+6,41logh + d,4210g(l + %)). (3) implies that
8,42 log(1+ %) is at most 1, so we have 6,41 logb— B_1|cordb+2(w)| —1< |log go —log g1]-
cord,12(w) < |Jw|]| < (W' +1logh)z, 6,40 > 2 so |loggo — log g1| > 2logh — B~ (w™! +
log b)% -1> %log b. By (3.4) we have ||w||* > log g + logg1 > |loggo — log g1] zglogb
in contradiction to our assumption ||w||2 <w™! 4 logh.

(2) Inequality (3) implies that 8,42 < w®plogw and so §,42log(l + %) < w™l.
|cord,+2(w)| < ||w| < (w™! +1og b)% therefore |B((D ;_o di log pi)+log b+ 4,42 log(1+ 4))|
< (w™t +1og b)%, that is |log go —log g1 +logb| < B~ (w™! +log b)% + [6.421log(1+ F)| <
wF llogb 4wt < %. If contrary to our assertion there is a §; > 0 for some 7 = 1,...,¢,
then log go > log 2 and so log g1 > logb+1log2 — 1 >1logb+ ;. By (3.4) this would would
imply ||wl||? > logb + % in contradiction to our assumed upper bound.

(4) According to (2) we have g = 1 and so our estimate on |cord,;2(w)| < |lw|| < (W™t +
log b)% and (2) implies that |—log g1 +log b+68,42log(1+%)| < B~'(w™!+log b)% <wThT3,
By (3) this implies that | — log g1 + logb| < log2 and therefore, % < g1 < 2b. Let
y = b(l + %)5“"2. We have

(3.5) | —loggs +logy| < whTE,

We claim that g; is the closest integer to y. Indeed this is an immediate consequence of

(3.5) and the inequalities |log g1 — log(g1 + 3)| 2%911%

D 255512 fgw . If L= 6,15 then b(1+ %)’ =b+1lw+b(})(2)2 +... =b+lw + R, where
|IR| < 212“’72 < 2w H22 7k =2 H# T2 4 <=1 This implies that the closest integer to

b+ lw + R is g1 that is g1 = b+ lw which together with go = 1 implies (4).

>{sw™#, and |log g; —log(g1 —
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(5) Let ¢ = b+ lw, y42 = L and y,41 = 1. ||v|* = (Z;‘=1 vilogp;) + Pw™?* +
B?((3:i; vilog pi)+log b+1log(1+ %))*>. We estimate the various parts of this expression
separately.

(23:1 73 log p;) =log g = log(b + lw) =log b +log(1 + ZT‘”) =log b+ Ry, where |R;| < %‘”2

(31 7vilogp;) +1logb+1log(l+ %) =—logg+1logh+1% + Ry =—log(b+ lw) +logb+
l%-l—Rg :—log b—lT‘”—Rg—I—logb—l—l%—l—Rg :—R2+R3, where |R2| < (%)2, |R3| < |Z|(%)2

We got that ||w||? <logb+ |Ri|+ *w™2% + B%(|Ra| + |Rs|)? <logb + (¥)? + IPw=2% +
w?kt24(%)% Our assumption about |g — b| implies that |I| < min{w? "%, w* 2}. Using
this we get that each of the last three terms in the sum is at most w™2, that is, |w'[|? <
logh+ 3w™2 < logh+w™ 1.

(6) Assume that v is a nonzero vector in L with minimal length. If ||v| > w™! 4+ logb
then our statement obviously holds. Assume that ||v| < w™ +logb. Clearly either w = v
or w = —v satisfies the assumptions of the lemma, and in both cases ||w| = ||v||. According
to the already proven parts of the lemma (1), (2), (3), (4) hold. Let g = [[;_,p~%. If
g > b then ||w||* > logg > logb. Assume now that g < b. Suppose that contrary to our
assertion |wl||? < logb. If [ = §,49, then ||w||? > logg + 2w 2% Therefore |w||* < logb
implies *w™%* < logb and so [ < w*(log b)%. At the end of the proof of (4) we have
concluded that g = b + lw. Using these facts we get the following: (logb — logg)
%(b —9) < 0+ w)Mw < 267w < 4w #FYl|. Finally ||w|?® > logg + Pw™2*
log b+ Pw™2* — (logb —log g) > log b+ I*w™2* — 4|l|w™F*! =log b + |I|(|l|w™2* — 4w ™)
log b a contradiction. Q.E.D.(Lemma 3.2).

vV I IA

4. Proof of Lemma 2.2. In this section we prove Lemma 2.2, its Corollary and some
related results.

Lemma 4.1. The restricted subset sum problem is NP-complete.

Proof. We reduce the subset sum problem to the restricted sum problem. Let
Z:-r;l a;z; = b be an instance of the subset sum problem whose size is n. We choose [
so that [ is polynomial in n and 2¢ + max{log,(|b| + 1), max!_, log,(]a;| + 1)} < I. For
each fixed r = 1,...,l — g we consider the instance I, of the restricted subset sum prob-
lem: > ja,z; = b+ 7’212, where ay,...,a4,b are from the original subset sum problems
CLq_|_1 = ... = CLq_H» = 2T, aq+r+1 = ...=4aqaj.

Assume now that z; = 6;, ¢ = 1,..,q is a solution of the original subset sum problem
and ! 6 =s Letr=[f]—s Thenz;=6;,i=1,..,q,z;=1,j=q+1,...,g+r,
z; =0 for j =q+r+1is a solution of I,.

Suppose now that z; = ¢; is an arbitrary solution of I,. Egzl a;e; = b+ 212(7" —
l .

Ei:q—}-l a;ei2”")
The expression in the parenthesis is an integer |a;] < 2! for i = 1,...¢ and q < I,

therefore we have Egzl €;z; = b. This shows that by solving all of the instances I,
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r = 1,...,] — q of the restricted subset sum problem we get a solution of the subset sum

problem. Q.E.D.(Lemma 4.1)

Proof of Lemma 2.2. Assume that v and w are given with the properties described
in the lemma. By the definition of L{#)* and 4 there is a v € L so that w = Pa(u).
Suppose that u = E:’;—f viv;. w € LAY implies that 4,11 > 0. Assume that contrary
to our assertion v ¢ S3. Then ||u||2 > 14+ p2n(°4). Therefore ||u)||2 = ||¢A(u)||2 =
Jull + [AAG)P > 1+ p27(e0.

On the other hand ||'L/}A(’U)||2 = ||'v||2 + ||AA('U)||2.

v € S; therefore ||v||? <1+ p. Ais an m' by m + 1 matrix, m < n?*, m/ < n° and
each entry of A is at most n®5. By the definition of S; and A, A(v) is a vector whose each
entry is 0 or /p. therefore |A(v)]|? < n°p where p is an absolute constant. Thus we get
that ||’L/}A'U||2 <14 p+ pncl+ p2"’(°4) < ||w||2 in contradiction to the assumption that w
is a shortest nonzero vector. Therefore v € 5.

We have to show that |AA(u)|* = ||AA(v)||?. By our assumption about the minimality
of ||[AA(v)]|? in S2 we have ||AA(u)||? > ||AA(v)||?>. Assume that contrary to our statement
|AA(u)||* > ||AA(v)||?. Since the entries of A are integers and the coefficients of u and v
in the basis v; are also integers the definition of A implies that ||AA(u)||? — [[AA(v)]|? > p.

v € Sy implies |[v]|> < 1+ p and (1) of Lemma 2.1 implies that ||u|*> > 1. Therefore
|lul|* = ||v||* > —p. This yields

Jull? + JAAG)IP — (ol + [ AA@)[?) > 0
that is ||[v]|? = ||Ya(u)]|* > ||#4(v)]|? in contradiction to the assumtpion the w is a shortest
vector. Q.E.D.(Lemma 2.2)

Proof of Corollary 2.2. We claim that ||[DA(v)||*> = min{||DA(z)|*|z € Sa}. According
to our assumption v € S; so every component of the vector A(v) is either 0 or \/p. Since
z; = go,u() is a solution of the subset sum problem the first component of the vector
DA(v) is 0. Since it is a solution of the restricted subset sum problem (that is, the number
of 1’s is [%]) the second component of DA(v) is also 0. The same property of g¢ , implies
that all of the other components are ,/p. Therefore we have that | DA(v)|* = pl.

Assume now that z € Sy if ; = g¢ (%) is a solution of the restricted subset sum problem
then we get the same way as for v that | DA(z)| = pl. Assume that it is not a solution of
the restricted subset sum problem.

If Ei:l z;a; # b or Zizl z; # [4] then either the first or the second component of
DA(z) is not 0. Since they coordinates of (p)~2 DA(z) are integers divisible by I3, we get
in this case that ||[DA||?> > %p and therefore | DA(z)||? > | DA(v)]]?.

Assume now that 25:1 z;a; = b and Zi:l T; = [%] but z; = g¢,; is still not a solution
of the restricted subset sum problem. This is possible only if the is an 7 = 1,...,[ so that
z; ¢ {0,1}. Since z € S> we have that z; > 0 and therefore (P)_%DA(:U) is a vector with

integer coordinates so that the sum of its coordinates is [é] and there is at least one of
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them which is at least 2. This implies that ||DA(:B)||2gep(4 +1—1) = p(l + 3) and so
IDA@)? > [DA@)]|.

We can apply now Lemma (2.2) and get that u € S» and ||DA(u)||?> = ||[DA?|]?. As we
have proved above this implies that z; = g¢,. (%) is a solution of the restricted subset sum

porblem. Q.E.D.(Corollary 2.2)

5. Proof of Theorem 2.2. In this section we prove Theorem 2.2. We will prove the

large deviation theroems used here in the next section.

Definition. Assume that (S, X) is a hypergraph. (S,X) will be called (M,c,k)-
dispersed, if |{T € X|B C T} < o 'M holds for all i = 0,1,....,k and for all
B CS,|Bl =1 If ZC S then we will say that (S, X) is (M, e, k)-dispersed on Z if
{T € X|B C T} < a *M holds for all i = 0,1,...,k and for all B C Z, |B| = 1.

Remark. If S is the set of primes py,...,p, (as defined in Lemma 3.2) and X consists
of those subsets T' C S with HpETp € I where [ is a fixed interval, then X will have
very strong dispersion properties in the sense defined above. Namely if B C § then we
have (approximately) that [{T' € X | B C T}| < | HpeTp_l. We do not utilize this
property in our proof of the N P-hardness result (although it was used in an earlier version
of the proof). Theorem 2.2 does not assume any dispersion property of the set X, we
have assumptions only about its cardinality. (We will show that there is large a subset
of X with nice dispersion properties.) Taking into account the dispersion properties of
the hypergraph defined from the primes and adding the corresponding condition to the
assumptions of Theorem 2.2 is a possibility for improvments. (It may result only in better
constants.)

Sketch of the proof of Theorem 2.2. We will randomize the sets (1, ..., Uk sequentially.
The elements of the individual sets C; will be also randomized sequentially, more precisely
in bigger blocks. After each randomization we count the number of sets 7' € X which
intersect the already randomized (or partially radnomized) sets C; in a given number of
elements. The “given number” will be only 0 or 1. In other words assume that f is a fixed
0, 1-function defined on &, and suppose that C1, ..., C;_1 has been already randomized and
C; partially randomized (C] will denote the part of C; which has been already selected).
We count the number of T' € X with f(7) = |C;NT|for j =1,...,i—1and f(:) = |C/NT|.
We prove the theorem by showing that with a high probability this number g is always
close to its expected value. More precisely this will not be necessarily true for our original
set X but we show that X has a subset X’ with nice dispersion properties which still has
sufficiently many elements (Lemma 5.2) and for such an X, g and its expected value will
be always close.

Without some dispersion property we cannot expect that such a statement is true.
Indeed assume that all of the sets in X contains a single point @ € S. If a is selected as
a memeber of a C; then automatically |T'N C;| # 0 for all € X although the expected
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number of such sets 7' € X can be quite large. Therefore we need an assumtpion that
the number of sets in X containing any fixed point of S is not too large compared to
| X | (less than a polynomial fraction). Actually we will use a similar assumption about the
cardinality of sets containing two fixed points. This is equivalent to the statement that X is
(|X|,n~%,2) dispersed. Even if we start with such an X our proof may break down, because
after selecting (1, ..., C; we will need that if we replace X by X, the set of all T' € X with
f(7) =1TnCj| for j =1,...,1, then X; has the same dispersion property. Unfortunately
the (|X|,n™%,2) dispersion property is not inherited this way. (We will not have a similar
problem while selecting the elements a single set C; because during this process we measure
the error relative to the size of X at the beginning of the selection process.) Assume now
that X is (| X|,n™?,1) dispersed, for some positive integer | and let’s see what happens
during the choice of C. If we are able to prove that the number g is close to its expected
value using that X is s (|X|,n™%,2) dispersed, then we may apply the same proof to the
subset of X containing [ — 2 fixed points. (This subset is (|X|,n™%,2) dispersed.) This
way we get (approximatley) that X is (|X1]|,n™%,[ — 2) dispersed. Continueing selections
of the sets C; we get that X; is (|X;|,n™%,1 — 27) dispersed. Lemma 5.2 guarantees the
dispersrion property of the selected X’ C X with a large [, so during the selections of the
sets C;, [ will decrease but it will remain always larger than 2.

The subset X’ selected in Lemma 5.2 has a special structure. namely all of it sets contain
a common subset B with at most (1 — 3)n elemetns for some constant 0 < § < 1. In the
remaining part of the proof we will consider only sets C; which has an empty intersection
with B. Since the probability that BN|J C; = 0 is at least 1 —n_s for some constant § > 0
it does not cause any problem. However if we could state the theorem

End of sketch.

We formulate now another weaker version of Theorem 2.2 where the statements are
made only about hypergraphs (|.S|, X) that are (|X|,n™%,n) dispersed for some constant
a. We also give some indication about the choice of the numbers é;, ¢ = 1,2,3. Later we
show that this waeker version implies the original theorem.

Notation. z < y1, ..., yx will mean that z is sufficently small with respect to y1, ..., Y.

Lemma 5.1. For all a1 > 0, as > 0,a3 > 0and d; > 068y > 0,83 >01ifd3 < §; < dg <
a1, as, a3, and n is sufficiently large then the following holds:

Assume that (S,X) is an n-uniform (|X|,n~% n)-dispersed hypergraph, n* < |S| <
no, |X| > 292mlen L — [n%] and Cy,...,Cy is a random sequence of pairwise disjoint

—1-%2] elements, with uniform distribution on the set of all

subsets each with exactly [|S|n
sequences with these properties. Then with a probability of at least 1 — 27" the following
holds:

for each 0, 1-valued function f defined on {1,...,k} there is a T € X so that f(j) =

|C;NT| forall j=1,.., k.
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We will show that this lemma implies theorem 2.2. The following lemma is needed for

this proof.

Lemma 5.2. For all a3 > 0, as > 0 there exist a § > 0 so that if n is sufficiently
large then the following holds. Assume that (S, X) is an n-uniform hypergraph, |S| < n°t
and |X| > 2%2"1°¢" Then there is a B C S, |B| < (1 — B)n, so that if S' = S — B,
X'={T—-B|Te¢€X,BC T} then |X'| > 2P"1°¢™ and (S’ X'} is an n — | B|-uniform
(|X'|,n=#,n — |B|)-dispersed hypergraph.

Proof. Assume that 8 > 0, is sufficiently small with respect to a3 and ay. Let B € X
be maximal with the following property:
(5.1) HTeX|BCT}>nPBlX]|

We claim that |B| < (1—8)n. Indeed, otherwise the number of elements of X containing
B is at most |S|P" < (n*1)Pn = 2fxnlogn The definition of B implies that this number
is at least | X |n A" > gaznlogn—fnlogn _ g(az—fF)nlogn e got 2(*2—A)nlogn < 9fcinlogn,
This is a contradiction since 3 is sufficiently small with respect to a1, as.

Now we show that B satisfies the conditions of the lemma. According to (5.1) |X'| >
n~PIBl > p=Fn > 9=Anlogn  Guppose that contrary to our assertion (S',X") is not
(|X'|,nP,n — |B|)-dispersed. Then there is a D € |X'| with [D| = 4,1 <j <n—|B|so
that |[{T" € X' | D C T'}| > | X'|n=P7. For each set T” in the last inequality we have that
BUT' € X. Therefore if B = BUD then [{T € X | B' CT}| > |X'|n=F3 > n=PIBI=F1 —
n=PIB'l in contradiction to the maximality of B. Q.E.D.(Lemma 5.2)

Now we show that Lemma 5.1 implies Theorem 2.2.

We apply Lemma 5.2 to the hypergraph (S, X) of theorem 2.2. Let (S’, X’) be the
hypergraph defined in Lemma 5.2. We have that it is (| X'|,n~? ,n — |B|)-dispersed and
|X'| > 2Anlogn Let m = n—|B|. We may formulate some consequences of these properties
in terms of m. We get that |X'| > 2°™mle™ and (S' X') is (|X'|,n_§,m) dispersed (since

Now we may apply Lemma 5.1 to the hypergraph (S, X), withn — m, as — 3, a3 — g

We pick the numbers §; = 1,2,3 so that they meet the requirement of Lemma 5.1. V\2fe
claim that the requirements of Lemma 2.2 are also met with the same 41,5 and §3 — 52—3
Assume that we pick (1, ..., at random with the distribution given in Lemma 2.2. F' =
Ule C; is a random subset of S with exactly [n%:]|S|n~17% < |S|n~17%2+d8 < |.S'|n_1_572
elements. (§; was sufficiently small with repsect to é2). Since |B| < n, we have that
P(FNB =10) < nn~1=% = n=%. The distribution of C1,...,Cr with the condition
FN B =0 is the same as the distribution of (1, ..., O according to Lemma 5.1. Therefore
the probability that C4, ..., C} satisfies the conclusion of Lemma 5.1 and so the conclusion
of Theorem 2.2 as well is at least 1 — (n_% —(1— n_%)n_53) >1-— n=%. Q.E.D.(Theorem
2.2)
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Proof of Lemma 5.1. We will pick the sets (4, ...,y sequentially and describe the
distribution of the number of intersections T'N C;, T' € X with one or zero elements. The
following lemma describes what happens at the choice of a single C; (C' in the lemma
below). The hypergaph (S,Z) in the lemma will play both the role of (S’, X) (for some
S'C S)and (S", Xp), where D C Sand Xp={T € X |D CT}.

Lemma 5.3. For all 1 > 0,82 > 0 and v1 > 0,v2 > 0, if 2 < 71 < (1,82 then the
following holds. Assume that M > 0 and (S, Z) is an n-uniform (M,n="2 2)-dispersed
hypergraph, %n2 < |S| < nP* and C is chosen at random with uniform distribution from
the set of subsets of |S| with exactly t elements where |S|n™17272 < ¢t < |S|n_1_%72.
Suppose further that the numbers X\;, 1« = 0,1 are given so that for any W C S with
(W|=n, \i=P(|CNW|=1) fori=0,1.

Then with a probability of at least 1 — 2™™"" we have that for 1 = 0,1
if |Z| < M then, |{T € Z | |TNC|=1}| = \;|Z| + R; where |R;|<n "M

We continue the proof of Lemma 5.1, accepting Lemma 5.3. Assume that a;, as, ag are
fixed, and 41, d2, 63 were picked as described in the statement of the lemma.

Let f be a fixed 0, 1-valued function defined on {1, ..., k}. Since the number of choices for
f 1s at most 97°* it is sufficient to prove that for each fixed f the probability probability of
the event Ay is at least 1-2_”251, where Ay holds iff thereis a T' € X with f(j) = |C; N T|
for j=1,.., k.

We estimate now the probability of Af for a fixed f.

We will use the following notation. If Y C S then Y]Si) will denote the set of all T' € X,
Y C T with f(j) = |C;NT| for 5 =1,...,i. Let b; = E;;ll f(j)- Suppose that T' C S,
|T| = n and [T N C;| = f(j) for j = 1,...,1 — 1. For fixed Cy,...,C;_1 and for the
randomization of C; let u; = P(|B N C;| = f(i)). (Clearly p; does not depend on the
choice of T,C1, ..., Ci.) Let ki = [[}, pi. Finally let ®; = Ji_, C;.

For later use we give a lower bound on kg. If f(i) = 0 then |C;| = ¢t < |S|n~17272
and |S — ®,_4| > %nQ — n% implies that p; > % If f() = 1 then it is easy to see that
w; > n=372, Therefore ki > Hi-czl pr > n73kr > n=372n’t

We have §3 < §;1 < 83 < aj,as,as3. Let 64 > 0 so that §; < d; < aj,as,a3. Suppose

these numbers are fixed and n is sufficiently large.

Claim 5.1. Forall: = 1,...,k with a probability of at least 1 —2_n54+i"%54 the following
holds:
for all D C S with at most 2k — 21 elements if Xp = {T' € X | D C X}, then we have that
either DN ®; #( or |D§ci)| < (1 4+ in=%) k| X |n—2IPl,

We prove the statement by induction on 7. Assume that our statement holds for ¢ — 1

and we prove it for 1.
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First we estimate the probability of the event that the Claim holds for a fixed set
D C S. Assume therefore that D C S is fixed |D| < 2k — 27. We formulate a consequence
of the inductive assumption. After the randomization of Cy,...,C;_; with a probability

of at least 1 — 2_”54"%(1‘_1)"%54 : for all D' O X with at most |D| + 2 elements if Xp/ =
{T € X | D' C T}, then we have that either D' N ®,_; # 0 or |(D')Sj_1)| < (14
(2 — l)n_‘s‘*)ni_l |X|n_°‘3|D/|. (In other words we need the inductive hypothesis only for
sets containing D.) Assume that D N ®;_; = (. The last inequality implies that if
S'=8—-®, 1 —Dand X' = {S'NT | T € Dgci_l)} then the hypergraph (S’, X') is
(M,n=%2,2) dispersed where M = (1 + (i — 1)n"%)k;_1|X|. Now we randomize C;. If
Ci N D # ) then the conclusion of the lemma holds. Assume that C; N D = (), that
is, we randomize C;_1 with this condition. This means that we pick C;_; with uniform
distribution from the set of subsets of S — ®;_; — D with exactly |S|n"!17% elements.
Therefore we may apply the upper bound of Lemma 5.3 with S — S', Z — X', C — C},
M = (14 (i —1)n"%)k,_1|X|n"2IPl i = f(2), B1 — a1, B2 — a3, t = k, y1 — 464,
Yo — 52.

We get that with a probability of at least 1 — 27454

DS < Mgy (14 (= 1)n=0) (1 + n=*8) s,y | X [n—eIPl,
The definitions of A; and y; and |S| > n? imply that [Afu) — pre)| < 2 therefore |D§ci)| <
(1 4+ in=%)k;_1|X|n"2IPl. We got that for every fixed D with a probability of at least
1 — 27%% ejther D N ®; # 0 or the upper bound on |D§ci)| (described in the claim) holds.
This is true for every fixed D C § with at most 2k — 2¢ elements. The number of possible
sets D is at most |S|* < poan’t < gealognn® 2""%64, therefore by taking the sum of the
exceptional probabilities for each D we get that the assertion of the Claim is true.

Now we may repeat the proof of the claim for D = () but both the upper and lower bounds

of Lemma 5.3. (The already proven Claim will guarantee that the requirements of Lemma

5.3 are met.) The application of (1) yields that with a probability of at least 1 — g—n3’t
the lower bound |@}| > (1- in_54)ﬂi|X| holds for « = 1,...,k. This, xr > n—37n’t S

' z
9—372n’? logn, | X| > 2%2!°6™ implies that with a probability of at least 1 — 272" the set
(DI]‘E is not empty and therefore A holds. é; < é4 implies that we have proved the required
lower bound on the probability of Af. Q.E.D.(Lemma 5.1).

Proof of Lemma 5.3. Let § > 0 with 79 < v1 < § < (1,02 and let r = |—n5-| We
randomize a C by selecting at random a sequence of pairwise disjoint subsets Cy,...,C,
of S whose union will be C. For the description of this randomization let ¢; be a fixed
positive integer for ¢ = 1,..,7 so that %tr_l <gq <2tr~'and Y._,q =t Ci,..,Cpr wil
be a random sequence of pairwise disjoint subsets of S so that |C;| =¢; for:=1,...,r — 1,
moreover we take the sequence Ci,...,C, with uniform distribution form the set of all
sequences with the described properties. Let C' = |Ji_, C;. Clearly the distribution of C'
meets the requirements of the lemma. We will randomize the sets (i, ...,C, sequentially.

Let ®; = (Ji_, Ci and Z{”) = {T € Z | [T N &;] =1} for i = 0,1,...,r, . = 0,1, (B = 0,
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Zéo) = 7, Zél) = (). We note that if Cy,...,C;_; are fixed then the distribution of ZL(i)
depends only on the sets Z(gi_l), Zl(i_l) and the remaining part of Z is irrelevant. (These
other elements of Z have already an intersection with ®,_; containing at least two elements,
so they cannot contribute the sets Z L(i), ¢t =0,1.) Therefore we will follow the evolution of
the sets ZL(i), ¢t = 0,1 as 1 grows from 0 to r. Actually we will need only the numbers |ZL(i)|,
¢ = 0,1, since, as we will prove, the numbers |Zb(i_1)|, ¢ = 0,1 approximately determine
|ZL(i)|, ¢t = 0,1. To show this we need a lemma about the choice of a single set C;. This
lemma is very similar to Lemma 5.3, only the random set is of smaller size. The advantage
of the smaller size is that the probability that C; intersects a fixed T' € Z in more than one

point is so small that everything that we get this way can be included in the error term.

Lemma 5.4. For all B > 0,82 > 0 and v; > 0, if v3 < (1,02 then the following
holds. Assume that M > 0 and (S, Z) is an n-uniform (M,n =2 2)-dispersed hypergraph,
%n2 < |S] £ nP* and C is chosen at random with uniform distribution from the set of
subsets of |S| with exactly r elements where r = |S|n™1772 41 < 75 < 27y;. Suppose
further that the numbers o;, 1 = 0,1 are given so that for any W C S with |W| = n,
oo=P(ICNW|=1) fori=0,1.

Then with a probability of at least 1 —2~™"" we have that fori = 0,1

if |Z| < M then, {T € Z | ITNC| =i}| = 0;|Z| + R; where |R;| < 10n" 22 M.

Proof. First we estimate {T' € Z | |T NC| > 2}. For this we use the following lemma.

Lemma 5.5. For all sufficiently small § > 0 and for all sufficiently large positive integers
s and t the following holds: assume that A is a finite set, w(z,y) is a real-valued function
of two variables defined on A and K > 0 is a real number with the following properties:

(1) 0 <w(z,y) forall z € A,

(2) Ypeaw(z,y) < K forall y € A,

(3) w(z,y) = w(y,z) for all z,y € A,

(4) S2|A|_2(erA EyeAw(m’y)) < Kit,

(5) |A| > st?

Assume further that Y is a random variable uniformly distributed on the set of subsets

of A with exactly s elements. Then with a probability of at least 1 — 2_t6, we have that

Z Z w(z,y) < 2Kt

z€Y yeY

We apply Lemma 5.5 with A — S. Let w(z,z) = 0 for all z € S and for all
z # ylet w(z,y) = {T € Z | z,y € Z}|, K = Mn=P2. Since (S,Z) is (M,n"P2,1)
dispersed we have that for each fixed y € A, > qw(z,y) < T € Z | z ¢
ZY < K. Ylesdyesw(zy) = Yrez|Zl(n? —n)| < Mn? < Kn?nP2>. Therefore
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r?|S|? Ezes Eyes w(z,y) < n72722KnP2 = Knf2=272. Therefore we apply Lemma 5.5
with ¢t — nf27272, We pick § > 0 from Lemma 5.5 with 43 < 6 < 1. The conclusion of
Lemma 5.5 is that with a probability of at least 1 — g—ni(Fam2) Y osec Eyec w(z,y) <
2Mn=P2pf =272 = 2Mn=272. Since 2 < §(B2 — 72) this implies that with a probability of
at least 1 — 27" ", HT € Z | |ITNC| > 2} < n 2 M.

Using this we get that with a probability of at least 1 — 9—n’"?

(5.2) T ez|ITnCl=1}=3,cc {T € Z |z € T} + R where |R3| < n™?72,
We estimate the sum ) . |[{T € Z | z € T'}| using the following lemma:

Lemma 5.6. For all sufficiently small § > 0 and for all sufficiently large positive integers
s and t the following holds: assume that A is a finite set, w is a real-valued function on A
and K > 0 is a real number with the following properties:

(1) 0 <w(z) < K forall z € A,

(2) s|A|7H X caw(z) < K,

(3) |A| > st?.

Assume further that Y is a random variable uniformly distributed on the set of subsets

of A with exactly s elements. Then with a probability of at least 1 — 2_ta, we have that

) w(y) —slA™ D w(z)| < Kt'°

yeY zC€A

We apply this lemma with A — S, Y — C. We define the function w by w(z) = |[{T € Z |
z € T}|. Since (S, Z) is (M,nP2,1)-dispersed we have that w(z) < Mn=F2 for all z € S,
therefore we put K = Mn=P2. s|A[7' Y _ w(z) < n 1772 [Mn = Mn™7 = Knf277%,
Therefore we apply Lemma 5.6 with ¢t — n”2772. Let v; < § < 1. Lemma 5.6 implies that
with a probability of at least 1 — 2="""" we have that

(5:3) [(Sacc KT € Z |2 € TH) 78| Syes T € Z | 2 € TH| < n2%.
We will also need an upper bound on the probability that a fixed W C S, |W| = n

intersects C in at least two points. We claim that
For any W C S, |[W| = n we have that

(5.4) P(CNnW|>2)<n " forany W C S, |W|=n.

Indeed P(|ICNW| > 2) < (;)(n_1_72)2 <n722,

We estimate the second term in (5.3). r|S|™' Y c{T € Z | z € T} = r|S|7!|Z]n.
According to the definition of o1 and (5.4) if ¢ = r|S|™! then o1 = ng + R4, where
|Rs4| < n™272. Therefore we get that

r|S|! Yres T €Z |z €T} = r|S|7|Z|n = 01|Z| + Rs where |Rs| < 4Mn=272,
This, (5.3), (5.2) implies that with a probability of at least 1 — 277" we have |[{T € Z |
ITNC| =1} = 01|Z| + R1, where |R1| < 4n~27* M, that is we have proved the statement

of the Lemma for 7 = 1.
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(5.4) implies that o + 01 = 1 + Rg, where |Rg| < n™272. This, the already proven part
of the Lemma for 1 = 1 and (5.2) and (5.4) implies that with a probability of at least
1 — 277" we also have [{T' € Z | |TNC| = 1}| = 00|Z| + Ro, where |Ry| < 10n—27" M.
Q.E.D.(Lemma 5.4)

Now we continue the proof of lemma 5.3. Let x;, = |Z¢|, 7 = 0,1,...,7, ¢ = 0,1. Let
€i,. be the expected number of elements of Z which intersect ®; in exactly ¢ points for
i=0,1,...,7, . = 0,1. First we show that the sequence of 2-dimensional vectors (¢; ¢, 1),
i =1,...,r satisfies a linear recursion, then we show that the sequence (x; 0, xi,1) satisfies
the same recursion approximately. From this we will get an upper bound on the distance
of the corresponding elements of the two sequences.

Let u;,, be the probability that any fixed element T of Z intersects ®; in exactly ¢ points.
(Since Z is p-uniform the value of y; , does not depend on the choice of T'.) We have that
i, = |Z|pi,,. Let T be any fixed element Z and we consider the conditional probabilities:
Vi =P(TNCi|=¢||TNCiz1|=r) fori=1,..,r, 0 =0,1, sk =0,1. (Again 7, , « does
note depend on the choice of T'. Also note that 7,91 = 0 ) Let I'; be the matrix

7i,0,0 70,1
Yi,1,0 Vi1l

If 2, = (Zi’0> , then by the defintions of ~;, . and p;, we have I';i;—y = f; for
il

i=1,..,7. Let & = Zpa;. We also have I';§;_y = &,4=1,...,7. Let x; = (i“?) We
2,

claim that with a probability of at least 1 — 2727 we have

(5.5) Txi—1 = xi + R; where |Ri||z, < n~2M.

(Note that the error term R; is a two dimensional vector and we use the L; norm
to measure it.) Indeed this is an immediate consequence of Lemma 5.4 if we apply it
separately with 7 — Z(gi_l), n—+nS—5—® and 7 — Zl(i_l), n—-n—15—>5—9,.

Therefore, if (5.5) holds, we have two sequences of vectors &, ...,&, and Xo, ..., Xr SO
that £, = %o, € satisfies the recursion T';§;_1 = &; and %; satisfy the same recursion
approximately. Any 2 by 2 matrix A induces a linear transformation on R? so we may
define its norm as the norm of the corresponding linear transformation of R? with respect
to the L; norm namely ||A| = sup{||4z|z, | = € R?,||z||z, < 1}. Since the entries of
I'; are nonnegative numbers and their sum is at most 1 in each column (they are the
probabilities of disjoint events with the same condition) we have that ||I';|| < 1. So we get,
using the exact and approximate recursions that

€=l < ITi(Eim1—%i1+Ra)|| S Tall (i1 —%i—1 ]|z, I Ral[E1) < 1E=Rillz, +n 72 M.
Therefore if D, = ||f_z — Xi|| then we got that D; < D;_; + n~28 M and therefore D, =
I%r — érlln, < n M < ndn=2M = n=°M < n= " M, that is

(5.6) ||xr — & llz, < nM.
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Xo|Z|
M| Z|
Xr,, and ZL(T) and (5.6) imply the conclusion of the lemma. Q.E.D.(Lemma 5.3).

Since C' = ®,, we have A\, = p,, and so & = < ) Therefore the definitions of ¥,

6. Large deviation theorems. In this section we prove Lemma 5.6 and Lemma 5.5.
In their proofs we use the following well-known large deviation theorem about independent

random variables with identical distributions.

Theorem 6.1. For all sufficiently small § > 0 if t is sufficiently large, K > 0, n is a
positive integer then the following holds. Assume that X1, ..., X,, are mutually independent

random variables with identical distributions which take their values in the interval [0, K|

so that E(>.._, X;) < Kt. Then with a probability of at least 1 — 2% we have

n n

(30 X0 - B(Y, X)| < Kot

Remarks. 1. The theorem remains valid if the distributions of the random variables
Xi,...,X, are not necessarily identical. However we use the theorem only in the case of
identical distributions.

2. Although the theorem is “well-known” we haven’t located yet a reference which would
imply it without much additional work. (Any suggestion to an appropriate reference is
welcome.) The theorem can be proved by Chernoff’s method of bounding large deviations
(see [Ch]). In the special case when the random variables X; take only the two extreme
values 0 and K the theorem follows immediately from Corollary A.14. (p. 93) of [AS].
The proof given there (based on Chernoff’s method) can be modified for the general case.
If we do not want to get the optimal constants then the proof can be simplified by proving
only the one-sided inequality

(57, X) — B(TL, X0) < K.

This implies the inequality in the other direction if the random variables satisfy the
additional condition, E(X;) > % In this case we can apply the already proven part to
the random variables K — X;. (Because of our additional assumption E(} . (1 — X;)) <
E(>°"_, X;) and therefore the requirements of the theroem are met.) The general case
can be reduced to this special case by dividing the interval [1,n] into v/¢ subintervals of
equal size (with one possible exception), and for each subinterval I consider Y; = E:‘Lef X;
as a single random variable. (We change Y; slightly by excluding all of its values which
are higher then % times its expected value. By the already proven part of the theorem

this causes only an exponentially small change in the distribution.) With the appropriate
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change in K the new random variables satsify the additional condition so we may apply

the theorem to them.

Proof of Lemma 5.6. We pick the set in the following way. We choose a sequence of
points ay, as, ... independently and with uniform distribution from A. Let g be the smallest
integer so that |[{a1,...,a,}| = s and let ¥ = {a1,...,a4}.

We claim that if § is sufficiently small than with a probability of at least 1 — 2_%6,

(2) [(Syey w®) = Tioy w(a)| < K172

(b) |s gl <

Theorem 6.1 implies that with a probability of at least 1 — 272t we have (>S9, w(asi))—
gAY caw(z)] < Kt17%3. (a) and (b) imply the statement of the lemma.

The inequality |A| > st~! imply that for any fixed j = 1,...,7, P(a; € {a1,...,aj-1) <
t~!. Therefore by Theorem 6.1 (b) holds. This also implies that the upper bound of
Lemma 5.6 is true.

For the proof of (a) for each integer 7 let

Y; = {a € A| a occurs with multiplicity ¢ in the sequence a1, ...,a, },

Let |Y;| = v;, and p; = P(y; > t_%q). Theorem 6.1 imply that Y>>, p; < 2-"*" therefore
with probability of at least 1 — 2~ we have that ;| < t=39 for all ¢ = 1,...,2. Each Y;
cam be exteded into a random subset with exactly [t_%q] elements. For ¢ <t we estimate
EjeYi w(a;) by the the already proven upper bound of Lemma pontok. For all 7 > ¢ we
use Markov’s inequality to estimate the probability that ) {w(a;)|j € U;5,Y: is at least
twice as much as its expected value. These bounds together imply (b). Q.E.D.(Lemma
5.6)

Proof of Lemma 5.5. Let » = [t5] and let ¢, ..., g, be integers with %t_%s < g < 2w,
(If s < ¢3 then the conclusion of the Lemma is a trivial consequence of (2)). Let Y7,...,Y,
be a sequence of pairwise disjoint random subsets of A so that |Y;| = ¢; for : = 1, ..., with
uniform distribution on the set of all sequences with these properties. We claim that with

a probability of at least 1 — 21" we have
(a) foreach1<i<j<gq, > cv Eerj w(z,y) < LE2Kt

(b) foreachi=1,.,q,% cv. Zeri w(z,y) < Z—z2Kt1+%.

Clearly (a) and (b) imply the conclusion of the lemma.

Proof of (b). Assume that ¢ is fixed and we randomize Y; by choosing a sequence of
distinct random points y1, ..., y,, with uniform distribution from A. Assume that y1,...,ym
has been already selected. We claim that
(€)  PUEI) T pawluyue) > 52K ) < 5.

This is an immediate consequence of Markov’s inequality. Using (c) we may conclude
the proof of (b) in the following way: As we randomize the points y1, ..., y,; sequenntially,
we also select a sequnce of positive integers dg = 0 < d; < ... so that d; is the smallest

integer with the property
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Ziq_ijzidj_l+1?ﬂ(yj,yk)I> %th}{-

Because of (c) the probability that after selecting d; we will not be able to select a d; 1
is at least % Therefore the probability that d; cannot be selected for already some j < ts
is at least 1 — ¢3 which implies (b).

Proof of (a). Assume that we randomize first the set Y; and then the set ;. Suppose that
the first randomization has been already completed, that is, Y; is fixed. For each y € Y;
let w; =), Foralla € A—Y;let w'(a) = > cy, w(z,a). (2) implies that w'(a) < 1 for
all a € A —Y;. We apply Lemma 5.6 with A - A - Y7, w — w'. Q.E.D.(Lemma 5.5)
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