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Abstract

The semantics of decision problems are always essentially independent of the
underlying representation. Thus the space of input data (under appropriate
indexing) is closed under action of the symmetrical group S, (for a specific
data-size) and the input-output relation is closed under the action of 5,. We
show that symmetries of this nature (together with uniformity constraints) have
profound consequences in the context of Nullstellensatz Proofs and Polynomial
Calculus Proofs (Grobner basis proofs).

Our main result states that for any co-NP (i.e. Universal Second Order)
sentence ¥ any non-constant degree lower bound on Nullstellensatz proofs of 1,
immediately lifts to a linear-degree lower bound. This kind of “gap” theorem
is new in this area of complexity theory.

The gap theorem is valid for Polynomial Calculus proofs as well, and allows
us immediately to solve a list of open problems concerning degree lower bounds.
We get a linear degree (linear in the model size) lower bounds for various
matching principles. This solves an open problem first posed in [3]. The bounds
also improves the degree lower bounds of (n®) achieved in [5] as well as the
degree lower bounds achieved in [4].

Another corollary to our main technical result underlying the gap theorem
is a direct linear degree lower bound on proving primality. This improves recent
work by [13]. We also give a linear Polynomial Calculus degree lower bound on
the onto-Pigeonhole principle answering a question from [16].
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I Introduction

I.1 Automatizable proof systems

An abstract proof system can be viewed as a non-deterministic tool for ‘certifying’
facts. Some proof systems are more eflicient than others in the sense that they in
general allow shorter certificates (proofs) than other proof systems do. However, there
is often a price to be paid for the efficiency.

Consider, for example, the usual natural-deduction style propositional proof sys-
tems used in textbooks. These proof systems are generally more efficient than reso-
lution style proof systems. The advantage of resolution based proof systems lies in
their determinism i.e. in the fact that it is not much harder to find a proof than to
check it. This is the main reason why automated reasoning and other tools for Al
much more widely is based on resolution rather than on natural-deduction [14].

Within the last years various algebraic proof systems have been studied intensively.
In particular the Nullstellensatz proof system (NS) and the Polynomial Calculus (PC)
(also sometimes referred to as the Grober basis calculus) have got a lot of attention. At
first, NS was merely introduced as a theoretical tool used to settle an open problem in
the field of proof complexity [3]. Later, after PC had also been introduced, it became
clear that both these systems have many merits [5], [7], [L6]. As a start NS and PC
have a good relationship between the search complexity (the number of algorithmic
steps required to find a proof) and the proof complexity (number of symbols in the
proof). This relationship is essentially* polynomial for both systems. Thus both
proof systems are essentially automatizable in the sense of [7]. On the other hand,
both NS and PC are (theoretically) more efficient than resolution. In addition, it
is clear that all the known standard refinements and strengthenings of propositional
resolution (like Lock Resolution, Linear Resolution and Hyper-resolution [14]) have
counterparts in NS and PC proof systems. Conversely, however, there are extensions
of NS and PC which do not easily transfer to the setting of resolution as shown in
[24].

The idea behind NS and PC is to translate the given proposition %, into an
equivalent system of polynomial equations Q(Z) = 0 over some field IF. Typically,
the number of variables of this polynomial system grows polynomially with n, but
its degree remains constant independent of n (which is crucial for our purposes).
The task of proving 1, can thus be rephrased as the task of showing that Q(z) = 0
does not have a 0/1-solution over IF. Now according a weak version of Hilbert’s
Nullstellensatz, this is equivalent to showing that the ideal generated by Q U I (where
I := {z? — z,z variable}) contains the constant polynomial 1. An NS-proof is a
list of polynomials P such that 5 P,Q; = 1, where P, € P and Q; € QU I. The
degree of the proof is the maximum degree of the wittnesing polynomials P. Notice
that the number of variables in the system @ is a trivial upper bound on the degree
of the NS proof since the polynomials z? — z for each variable z have been added
to Q. A PC-proof (as refutation proof) is a sequence (like in Hilbert style proofs)

* Assuming that the complexity is measured by as number of monomials in a polynomial of degree
d, where d is the degree lower bound



of polynomials gy, ..., g, = 1, such that each polynomial g; is either a Q; € Q U I, is
g; = Mgqj+Aagin, 7',73" < g, M, Az € IF oris ¢; = zg; where z is a variable and 7’ < 7.
A nice feature of PC is the fact that there is a natural algebraic characterisation of

degree d PC-provability [7].

I.2 Closure under S, and lifting degree lower bounds

The semantics of a natural decision problem is usually independent of its represen-
tation. Thus, under appropriate indexing of the inputs, the set of inputs is closed
under action of the symmetrical group S, (for a specific input-index-size n) and the
input-output relation is closed under the action of S,. We show that symmetries of
this nature (together with uniformity constraints) have some interesting consequences
in the context of NS-proofs and PC-proofs. More specifically, we consider NS and PC
proofs whose corresponding polynomial systems are closed under the action of S,, on
variable indices.

The main result of this paper shows that non-constant lower bounds on the degrees of
NS proofs of universal second order statements v, in fact imply linear lower bounds.
This yields a new “gap” theorem for proof complexity. This gap theorem also holds
for PC proofs and allows us immediately to solve a list of open problems concerning
degree lower bounds. We get a linear degree (linear in the model size) lower bounds
for various matching principles. This solves an open problem first posed in [3]. The
bounds also improve the degree lower bounds of Q(n®) achieved in [5] as well as the
degree lower bounds achieved in [4].

Finding both NS and PC proofs essentially reduces to deciding whether two given
systems of linear equations, Li(Z) = 0 and L,(Z) = 0, have the same set of solutions.
The closure under S, links this kind of problem to the representation theory of the
symmetric group. Ajtai [1] was the first who were able to relate and solve specific
problems in logic by uses of the representation theory of the symmetric group. During
a number of papers Ajtai proved various pioneering results. In [13] Krajicek tried to
apply Ajtai’s results directly to achieve degree lower bounds. Krajicek were able
to use Ajtai’s approach to give a non-constant degree lower bound on PC proofs of
the proposition which encodes the primality of a number. A brief outline of our
approach was presented by the first author at an open problem session at a workshop
at DIMACS May 1996. Our main technical result allows us to draw much stronger
conclusions. As a comparison, our result directly gives a linear (in the input-index-
size) degree lower bound for the same set of equations as in [13]. We present (with
heavy reference to [22] and [23]) a non-constant PC degree lower bound on the onto-
Pigeonhole principle. Application of our main result immediately allows us to achieve
a linear PC degree lower thus answer a question from [16].

We describe here the flavour and intuition of the main technical result underlying the
gap theorem.

For fixed natural numbers n and k£ we consider the vector space V,,; which 1s
spanned by the basis e(;, ;,,..i,) Where 21,%5,...,1 € {1,2,...,n}. The dimension of



* i.e. a polynomial in n. The group S, operates naturally on V,,; via the

Vo 1s n
identity
WZ Q31 in,eeyin) € (51,52, rik) *= Z Q(11,82,enyi) E(7(51) 7 (32) yeeesm(ik)) -

In more technical terms V,,; is an IFS,-module. A IFS,-submodule W C V, ; is a

linear subspace of V,, ; which is closed under the above action of S,,.
The intuition behind our proof becomes clear in the case IF is a field of charac-

teristic 0 and begins with the following theorem.

Theorem 1 For any k € N there exists a finite collection of polynomaials

P1,D2, -y Pr(k) € Q[2] such that: For anyn € N and for any linear subspace W C V,
closed under S,, there exists j € {1,2,...,7(k)} such that diimW = p;(n). The function
7(k) grows rapidly: 7(1) = 4,7(2) = 40,7(3) > 1500 and 7(4) > 20,000, 000.

This theorem is an easy consequence of the highly developed structure theory for
irreducible representations of the symmetric group (over fields of characteristic 0).
See Section VI (under 2) for a proof of this result.

Now consider the problem of lifting degree lower bounds: Suppose that we are
given a non-constant degree lower bound for NS-proofs of ,. Consider the system
QU I of polynomial equations corresponding to ,,. If ¢, is a Universal Second Order
statement, then i1t turns out that the polynomial system is closed under S,. For each
fixed d consider the 2 linear systems that solve for the coefficients of polynomials P
of degree at most d satisfying >° P;Q; =0, and 3. P,Q; = C, for some C € IF (could
be 0), where P, € P and Q; € Q U I; Let U, and W, be the corresponding solution
spaces of these two linear systems. Notice that clearly U, C W,,. In addition, since
@ is closed under the action of S, U, and W, are also closed under S,. Moreover,
since the system Q has constant degree independent of n, it turns out that U, and
W, are submodules of V,, x4y, where k(d) is some linear function of d.

Since we are given a non-constant degree lower bound for NS proofs of ¢, it
follows that for any given degree d, for infinitely many values of n we must have
U, = W,. In order to lift this to a linear lower bound, we need to show that if there
is any n where U, = W, then there always must be a small n (say bounded by 2k(d))
where U,, = W,,.

How to prove U, = W,, for small values of n?7 Now Theorem 1 comes into play.
We know U, C W, for all values of n. We also know from Theorem 1 that the
dimensions of U, and W,, are polynomial - except it may well be that the polynomial
expressing dimU,, (resp. dimW,,) may vary with n. If we could strengthen Theorem
1 to show that dimU, (resp. dimW,) is expressed by the same polynomial for each
value of n > 2k(d), then we would have the desired consequence that U, = W, for the
appropriate small values of n because two polynomials agreeing for infinitely many
values must be identical. We show a slightly weaker result (Theorem 12) that has
the same desired consequence. (It remains a conjecture (see Section VI) to show that
dimU,, (resp. dimW,,) is expressed as a single polynomial beyond a small value of n.)

We note that our proof does not make heavy use of methods from representation
theory. The representation theory methods that were used to prove Theorem 1 gen-
erally only work for fields of characteristic 0. For example, the proof uses the fact that



well-studied modules called Specht modules (whose dimensions are directly calculable
using the so-called Hook’s formulae) are exactly all the irreducible modules over fields
of characteristic 0. This fails to hold, however, over fields of finite characteristic. In
fact, we can explicitly prove that the submodules — obtained from the statements 1)
commonly studied for NS degree lower bounds — contain irreducible components that
are not Specht modules. Thus the representation theory known from the character-
istic 0 case is not particularly applicable to most frontier problems in lower bounds
proofs. Solving these problems (along the lines just outlined) would be tied up with
some of the deepest open problems in the modular representation theory of S,,. Some
of these links are examined more closely in [9].

The paper is organised as follows. Section 2 gives the required background in logic and
algebraic proof systems. It describes how to transform a logic statement into a system
of polynomial equations and explains why these systems are naturally S,-closed for
Universal Second Order statements. Section 3 describes a (somewhat tedious) first
transformation of the main problem of lifting NS degree lower bounds to a problem
about the equivalence of §,-closed linear systems. Section 4 views the transformed
problem from Section 3 as a problem about IF.S, modules and contains the proof of
the main result. Section 5 gives other applications of the main result, in particular
the lifting of PC degree lower bounds. Section 6 gives open problems of independent
interest in the representation theory of S, that are moreover intimately linked to
complexity lower bounds.

II Background in Logic

Given a II}-sentence (i.e. a co-NP sentence) n. For n € N let v, denote the sentence
¥ relativised to a universe with n elements. Suppose a; < a; < ... is a sequence of
natural numbers. We say < n,a; > defines a sequence of tautologies if each 7, is a
tautology. We also refer to the IT-tautology n with the understanding that we always
restrict n to numbers n for which 7, is a tautology.

Clearly there is a straight forward way of translating II3-sentences into polynomial
equations. However for our purpose it is crucial that the resulting sequence of systems
of polynomial equations have a degree which is bounded by some constant indepen-
dent of the model size n. We achieve this by introducing suitable Skolem functions
which ensure that the first order part becomes purely existential. Our translation
allows us to convert any given Xi-sentence i) (which we take as the negation of the
given II3-tautology under scrutiny) into a finite system Q = 0 of polynomial equations
such that:

e For each n the S, closure Q,, = 0 of the polynomial equations Q = 0 forms a sys-
tem of polynomial equations in some polynomial ring IF[z. : e € U;({1,2,...,n}™)].

e The system @, have a root if and only if 9 has a model of size n.

e The degree of the polynomials @), is bounded by a constant independent of n.



First let
Y = AU;.... U351 Vi2370... . Vir 375t (21,92, vy Thy J15 T2 vy Tk )-

We eliminate all first order existential quantifiers by introducing Skolem functions
and replacing % by

$ o= UL AU F T 3 F i1 Vi (a, ooy i F1(50), Fali1,62), ony (51, ony 63))-

Notice that different Skolemisations in general might lead to different polynomial
equations. In general we allow % to contain second order existential quantifiers rang-
ing over sets, relations (of any arity) as well as functions (of any arity). We assume
we have eliminated all first order existential quantifiers.

For each n we translate 1/: into polynomial equations as follows: First we introduce

a collection of Boolean variables: For each r-ary relation symbol R(t1,1s,...,%,) We
introduce a variable zF for each e € {1,2,...,n}". For each function symbol f of arity
r introduce variables zf indexed by points in {1,2,...,n}"1,

Now we start specifying the collection of polynomials: in Q,.
e (a) For each variable z, we define a polynomial
Q7= 22— 2,

These polynomials ensure all common solutions to the polynomials become 0, 1-
solutions (see [3]).

° (b) For each function symbol f and for each (il,ig,...,ir) c {1,2’___,n}r we
define a polynomial
@fl’ff;,...,i, = Ej a:f ) 1

11,2200 52 ]

These polynomials encodes the fact that f i1s a total function.

e (c) For each function symbol f and for each (71,22, ..., %py %rp1, 2rg2) € {1,2,...,n}"+2
where ¢,,1 # 1,42 we define a polynomial

QFfun = o f

21,2250 27, tr4 1,27 42 21,2202l 41 7 21,2200 052r,2r 42

The polynomials encode the fact that f takes at most one function value.

Suppose that the matrix ¥'(21, 22, ..., % Th+1, Lk42, -+, 22k) contain the relation symbols
Ry, Rs, ..., R; of arity 7(1),7(2),...,7(t). Then the matrix can be written as

Na(Veeta Br(g)(ini(6)s ina(8) -1 Unorgay(6)) VY

Voyeda TRe(3)(ns(v)s tma(n)s -+ Snn(r(n)))))

where 7(8),7(v) € {1,2,...,t},n;(8),n;(7) € {%1,%2, ..., %2k }. The index o run through
a finite set and each set I, and J, are finite. Now clearly we can replace each

Ri(tn1(8)s s Ungriayy(6)) PY the polynomial ps := L3 lins (@) --itny iy (8)) T L and each



R () (U1 ()5 B1a(7) +++3 By () ) DY the polynomial py = 2 (i sy 1) For each
a replace the corresponding disjunction by the polynomial

Qo :=1—Tger,(1 — ps)yes.(1 — py).

Notice each model < Uy, Us, ..., Ux, f1, f2, .. fr > of ¢’ induces a truth value assignment
to the variables by letting T (i (8)serevin @) = 11f

R;(tny(8), s tna((8))(3)) and by letting T, (i ) sy () 0 otherwise.

Now it is straight forward (using the polynomials constructed under (a), (b) and
(c)) to produce a system of polynomial equations @ which have a solution if and only
if b have a model of size n.

Notice that each polynomial @, has degree bounded by |I,| + |J.|. Thus the degree
of the polynomials in @ (also including the one constructed under (a),(b) and (c)) is
bounded by a constant independent of n. Notice also that the system of polynomials

Q@ is closed under S,,.

Clearly this translation works for arbitrary Universal Second Order propositions. Our
approach show that every computational or deductive problem can be translated into
an equivalent equational problem. Lot of extensive work have already been done on
purely equational theories [15]. We would emphasise that equational reasoning is one
of the few areas where the machines already are significantly superior to ordinary
mathematicians. Our translation into equational theories introduce a lot of addi-
tional computational structure. We feel that these rich algebraic features makes our
approach very promising. Clearly we can express any decision problem (in a feasible
manner) as a problem concerning the existence of a solution to finitely generated (un-
der S,) systems of polynomial equations. Each solution a of the polynomial equations
Qn(a@) uniquely corresponds to a model of size n of the proposition 1. Such decision
problems are of course undecidable if we are also searching for an appropriate n, while
it is NEXPTIME-hard (i.e. the same complexity as the spectrum problem for first
order logic) if n is given as part of the input [8]. This last observation easily show
(reducing finding PC proofs to that of solving linear equations) that:

Theorem 2 If EXPTIME # NEXPTIME then there must be systems of polynomial
equations Q, (@) which do not have linear degree PC-proofs.

The number of solutions to @, equals the number of models of the appropriate
skolemisation of . The closure under S, ensures that different solutions (not iso-
morphic under S,) corresponds to non-isomorphic models. Actually the number of
non-isomorphic models M = ¥, is negatively related to the size of the ideal I,
generated by the polynomials in Q. Knowledge of I, allows us uniquely to deter-
mine all models of ¥,, and clearly there is a 1-1 correspondence between models of
¥, and points on the algebraic variety defined by I ,. Notice that all ideals I, are
closed under S, and therefore it is natural to expect rich mathematical structures to
follow from this symmetry. And indeed this will be borne out by the remainder of
our discussion.



IIT Problem Transformation and the Main Result

Here we state the main problem and result about Nullstellensatz degree lower bounds,
and transform it into a problem about §,-closed, uniformly generated sequences of
linear equation systems.

IT11I.1 Notation

For each e € {1...n}" we introduce a variable z.. We consider the ring IF[z.,e €
{1...n}"] of polynomials over some field IF. We display polynomials P(z) € [F[z.,e €
{1...n}"] of degree dp in a suitable multi index notation: z$% simply denotes a

monomial z iz . ..:c:‘f where E is an ordered list of length at most d < dp, of
elements e/ € {1,...,n}"; and a € {1,...,dp}/Fl is a corresponding list of nonzero

powers satisfying a3 > ay > ... > aq4 and ) ,;cgas < dp. The constant term is
denoted zj.

Actually we need to consider a generalisation of the ring IF[z.,e € {1...n}"]. We
denote this polynomial ring by IF[z,n,r]. The ring parameters of this polynomial
ring are the field characteristic ¢gp and r. In IF[z,n,r] we include other types of
primitive terms besides monomials. In these terms, we permit the entries in e’ to be
indeterminates which are then summed over {1,...,n}. More precisely, we include
primitive terms that are generalisations of monomials of the following form. We start
with a term z% = 33?11:13?22 .. .a::‘f as before, but now we permit the e’ to addition-
ally take values among a set of named indeterminates, under the condition that the
different indeterminates that appear in any term z% are all distinct. Note that the
values in {1,...,n} that appear in the e’’s i.e, the determinates, are not forced to be
distinct and could contain repetitions.

Let {*',%% ...%™} denote the set of indeterminates that appear among the indices
of z%. As observed before, these are all distinct, but there could be repetitions of
indeterminates between different z%’s. The primitive terms are sums of the form

n n n
> > ... Y z%, which we shall simply refer to, unambiguously, as z%.
*1=1x2=1 *Mm=1
The dimension of a term is the number of summation signs that appear in it. For
example, a term with no summation signs (a standard monomial) is called a point
term, a term with one summation a line, with two summations a plane, etc.

In addition to the degree dg,o = > o, and the dimension ¢z, of a term z%, the
e'€E

other parameter of importance is the set of distinct values in {1,...,n} (determinates)

that appear among all of the e € E. We call this set, listed in, say ascending order,

as the support of the term z%, denote it sg . Its size is called the support size

and denoted lg,. The support size, degree and dimension are called the defining

parameters of the term.



A polynomial P(z) € IF[z,n,r| is then written as

n

Y OY oay.. X e

E Ole{ldp}lEl *1=1 * T B,a—=1

where ¢ € IF, and mg, i1s the number of indeterminates appearing in z%. The
support of a polynomial is the union (listed, say, in ascending order) of the supports of
its terms and is denoted sp with the support size denoted {p. The defining parameters
of a set of polynomials are the mazimum degree and the mazimum of the support
sizes of its elements.

Example: For each e := (4,7), ¢,j € {1,2,...,n} U {*} introduce a variable z(; ;).
Consider the polynomials Q! := $%1,2) — T(1,2), Q? = T(1,4) and Q3 = T(1,2) — T(2,1)-
For a fixed field IF these 3 polynomials belongs to IF[z,n,2]. Note, for example, that

the coeflicients c% here are: czl(;g in the polynomial Q! is —1, czl(gg in the polynomial

Q' is 1, and c?l(ig in the polynomial Q% is 1.
The polynomial Q? is interpreted as 3 z(1,+). The closure of @', @% and Q3 under

S, gives the following system of polynomials:
a:%i’j) —z(,; for 1,7 €{1,2,...,n}

> z¢ij) — 1 for each 2 € {1,2,...,n}

3

T(i;) — T(jq) for 4,7 € {1,2,...,n}.

A common solution to these polynomials can be viewed as an undirected graph of
n-vertices where each out-degree is 1 modulo ¢g. Thus the polynomials only have a
common root for n even. &

In general we actually need to consider polynomial expressions which are more
general than those in IF[z,n,r]. In general we consider polynomials expressions in
IF[z!, 22 2%, ... ,n,7], where 2!, 2% are different types of variables. These polynomials
consist of terms of the form :U%E’O‘a:i-iﬁ etc. The degree of a term still denotes the total
degree, 1.e, the sum of all the degrees that appear in a term, and the support of a
term includes the distinct indices that appear in the subscripts over all variable types
that occur in the term. However, for convenience while explaining the notation and
basic facts, restrict ourselves to polynomials in IF[z,n,r] unless otherwise specified.
Analogous facts apply to the more general polynomials with many variable types.

Notice that terms and polynomials in IF[z, n, 7] can be viewed as a sequence (in n)
of polynomials. But the sequence is very simple with defining parameters independent
of n. Really such a sequence should be subscripted by n, but we omit the subscript,
and continue to refer to the elements of IF[z, n,r] simply as polynomials.

The following fact describes simple properties of terms.

Fact 3 The product of two terms z% a:g in IF[z,n,r] is obtained naturally as fol-
lows (an analogous process applies to terms containing many variable types). First,
rename the indeterminates that appear in F', so that they are all distinct from the
indeterminates that appear in E. The variables in both terms, with subscripts in



E @ F (symmetric difference) are retained in the product, together with their powers
and summations over indeterminates. For variable subscripts e € E N F (which do
not contain any indeterminates), the corresponding from the two terms are replaced
by mjf"‘m in the product. Next, all the variables in the product are arranged so that
their powers are in ascending order.

Primitive term (sequence)s T, are asymptotically linearly independent, in the sense
that no primitive term can be obtained from other primitive terms as a fized linear

combination (independent of n).

We say a set Q of polynomials in IF[z,n, ]| an S,,-closed set, for a fixed m, if for
all permutations in 7 € §,,, i.e, permutations applied to {1,...,m},

PeQ < n(P)eQ

where 7w acts on the polynomial

Plz)=3%, > cpg

E ae{1..dp}lBl

by its natural action on the elements in {1,...,n} that constitute the indices e; in
the lists . The indeterminates appearing in the e; and the summations over these
indeterminates remain untouched. This is well-defined also for n < m.

For sets Q) of polynomials that have more than one variable type, we say the set
is S,,-closed if it is closed with respect to the action of S,, on the subscript indices of
each variable type.

We say a set sequence P, is S,-closed, if for every m, the element P, of the
sequence is S,,-closed. Otherwise, the sets in the sequence might vary non-uniformly.
We say an S,-closed set sequence @, is uniformly generated in n if it is generated
for all n, starting with a fixed set of generating polynomials in IF[z,n,7|, say
G = {G",...,@™%}, whose degree is bounded by dg, and support sizes are bounded
by l5. Le, we form the S,-closed sets @, for any n, by letting the permutations in
S, act on the elements of G in the above described manner. As in the case of the
elements of IF[z,n, r], if the S,-closed sets are uniformly generated, we omit the word
“sequence” when referring to them. Notice that we still retain the subscript n in
@, to distinguish from a fized set of polynomials in IF[z, n, r], which may even be S,
closed for some fixed m. Note that a fixed S,,-closed set of polynomials in IF[z,n, r] is
also well-defined for any n, but its size, for example, does not change with n; whereas
the size of the sets in an S,-closed uniformly generated set @, do change with n.

The polynomials in an S,-closed, uniformly generated set Q,, can be indexed using
elements of {1,...,n}e x {1,... ,mg} for d < dg using the following scheme. Index
a generating polynomial G* not only by ¢ € {1,...,mg} but also by the elements
in {1,...,n} in its support sgi, listed in some fixed, say ascending, order. We will
refer to this list as sg: as well. Any polynomial Q in Q, is, without loss, obtained
by the action of a permutation mg in S, on a unique generating polynomial, say G'.
This gives a natural method of indexing ) namely by ig and the list mg(s4:q ), which
is nothing but the support sg of ) listed in ascending order. So we think of the

10



polynomial @) as i%. Note that Q’s generating polynomial G*@ is indexed with the
iQ

same superscript ig, but a possibly different subscript. I.e we think of G'@ as Q

where sig is the same as Wél(SQ).

For set sequences (), consisting of polynomials with many variable types, the
definitions of S, -closed, uniformly generated, and the indexing scheme are the natural
extensions of those described above, to each variable type.

An important thing to notice (even when there are many variable types) is that
defining parameters of an S,-closed, uniformly generated set @), are independent of
n. Clearly, the degree bound dg, and the support size bound I5 apply to all the
polynomials in (),,, independent of n, and therefore the the size of the names or index
ascribed to each polynomial in Q,, (by the above described indexing scheme) is also

independent of n.

I11.2 Main Results

Clearly, S,-closed, uniformly generated sets @, of polynomials are special. But they
occur commonly, as shown in Section II. For such sets we prove two results about
lifting non-constant degree lower bounds - on the the Nullstellensatz refutations (of
common zeroes) - into linear lower bounds.

First, we consider the Nullstellensatz witnessing polynomials in a sequence P, of
lists, each list in the sequence consisting of polynomials in IF[z,n,7]: these lists show

that the ideal generated by @, contains the constant polynomial. I.e, ST QP: = 1.
QieQn
This is same as saying that the polynomials in ¢),, do not have a common zero.

Note 4 We assume through out this section that the set Q, and the corresponding
witnessing polynomials P, consist of polynomials in IF[z,n,r| of a single variable
type. It can be easily verified that results extend to many variable types, as well.
Note that the lists in the sequence P, depend on Q,, but unlike Q.,, the lists in P,
need not be S,-closed, and even if they are, they need not be uniformly generated in
n. However, for a fized n, the indexing of the polynomials in Q, (described in the
previous subsection) transfers to a natural indezing on the polynomials in P, as well.

We are interested in lower bounds on the degree of the set of witnessing poly-
nomials P,. We treat as constants the defining parameters of Q,, for example, the
degree dg, the support size l5, and the ring parameters of IF[z, 7, r] namely » and the
field characteristic gg; and we are interested in how the degree lower bounds for P,
depend on n. In particular we are interested in specific cases of S,,-closed, uniformly
generated sets @, for which it has been shown that the corresponding degree dp
grows, perhaps very slowly, with n. Our aim is to show that any positive dependence
of this degree on n automatically implies a linear dependence on n. More precisely,
we show the following.

Theorem 5 Assume we are given an uniformly generated set Q,,, of polynomials in
F[z,n,r]. Assume Q, ts closed under S,. Let n(d) be a number so that there is no

11



polynomials of degree d which witness the fact that the system Qn(d) does not have a
common zero.

Then actually there is no witnessing polynomials of degree d which witness the that
the system Q.,, does not have a common zero for each n > max{dgr + 3lg + 4dr, (7 +

log(lQ+d'r)+1 i 1))

q%)(lg +dr) — gr} in the same residue class (modulo gf, m := int( Tog(ar)

as n(d) (m s the smallest integer such that gg > l5 + dr.

Corollary 6 Let ), be a sentence which does not have constant degree Nullstellensatz
refutation proofs for infinitely many values of n. Then for some n there is no degree

(7402 o3 A
d < min{nﬂ]??_l_(:g)?)l@, z di: SZQ} Nullstellensatz refutation proof of 1,. The entries

r,qF and lg are constants and thus are independent of n and d.

The proof of Theorem 5 consists of 2 parts. The first part is given by the following
lemma.

Lemma 7 Given an S,-closed, uniformly generated set Q,, of polynomials in
IF[z,n,r], and any d, one can construct an S, -closed, uniformly generated set ]\Q,n
of linear polynomials and a linear polynomial Ty (depending on d), such that the
following holds. Sets of degree d Nullstellensatz witnessing polynomaials cannot show
the nonezistence of a common zero for Q,, for n € Ny, where N is any subset of N
which could depend on d, if and only if the linear span (over IF) of ]\Q,n wncludes a
specific linear polynomial Ty (the 1-polynomial) for n € Ny.
The polynomaials in Ag ,, as well as Ty contain many variable types and live in

]F[)\i,oe,w 1< < mg, o, w C {]_, e ,dr};n,dr + ZQ])

where m is the size of the (minimal) set of generating polynomials of @, and a runs
over multi-index powers of any legal term of IF[z,n,r] of degree at most (d+dg), and
lg is the bound on the support size of Qn.

The defining parameters of./_\Q’n are: degree bounded by 1, and support size bounded
by (d+dg)r). The polynomial Ty has defining parameters: degree bounded by 1, and
support-size 0.

Thus their defining parameters are independent of n, depending only on the defin-
ing parameters of Q,, and at most linearly on the degree bound d allowed for the
witnessing polynomauals.

Proof.

The idea of the proof is the following. It is easy to see that in order to solve for the
coeflicients of polynomials P; € IF[z,n,r] of degree d that do satisfy }5 Q;P; =1, for
7

a given, fized set Q consisting of Q; € IF[z,n,7], of degree bounded by dg, one can

instead solve a linear system whose variables are the coefficients of the desired P;.

All but one equation in this linear system correspond to non-constant terms in the

sum > @Q;P; = 1, and each equation is homogeneous and asserts that the coefficient
7
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of a term in this sum is 0; these terms have degree at most d + dg, which, together

with the number of polynomials @; € @, influences the defining parameters (such as

support-size) of each of the corresponding linear equations. Let us denote this set of

homogeneous linear equations as Ag = 0. In addition to these homogeneous linear

equations corresponding to non-constant terms, there is a single non-homogeneous

linear equation corresponding to the constant term in the sum, >ZQ;P; = 1, which
7

asserts that the constant term, say 75 in the above sum is 1.
Therefore, in order to show that for any d, no polynomials P; of degree bounded
by d exist in IF[z,n,r] that satisfy >-Q;P; = 1, for n € Ny, it is necessary and
J

sufficient to show that for each d, the corresponding homogeneous equations in [\Q
in fact imply that Tz = 0, for n € Ny (it is well defined to talk about @, Ag etc.
for varying n, since these sets consist of objects in IF[z!, z?,..., n,r| which are well
defined for varying n). The last statement is equivalent to saying that for each d,
the corresponding linear span of the linear polynomials in /_\Q in fact includes the
polynomial Ty, for n € N;. Moreover, as mentioned before, the defining parameters
of ]—\Q and Ty depend only on d, d5 and the number of polynom_ia,ls in Q.

One could extend the above argument to sequences of sets (), by which one can
rephrase the result explained above, and show the following. For each d, there exist a
sequence of sets of linear polynomials /_\Q,n and a sequence of polynomials T, such
that there are no polynomials Py of degree bounded by d in IF[z,n,r] that satisfy

>, QPg =1, for n € Ny, if and only if the linear span of linear polynomials in ]\Q,n
€Qn
?n ?act includes Tj ,,, for n € Nj.

The catch is that while the defining parameters of A5, and T, depend only on
d, dg, and the number of polynomials in (),, the latter two quantities could well
depend on n.

In fact, even if Q, is generated in a uniform way, while the degree dg, stays
independent of n, the number of polynomials in (), could grow tremendously with n,
and therefore the defining parameters of ‘/_\Qm and Tg ,, could grow with n. Moreover,
it is not clear that Ay, is generated in a uniform manner, just by the fact that @, is.

The lemma states, however, that in the case that @, is S,-closed and uniformly
generated, ]\Q,n is also S,-closed and uniformly generated, and its defining parameters
do not depend on n, depend only linearly on d and moreover one can make do with
a single polynomial T instead of a sequence T} ,,.

Therefore, the idea in the previous paragraphs for constructing -/_\Q,n and T has to
be refined and analyzed carefully for the case of Q,, that are S,-closed and uniformly
generated.

Fix d. We use the indexing scheme discussed in the previous subsection, for polyno-
mials in an §,-closed, uniformly generated set.
Consider solving for the coefficients of the multiplying polynomials Pt € IF[z,n, 7]
of degree d which do satisfy o
Y. QP =1 (1)
Qi€Qn
Name the (variable) coefficient in P! of the term z%, as )\Z’ﬂi (note that this A should be
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viewed as a single variable, i.e, a linear term in IF[A\%* n, dr+1g] and not a high degree
term, say in IF[\,n,7], in multiindex notation). In addition, denote the (constant)
coefficient of z% in Q° as qg?‘s.

As mentioned earlier we can now solve a linear system whose variables are the
A’s. All but one equation in this linear system are homogeneous and assert that each
nonconstant term z% in the sum (I) has a 0 coefficient. Each nonconstant term z%
has degree Y icpo; < d+ dg. Let II% denote the set of all pairs ([E', o'],[E?, o?))
such that the product of az?‘Ell and az?‘;z is 2%, (see Fact 3 on how to obtain products
of terms), where the first element of the pair has degree at most d. The coefficient of
z$%, term in (I) can now be written as the following linear polynomial in the A’s.

>3 > N g (I1)

i S ([EY,at][E?,02])€llg

Note that the above linear polynomial has several variable types, \**' | and it is
not quite a “legal” polynomial. There are two issues to be dealt with.

e The subscripts E! may contain “original” indeterminates (which are not summed
over in (II)), because )\Zﬁls is the coefficient of a term a:?‘Ell (of the polynomial

P?) which contains indeterminates and summations.

o The length of the subscripts E! in )\Efls, may vary between 0 and dr. Moreover,
the support sizes, i.e, the length of s may vary between 1 and /5.

In order to homogenize the subscipt lengths, we introduce dr — |E'| distinct inde-
terminates into E', to get E' of length dr, and similarly introduce l5 — |s| distinct

indeterminates into s to get 5 of length /5. Now we think of A%?ls unambiguously as

)\Z,E‘flg, which includes sumations over these indeterminates. In order to deal with the
indeterminates in E* which are not summed over in (II), we simply create several
more variable types, one for each subset of {1,...,dr}. The subset wg: denotes those
indeterminates in the subscript E' which are “original” indeterminates that are not

summed over in (I7). Once the variable types have been thus distinguished, we sum

over the original indeterminates as well. (See Example 8). Now we think of )\%??;WEI,
unambiguously as including the summations over the indeterminates picked out by
wg as well.

The collection of all such linear polynomials corresponding to each term z% of
degree at most d + dg is denoted ‘/_\Q,n' This (set) sequence is clearly S,-closed.

To show that it is uniformly generated, we collect several terms in each linear
polynomial as in (I]) and replace them by terms that contain summation over inde-

terminates. More precisely, observe that the sum in (II) can be rewritten as

; t,al,wet
> > (30 g X ). (111)

i ([BY o] [B?e?])enly S

Since Q,, is uniformly generated, for fixed values of 7, E', E?, a' and a?, the sum-
mation over s runs through all permutations m of some sublist s¢ of {1,...,n}, of
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constant size independent of n, which is the support of a particular generator G* of

@,. As described earlier, 3 denotes s* with indeterminates added to homogenise its
-2

length. The value of ¢35 , thus remains constant for all s. Thus the sum in (/]) can

3 3 G (325 ). (IV)

i ([Elxal])[Ezaaz])EH% ®

be written as

The summation over all permutations of s* is itself not a “legal” term in

F[\o' wst p, (d+ dg)r + lg] (fixed i, o', and wg result in a single variable type);
however it can be rewritten, using Lemma 9, (a form of inclusion-exclusion), as a
linear combination of legal terms which contain all possible subsets of the |S| distinct
indeterminates, all summed from 1 to n. Once the linear polynomial in (IV') has been
thus rewritten, it is clear that its support is obtained entirely from the subscripts E*
(each of size at most dr) of the variables ), since the remaining subscripts become
indeterminates. Thus the support of the polynomial in (IV) is contained in sg 4, i.€,
the support of the term z% of degree at most d+dg5. Thus the support size is at most
(d+ ds )r which is independent of n.

Now consider the collection of those linear polynomials as in (IV), which corre-
spond to (the coefficients of) those non-constant terms z% in (I), of degree at most
d + dg, whose support is restricted to {1,...,(d + dg)r}. Clearly this collection is a
generating set that generates all of (and exactly) Ag, under the action of S,, thereby
showing that Ag , is not only S,-closed, but also uniformly generated, with defining
parameters independent of n (degree obviously bounded by 1, and and support size
bounded by (d + dQ)r).

The linear polynomial Tj; i.e, the left hand side of the single non-homogeneous
equation corresponding to the constant term in the sum (I), is obtained by a similar
process, and its defining parameters are degree bounded by 1, and support-size 0.

Finally, it follows from the construction that the polynomials in ]\Q,n as well as
Tg are in in

]F[Ai,a,w 1 < 7 < meg, &, w C {1, .. .,dr};n,d?“ + lQ]a

where mg is the size of the set of generating polynomials of @,, and « runs over
multi-index powers of any legal term of degree at most (d + dg), and I is the bound
on the support size of @,. It follows also from the construction that for any d, sets
of degree d Nullstellensatz witnessing polynomials cannot show the nonexistence of a
common zero for an S,-closed, uniformly generated set Q,, for n € Ny, where N is
any subset of N depending on d, if and only if the linear span of ]\Q,n whose linear
span (over IF) includes T for n € Ny. (the sets Ag, and Ty clearly depend on d).
|
The following example illustrates the construction in the above proof

Example 8 Let Q be an S,-closed, uniformly generated, set containing the following
generating polynomials Q° € IF[z,n,2|: Q1, =123, — 212,

Q% = Z* T1,x — 17

and

3
1,2 — T1,2 — L2.1.
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Elaboration. In the above example the defining parameters of @ are dg = 2;
and lg = 2. The coefficients ¢z, are: q(1(2)) a2 =1 q(1(2)) a2 = L q?ifi)),{g = 1;

2,(0 3,(1
aGnty = — L qiapa = 1 and q30) g0y = — 1.

Fixing d = 2 to be the bound on the witnessing polynomials P! of the Null-
stellensatz, of the form: 37 A3 z%. We obtain the S,-closed, uniformly generated
set, AQ, of homogeneous linear equations, one corresponding to each non-constant
primitive term of degree d + dg = 4. The generating set of ]\Q is given by those
equations corresponding to non-constant primitive terms of degree 4, whose support
is also restricted to {1,...,d + dg} = {1,2,3,4}. There are many terms in this
set, for example: 12, T13, -+, a3, Dox T1my -+ Dox :ci’*, Cey oy Tady wizxg,g, e
Doal 2 1?1’*133‘32’3 Dosl 42 T1aT1 42 €be.

We consider one of these primitive terms, say > .1 ,2 331,*13332,3 and write the cor-
responding linear polynomial A for that term. First we find all the possible or-
dered pairs of terms (:n?‘Ell, m?‘;z) whose product gives the above term. There are
exactly 4 such pairs: (3,1 ,2 3332,3331,*% 1), (1, X0 3:‘:’2’3331,*1), (Ca 2y, 2,2 $32,3)’
(>, 3332’3,2*1 z1,1). Thus only the second polynomial in Q, i.e, @2, contributes to
this term. The linear polynomial A is given below. (We first introduce indetermi-
nates in order to homogenise lengths of subscripts E! and s of the variables A to
total dr + 5 = 6, and introduce additional variable types or superscripts - which are
subsets of {1,...,dr} - corresponding to different sets of “original” indeterminates.)

2,(1) 2,(3). 1}
Z(‘I(l r (@} = Z 22 Z (42 3),(+3,28), ir() 03 T

* *3 "‘4 *
(gptry = =1 20 2 AT xwyo]
sl %2 43

(Note that we have not distinguished the indeterminate in (q(l(*)) (1)} = = 1) since it is
unambiguous. Also note that the superscript {1} on the first A refers to the position
of its subscript *2 corresponding to an original indeterminate, and similarly the su-
perscript {1,4} on the second A refers to the position of the original indeterminates
*? and #' in its subscript list. ). Since there is only one permutation = € S,,, namely
the identity, for which q(zif:)),{wu)} q?é()f{)w(l)} are non-zero, in this particular case, the
> . can be removed from the above polynomial (otherwise, one would have to employ
the Lemma 9 to decompose this sum into “legal” sums). ]
The following lemma is a simple application of the inclusion-exclusion principle

which has been used in the proof of Lemma 7.

Lemma 9 For any term z% in IF[z,n, 7], consider the summation Y, TrE where T
runs over all permutations of its support (the set of distinct elements of {1,...,n}
that occur in E). Clearly, this summation is not a legal term in IF[z,n,r]. The
following procedure expresses this summation as a linear combination of legal terms.
Let m be the support size of x%. Replace the elements in E by a set of m distinct
indeterminates, I = {*',... %™}, and denote the resulting expression (not yet a legal
term) as z%.. For each subset S = {¥*1,x%2, ... %°} of I, denote by 3.°, the operator

2

{(*1,..xm)E{1,..n} xSl =552 =, =%}
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Now

[/
ZC’??(E) sz%* - Z (— )|S| H(IS| - ZQSE

{sCrI:2<|S|<m}
This holds in any field I, with the coefficients (—1)I51=1(|S|—1) expressed (mod ¢)F.

Given Lemma 7, for the second step of the proof of Theorem 5 it is sufficient
to show that if the linear span of an S,-closed, uniformly generated set of linear
polynomials AQ,n includes a specific linear polynomial T3 whenever n = n(d), for
some increasing function n(d), then in fact, this inclusion holds for all n > max{(d +
dg)r + 3(dr + 13),(7 + ¢&)(dr + l5) — gv}, in some residue class of ¢ (where m is
the smallest integer such that ¢™ > Z@ + dr.

To prove the above statement, we first transform it into a statement about IFS,
modules in Section IV, whose proof takes advantage of basic properties of these
modules.

IV  The Problem in the Context of IFS,, modules

In this section, we view the span of the S,-closed, uniformly generated set (sequence)
Aé,n of linear polynomials from the last section, as a uniformly generated IF.S,,-module
(sequence). Thus we view the question left open in the last section as a question
concerning the inclusion of the linear polynomial Ty in the IF.S,-module ]\Q,n

First we give a concise background on IF'S,, modules, followed by a description of
the specific modules that we deal with. Finally, we state and prove the theorems that
are needed to complete the proofs of the main results stated in the previous section.

IV.1 Background on F'S, modules

Let S, be the symmetric group of permutations of n distinct letters, say {1,...,n}
and let IF be a field.

NOTE: In the following definitions, to maintain clarity, we subscript additions and
multiplications by the algebraic object in which they operate. During the remainder
of the discussion, however, we omit subscripts since the algebraic object where the
operations take place is usually clear from the context.
The group ring IFS,,, consists of elements of the form 3" a,7, where a, € IF and
T

m € S,, with addition and multiplication defined as:

Z axT) +Fs, Z ) Z(a"rr +F by )T;

™

(Z aww)(g bsd) = Z:;(a7r xp bs)(m og, §).

The group ring IFS,, is also a the group algebra of S,, over IF, and hence we will
also refer to it as the group algebra IF'S,,.

An IFS,,-module V is an additive Abelian group V together with a map My from
IFS, x V — V, such that for r,s € IFS,,, and A, B € V,
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° MV(T, (A +v B)) = Mv('r’, A) +v Mv(’I’,B);
o My((r +ws, $),A) = My(r,A) +v My(r, A);
[ ) Mv(’l“, Mv(s, A)) = Mv(’r *Fs, S, A)

A group V can support more than one IFS, module structure, depending on the
chosen map My.

In this paper (roughly speaking), the IF.S,,-modules V contain elements of the form
3 b,u, where b, € IF?, for some field IF; and u € {1,...,n}*, (recall our convention

that {1,...,n} is just a set of n distinct letters on which the permutations in S, will
act), t and k are constants. Addition in the Abelian group V is defined as:

(3 auw) +v (3 b)) = (0 +e by

and the map My giving the module structure to V is the following: given an element
> r axm of the group ring IFS,, and an element ", b,u of the Abelian group V,

My (D~ arm,d byu) =D (ar *F by)7(u),

where 7(u) is the natural action of a permutation 7 € S, on v € {1,...,n}".
Notice that the IFS,, modules V described in the above paragraph are in fact
vector spaces over IF, spanned by basis elements B; € V such that every F' € V can
be written as }; a;B;, where a; € IF. In addition, due to their module structure, these
vector spaces V are in fact closed under the natural action of S, on its elements.

Thus in addition to being vector spaces over IF spanned by basis elements, IFS,
modules V' are generated by a set of generators E; € V, such that every FF € V
can be written as ), r; F;, where r; is an element of the group algebra IF.S,,.

Each IFS, module is a representation of S, in the following sense. Viewing
the IFS,, modules (such as the modules V' described earlier) as vector spaces over
IF that are closed under the natural action of permutations in S,, it becomes clear
that each permutation represents a linear transformation on V. In other words,
each IF'S,, module provides a group of linear transformation matrices representing the
group of permutations S,. As a result, IFS,, modules are studied extensively in the
representation theory of S,,. Moreover, most of the interesting questions in the case
of IF being a field of finite characteristic are still unsolved.

In the current discussion, however, we avoid the use of much representation the-
ory, and develop the machinery that we need, as we go. Several related, unsolved
representation theory problems arise from the discussion in this paper, which are of
independent interest. These we list in Section VI, and deal with in a separate paper

[9].

IV.2 The modules V[F,n, k, t] and basic properties

The module f/[IF, n, k,t] consists of all module elements of the form: } 3;E;, where

B; € TF*. To describe the primitive module elements E: take a vector e (called
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the defining vector of E) in {1,...,n,x! %2 ... *"}* with the property that the

indeterminates *’ that appear in e are all distinct; let *!,... *™ be the indetermi-
n n n
nates that appear in e; now F has the form > > ... Y. e. The dimension of a
*1=1 %2=1 *M=1

primitive module element (analogous to terms in Section III.1) is the number of in-
determinates or summation signs that appear in it. For example, a primitive element
with no summation signs is called a point element a term with one summation a line,
with two summations a plane, etc. The intersection of two primitive elements F
and F' with defining vectors e and f is non-empty exactly if each pair of determinates
— occurring at the same coordinate of e and f — coincide in value. The intersection
in this case has dimension equal to the number of coordinates where the determinate
pairs coincide. The new defining vector is identical to e where f has indeterminates
and is identical to f where e has indeterminates. Where both have determinates they
takes their common value.

Given an element E of f/[IF,n, k,t], its support, sg, is the list in say, ascend-
ing order, of distinct entries from {1,...,n} (determinates) that appear among the
primitive elements in its expansion. Its defining parameters are the characteristic
gr of the field IF, its universal dimension k, and its support-size [g. We say an
element of f/[IF,n, k,t] is ultrasmall if its support size is at most 2k. All of these
parameters are independent of n.

Note that a module element E of T?[]F,n,k,t] can be viewed as a sequence of
elements (that may change) as n increases; But since this sequence is straightforward,
we will drop the word “sequence” and the subscript n, normally just refer to it as a
module element. However, in some situations, to avoid confusion, we will refer to the
nth module element in the sequence as F,. Often, two module elements £ and F' of

V[IF,n, k,t] are equivalent only for a certain value of n. For example, the element
C=<33>[1,1,2]4+<3,3>121,2]

of V[IF = R,n, k = 3,t = 2] is equivalent to the element
B=<1,2>>[%x121+ <2,1>>[*1,2]

at m = 2. Whereas, we say that two elements £ and F' of f/[IF,n, k,t] are identical
if they are equivalent for all values of n. For example, the element B described above
1s 1dentical to the element

A=<3,3>>[1,2].

Notice that two equivalent elements may have different support-sizes, even at the
particular n where they are equivalent. Intuitively, the support-size represents the
amount of non-periodic information in a module element. If two elements H and H’
are equivalent at n, we say H = H' if H has been obtained from H' by replacing some
part of H of the form P; +...+ P; where the P/s have dimension m, by an equivalent
() of dimension greater than m.
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We treat sets of module elements similar to single elements. The defining param-
eters of a set are the same as those of its elements, except the support-size which is
the mazimum of the support-sizes of its elements.

We treat (sub)modules, including V[IF, n, k, t] a little differently. In general, the
support-size I}z of a submodule W of V[IF,n, k,t] (for a fixed n), is the minimum of
the support-sizes of all the generating sets for W, therefore, in general, the defining
parameters of a submodule sequence W,, depends on n, and hence we do not drop the
subscript n when referring to the sequence. However, we will use the n in W, or in
V[IF, n, k,t] both to refer to the sequence, as well as to refer to the n** module in the
sequence, in order to distinguish it from a single module is defined for a fixed n.

A submodule sequence W, of V[IF,n, k,t] is uniformly generated, if there is
a set G of generating module elements in V[]F,n,k,t], such that for each n, the
submodule W,, is the IF'S, module generated by G,,. Clearly, if a submodule sequence
W, is uniformly generated, its defining parameters are independent of n. We drop
the word “sequence” when referring to submodule (sequences) W, that are uniformly
generated, however, as before, we will use the subscript n in W, both to refer to the
sequence, as well as to refer to the n** module in the sequence, in order to distinguish
it from single module W that is defined for a fixed n. We sometimes write W,,
uniformly generated from G, as [G], when convenient.

Example: For n > 10 and k£ = 3 let
E :=[123] + [132] + [213] + [231] + [312] + [321] + [445]+
[676] + [988] + [10,10,10] + ZZZ [ k]

T ] k
and let

F :=[123] 4 [132] + [213] + [231] 4 [312] + [321] + [445] + [676] + [988] + [10, 10, 10].

Notice that sg = sp = {1,2,...10}, and that Iz = [r = 10. The dimension of the
primitive module element Y~ 53" [¢7k] is 3, while all other primitive module elements

in £ and F have dimension 0 (i.e. are points). We want to decide when E and F
generates the same subspaces of V[IF,n, k,1]. For ¢ # 3 it is not hard to show that
[E], = [F], for all n > 10. To settle the case for ¢ = 3 it is convenient to define an
Sp-invariant inner product (to be continued). &

Since a module is, among other things, a vector space, we can define an inner
product between module elements. Let (3,7) be the standard inner product be-
tween vectors 8 and v in IF*. The inner product [[,]], between module elements of

VI[IF,n, k,t] is defined as follows.

[[Z/BiEiaZ’YiFi]]n: Yo B Dl )

e€{l,...n}k e€E;n e€F; n

All summations on the RHS are in IF*. When [[E,, F,]], = 0, as usual, we say that
E, L, F,, and drop the subscript on L. The vector space (in fact, a module) that
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is orthogonal to a module W, (under [[,]],.), is denoted W,.. Notice that the inner
product is S,-invariant i.e. Vr € S, : [[7E, F]|, = [[E, 7 *F]],. Or in other words,
Vo € Sy [[E,Flln=[[7E,7F]],.

Example, continued: For ¢ = 3 we have [E],, C [F],. We leave it to the reader to
check that [E], = [F], when (g) # 2 modulo 3,i.e. n =0,1,2,3,4,5 modulo 9, while
[E], # [F]» when (g) = 2 modulo 3 i.e. n = 6,7,8 modulo 9 To show [E], # [F].

when (g) = 2 modulo 3 simply compare the inner products [[6E, ). [t,7,k]]] and
1<j<k

[[6F, > [i,7,k]]] for any 6 € S,,). &

1<j<k

The following proposition gives a simple, but useful asymptotic property concerning
the invariance of the orthogonality of module elements with small support. The fact
that the orthogonality conditions only depend on the residue class modulo ¢g show
however that stronger methods are needed to prove our main result of Section III.2
where the residue class depends on k£ as well. In particular, For fixed ¢ and k we
write n =q n’ provided (’5 = (7;’) modulo ¢ for 7 = 1,2,..., k. Notice that n =, n’
if and only if n = n’ mod ¢* where u := min{u : ¢* > k}. the main technical result
Theorem 12, applies to residue classes with respect to = 4.

We only include the next proposition as an easier result with the same flavour as
the main result.

Proposition 10 Given two module elements FE and F of V[IF,n, k,t], of support-size
bounded by I, E,» L Fo« for some n* > 21 if and only if E, L F, for alln > 2l in
the same gp-residue class as n*.

Proof Since F and F have support at most [, without loss, we can assume that £
and F together have support restricted to {1,...,2[}*. Decompose E and F into
their constituent points, lines, planes etc. Let E?, F? represent the points, E!, F}
represent the lines, and in general Ef FF represent the k-dimensional constituents
of E and F respectively. Now [[E, F]], is the sum of the all the inner products of
the form [[E'fl1 Ff:]]n. Clearly the inner products between a point and anything else
remains the same for all n > 2[. Also, for two higher dimensional constituents that
intersect on a point (dimension 0), the inner product remains the same for all n > 21.
Similarly for any two constituents that do not intersect at all, the inner product
remains 0 always.

For two higher dimensional constituents whose intersection has dimension m > 1,
(for n > 21), the inner product depends only on the residue class of n™modgg.

Thus if [[E, F]],« = 0 for any n* > 2[, then [[E, F|], = 0 for any n > 2[, in the
same qp-residue class as n*. ]
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IV.3 Module Versions of the Main Results

The main theorem in this subsection, Theorem 12 is a general result about the asymp-
totic behaviour of uniformly generated submodule sequences, which, together with the
Proposition 11, completes the proof of the main results given in Section III.

This theorem additionally raises several related representation theory questions
of independent interest which are listed in Section VI, and dealt with in a separate

paper [9].

Proposition 11 The linear span of an S,-closed, uniformly generated set A of lin-
ear polynomials A € IF[\Y, ..., ) n, k] of support-size lg is a uniformly generated
submodule of V[IF,n, k,t| whose support-size is at most Ij.

Proof Each linear polynomial A in A is of the form:

t ) n n )
2.2.% 2 2 A
E =

*x1=1 *ME =1

where ci; € IF, and E runs over elements of {1,...,n,%,... **}* with mg distinct
indeterminates. Since we are only concerned with IF-linear spans of sets of linear
polynomials, A can unambiguously be viewed as

n n
S(ckyeyd)T > ... Y E
E *#1=1 *MBE=1

which is clearly a module element of V[]F,n,k,t]. Moreover, since the set A, is
S,-closed, its linear span is clearly a submodule of f/[IF,n, k,t]. Finally, since (the
sequence) A is uniformly generated, its linear span is a uniformly generated submodule
(sequence) with the same support-size. [ ]

Theorem 12 Take a uniformly generated submodule [G),, of V[IF,n, k,t] and a mod-
ule element H in V[IF,n,k,t], both of support size bounded by . For some n* >
max{l + 3k, (7 + ¢&)k — qr} let H' be a module element that is equivalent to H at
n*, with H = H'. Now if H'. € [G]n (resp. &) if and only if H, € [G], (resp.
¢) for every n > max{l + 3k, (7 + q&)k — qr}, with n =, n*. In the case IF has
characteristic 0 the requirement n =, n* is dropped and the requirement on n* (resp.
n) is weakened to n* > 2l (resp. n > 21).

We divide the proof of Theorem 12 into two cases. The easier case when IF
has characteristic 0, and the more involved where IF has finite characteristic, which
requires several intermediate lemmas.

Proof (of Theorem 12 for IF of characteristic 0)
Without loss, we assume that G and H have support exactly {1,...,}.
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Inducing Down We first show that if H,« € [G],+ for some n* > 2, then in fact
H, € [G’]n for all 2] < n < n*. Clearly, it is sufficient to show that H,«_; € [G’]n*_l,
since n* > 2[ is chosen arbitrarily.

Consider the expansion of H,« as a linear combination of permutations of elements

(but not necessarily primitive) G,,»:

Hn* = ZaiGi’n* (I)

where each G, is obtained by letting a permutation in S,+ act on one of the generators
in G.

The idea of the proof is simple: we first show that a useful increment A,,« can also
be generated by G' at n*. Obtain H!. by restricting to n* — 1, all summation signs
in the elements (i.e, lines, planes etc..) that appear in the G; .+ in (I). Obtain H/.
by viewing H,+«_; as an element in V[IF, n*, k,t], which has zero coefficients attached
to all vectors in {1,...,n*}*\ {1,...,n* — 1}*. Now A+ =4 H!. — H".. Notice
that A« has support restricted to {1,...,n*}*\ {1,...,n* — 1}*. Then we observe
that H,» — A+ can be generated by G using only permutations that fix n*. It follows
immediately from these observations and from the definition of A+ that H,«_; can
be generated by G at n* — 1.

Let IT denote the subgroup of permutations in S,« that fix the the values in
{1,...,1} and the value n*. Clearly,

Hn* = 1/|H| Z Zaiﬂ-(Gi,n*)- (II)

well 1

Let C denote the set of all G;,+ in (IT) that contain a vector (with a non-zero
coefficient) in {1,...,n*}* \ {1,...,n* — 1}*. Note that higher dimensional module
elements G, ,» may contain an entry m even if m is not in the support of G; .« (See
Section IV for the definition of support of a module element) and let D denote the
set of all G;,+ in (II) that contain only vectors in {1,...,n* — 1}* (these are not
only supported entirely in {1,...,n* — 1}, but are also linear combinations of zero
dimensional elements, i.e, points alone).

For each F,« € C_’, Denote by IIr C S,« all the permutations in S,+ that fix
{1,...,1}, do not fix n* and do not map any value in the support of F,« to n*.
Clearly the size of IIr differs depending on the size of support of F,«.

Consider the quantity:

VY0 3 aam(Gine)l+ D [/ e] 32 cim(Gine)] (1)

7€ell Gi,n"‘ eD Gi,n* eC WEHGi

Notice that each permutation 7 in II can be modified into a permutation in IIx
for any F', by inserting n* into a cycle in 7, making sure that it does not immedi-
ately follow (in the cycle), any value in the support of F,«. Using this process, each
permutation © € II yields exactly the same number of permutations in IIz. Con-
versely, there is a surjective map from IIz to II that maps exactly the same number
of permutations in IIz to each permutation in II.
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Observe that (I17) is identical to H,+ on {1,...,I}* (and thus to H,» — A,«,
due to the definition of (the support of) A,:); and is identical to H,» — A,+ on
{1,...,n*}¥*\{1,...,n* —1}*. Moreover, for vectors v in {1,...,n* —1}*\{1,...,1}*,
the coefficient value ¢, in (I11) is given as follows: let cg, be the coefficient of v in H,«
(or H,x — A+, which is the same); and let ca, be the coefficient, in A,«, of a vector
v’ obtained from v by using the permutation (b,n*) on some entry-value b between
[+ 1 and n* — 1 that occurs in v (notice that it does not matter which entry-value of
v we choose to move). Now ¢, = ¢y, + acan, where a is a fized constant.

Notice that (III) is almost identical to H,« — A« except on {1,...,n* — 1} \
{1,...,1}*, where there is an extra contribution resulting from certain well-defined
summands in the second term of (I1]). These summands correspond exactly to those
G; »» that contribute to the “A,,+ part” of of H,« in (I) and can therefore be isolated.
Hence this extra contribution is removed by weighting all of these summands by
1/(14 ) in (III).

Thus we have shown that H,« — A,« can be generated by G using (I1I), and
and clearly all the summands in (I1]) have supports restricted to {1,...,n* — 1}.
Therefore we have completed the proof of the first part.

Inducing Up. Next, we show that if H,« € [G]. for some n* > 2I, then in fact
Hoq1 € [Glpr41-

The idea here is to “reverse” the process of inducing down, and in fact the reversed
process is simpler to perform. Consider the expansion of H,« in (I) and its (identi-
cal) symmetrised version in (IT). Denote by H;. , the element of VIF,n* + 1, k,t]
obtained by extending all the summation signs (of lines, planes etc.) occurring in the
RHS of (I) to n*+1. Denote the resulting expression as (I'). Note that Hpv i1 —Hya g
1s exactly A,«;1 as defined earlier. Note also that H;. remains invariant when sym-
metrised by averaging over all permutations that fix {1,...,l,n*+1}. Clearly, H;._,
is generated by G. Similar to the process used to obtain (I1I), symmetrise each G;
that appears in the RHS of (I') by averaging over all permutations in S,«;1 that fix
{1,...,1}. Call the new expression (I1I').

Notice that (I7I') is almost identical to the desired H,+,;; the difference is re-
stricted to {1,...,n* + 1} \ {1,...,[}, and can be expressed, as before, by a fixed
constant fraction a times a sum of permuted copies of A,+,1. Again, as before, this
extra contribution is nullified by weighting a well-defined set of summands in (I’) by
1/(1+ a).

|

IV.4 The Main Lemmas

The lemmas required to complete the proof of Theorem 3 in the finite characteristic
case rely on the following phenomena: uniformly generated submodules of f/[IF, n, k,t|
are in fact generated by ultrasmall generators. Furthermore, if an ultrasmall element
F’ equivalent to F with F = F’ is generated by a set £ of ultrasmalls for some large
n*, then, in fact, F is generated from E at all n beyond a small constant in some
residue class of n*. Both the constant and the residue class depend only on ¢ and
(linearly) on k.
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Compression

The first lemma shows that uniformly generated submodules (sequences) of
V(IF,n, k,t) that have generators of small support in fact have ultrasmall generators
beyond a small value of n. We say we compress the collection of small objects into

ultrasmall objects when we carry out this procedure.

Lemma 13 Given an element E of V(F,n,k,t) of support I, there is a set F of

ultrasmall generators such that for all n > 1+ 3k, [F|, = [E],.

Proof The key idea in breaking down small elements to ultrasmall generators is quite
simple in essence. We hope that the following pictures can be helpful for the reader
to understand the underlying idea in many later arguments:

First let us consider a toy example which captures some of the general ideas in some
of the later arguments. Consider figure 1 to figure 6 in the Appendix. In figure 1 we
see a generator E. It have support {1,2,...,6} (assuming it has two horizontal lines
with coefficients 5 and 3) In figure 2 we consider (6,7)E. Any submodule containing
E obviously also must contain E; := (6,7)E — E. And any submodule containing F;
must contain E3 and E’. On the other hand £ = E’ — E5 so the submodule [E', E3),
and [E], are identical for all n > 8. Notice that E’ is slightly simpler than E because
it contain one more 0 entry. And Fj3 is ultra-small (support size < 2k = 4). In general,
the situation is more complex, though in principle very similar. The complexity arises
due to the following considerations.

o We have to consider the case k > 2.

o We also have to deal with lines, planes and other higher dimensional objects.
This is not an entirely trivial generalisation because is some cases, in compress-
ing higher dimensional objects, we will partly destroy some of the compression
which we have achieved for smaller dimensional objects.

e All entries are vectors (in IF*) not just field elements.

We now consider the general case: Pick a k-element tuple [i1,4},...,71] where each
z; > [. Let E be a generator support contained in [ := {1,2,...,1},] > k. Assume
that n > [+ 3k. For each k-element tuple [29,19,...,19] € {1,2,...,n}* we define an
operator I 0.1 i1 by

0.0 0.1 1
(23125 100 s TR 387 05 50 rBR ]

Lo BT U S S > (—1)oatterthol (30, 551)(69,15°).... (15, 13 ")-

: (a1,-05)E{0,1}*
Here (29,17%)(29,452)....(2%, 13*) € Sy, is written in the usual cycle notation.

To better describe the action of I'°, define 533’@”“’&](“1,]'2, wodi)) =11if 43 = g1,42 =

72, ,zi = 7 and 0 otherwise. Notice I'®% . .4 .4,6% 2 ., is zero except when
[20 300180387 185 0eeesl ) (87405000005

{12,42,..,12} = {9,...,1%} (assuming that {s},73,...,41} N {e2,43,...,52} = 0). We
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also consider ¢'s which instead of being supported in a point, are supported in an

d-dimensional primitive module element. Such an object is denoted by 6{% 2,2]

where d of the variables 42,72, ...,1; are indeterminates. Notice that for d > 1

0 d _ : 2 52 2
Thios,..i0iit,..i1 82 2,...i) = 0 for any choice of 17,13, ..., 1}
More generally for each 0 < d < k, and for each k — d tuples ¢%,19,...,7%_, and
11 1
17,0, ey U_g We let

d e ar+..tag_gt+k—d=1 /0 -y -0 Qg _d
F[ig,ig,...,ig_d;q,...,i}c_d] = Z (-1) (21,29 ) e (Tp_gy 2 g”)-

(o1 ,...,ak_d)E{oal}k_d

A crucial fact to note is that a T'?6% = 0 for d’ > d, or in other words, operators I'*
annihilate objects of dimension greater than d. Equally important: notice that I'*E
(any E) always has support size at most 2(k — d).

Now given E = Eqg+ Ey + ... + E;4 of support Sg C {1,2,...,1} (I > 2k) (in general E;
consists of j-dimensional primitive elements), we want to show that if n > [ + 3k we
can always “improve” these support sizes so they all eventually become at most 2k.

The first step in this reduction is carried out as follows: Pick [],13,...,7}] such
that {¢1,%3,...,5:} € {{+1,...,n}. Pick also {z9,...,4%} inside the support set of Ej.
The operator I'? := FE?,...,ii;ii i,...1] Can NOW be used to increase the number of zeros
at places with at least one coordinate outside {1,2,...,2k} as follows. Note that
I'°E = I'°Ey has support size at most 2k. If a permutation 7 is chosen appropriately
so it maps {1},%3,...,4;} onto {1,2, ..., k}, the number of non-zeroes of Ey — ' Ej,
at points with at least one coordinate outside {1,2,...,2k} has been reduced by at
least 1. Now E — 7I'°FE can be written as Ey — 7[°Ey + E; + ... + E;. Notice that E
is derivable from E — 7T°F and I'°E. By continuing this process, we eventually get
E' = E{+ E, + ... + E; where the support of E’ is contained in {1,2,...,2k}. Thus
we have a general method by which £ = Eq + E; + ... + E4 can be decomposed into
E'= E{+ E; + ... + E; (where Ej has support contained in {1,2,...,2k}) together
with a finite number of ultrasmall generators.

Next we decompose the lines in F;. This is done by use of an appropriate operator
I'! as before. Notice that I'' Ej) has support at most k, so in E' —a[''E = (E} -7 EY)
+(E; — nT*Ey) + E; + ... + E4 the support of E(')I = E} — 7rI‘1E6 1s at most 2k. The
support of E; — nT'E; is at most max(2(k — 1),l — k). When we continue this
process, by choosing a new I'' at the next step to reduce the support of E; — 7'M E;
even further, the support-size of E(’)” (the reduced part of Eg) may now have support
size 3k. However, this can be reduced back to 2k by use of an appropriate I'°, provided
n > 1+ 3k.

Eventually, after a finite number of steps (depending on [ and &, but independent
of n) we have produced a set of ultrasmalls F' such that for any n > [ + 3k we have

[E]n = [Fln. .

Notice that submodules of V(IF, n, k, t) that are orthogonal (w.r.t [[,]],) to submod-
ules generated by ultrasmall generators are themselves not necessarily generated by
ultrasmalls. In other words, the class of modules generated by ultrasmall generators
is not closed under the |, operation. This prevents the use of Proposition 10
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A proof system for submodule membership First let us summerise the idea
behind the following constructions. Our overall aim is to prove Theorem 12. Suppose
that for some n there is a derivation of some ultrasmall object F' from a collection
{E1, E,, .., E,} of ultrasmalls. One could imagine that during this derivation some
very nasty module elements G, G', G”, .. are constructed. Nasty in the sense that they
generate a F'S,-module which for example is not generated by ultrasmalls. The idea
behind the following proof system is to show that such hypothetical nasty module
elements G,G',G",.. can be avoided. It is an open question to what extend such
nasty module elements exists at all. Now the fact F' is ultrasmall allows us to show
there indeed is a nice derivation of F'. Intuitively the point is that the derivation is so
well-behaved that the derivation actually can be lifted/lowered to other values of n.
The following formal proof system captures all manipulations (for generating module
elements) one could possible hope to be available in the F'S,-case.

Let F be and element and F a set of elements of f/(IF,n,k,t). Then a formal
derivation of F from F is defined as follows.
The formal proof system P[IF,n,k,t] for proving submodule membership of

f/[IF, n, k, t] contains the following rules for deriving new module elements: %, ﬁ
and ﬁ where 7 € S, and ¢ € IF. This describes the proof system P[IF,n,_k,t]

completely. We say the module element F' is derived (in P[IF,n,k,t]) from E, if
starting from the elements of £ and applying a series of the above rules, one obtains
F. The width of the proof denotes the largest number m which was moved under
some p € S, during the proof.

Given E € V(IE‘, n,k,t), where n > 2k. The formal compression of E of
support size [ is a collection U(E) of ultrasmall (i.e support size < 2k) elements which
appear by taking E, for some n’ > [+ 3k (for instance n’ = n+ 3k) and applying the
compression procedure to get a collection Ey, Fs, ..., E, € V(IF, 2k, k,t) of ultrasmalls
such that [E], = [Ey, Ea, ..., Ey]n. Welet U(E) := {Ey, E,, ..., E,}. For convenience
we normally also assume U(FE) is closed under Sy (i.e. F € U(E) = nF € U(E) for
T € Sgk)

Lemma 14 Given any module element F of V(IF,n,k,t), with F € [E],, and a a
formal derivation of F from E in P(IF,n,k,t), we assign a collection of ultrasmalls
T(W) at each intermediate module element W in the derivation as follows. To each
“aziom” E; € E we assign {TE;,;m € So}. The assignment of a conclusion ﬁ
is unchanged (i.e. Tra = Ta). The assignment of a conclusion ﬁ 18 given by:
Tea :={cE: E € Ta}. The assignment Ta,p to conclusion of an application of 21+—113’3

15 obtained as follows: we have the assignments Ty and Ty, and we et

TzixB = {E : E|7r1,7r2 € S4k,E|EA € TA,EB €Tg E=mE,4 -|—7T2EB}.

aux

Notice that all objects in T35 have support size < 4k. Now let Tayp consist of all
ultrasmall objects which can be written as a linear combination of elements (possible
moved by some m € Sqi,) in U(T3V5). Notice that each object in Tayp has a derivation
of width < Tk(= 4k + 3k) from objects in T3Vg. Thus in general each object in Tw
can be derived by a proof of width < Tk. The claim is that for every module element
W in the derivation, we have U(W) C Tw; and in particular U(F) C Tp.
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Proof. We prove the claim by induction of the length of the derivation. Assume
U(A) C Ty, U(B) C Tp, and consider a derivation step % (other derivation steps
are trivial). We claim U(A+ B) C Tayp. Pick E € U(A+ B). We have an expression:

EF=A+B- Z WijA— Z WijB-I—Z:Zﬂ'krkﬂ'jrjA-l—ZZ?Tkrkﬂ'ijB—

7=1 7=1 i k>j i k>j

This expression splits naturally into two so we can write £ = E4 + Eg. Now E4 =
> 7r;‘1 E4; and Ep = 3 Wf Ep,; where E,; € Ty and Ep; € Ts and each 7r;‘1 and
J J

Wf fixes the points outside {1,2,...,7k}. Now E,; 4+ Ep; € T{ for each j so E
can be written as sum of objects (possible moved by 7 € S7;) in T§%%. Thus E can
actually be written as sum of objects in T4, 5. This ensures £ € Ty,p and thus
completes the proof. [ ]

From Lemma 14, we immediately get the following lemma.

Lemma 15 Let F and the set E consist of ultrasmalls. Then if F,» € [E],» for some
n* > Tk then F, € [E], for all n > Tk.

From Lemma 15, we obtain the following weaker version of Theorem 12 of independent
interest, for fields IF of any characteristic (including 0).

Theorem 16 Take a uniformly generated submodule [G), of V[IF,n, k,t] and @ mod-
ule element H in V[IF,n, k,t|, both of support size bounded by I. Now if Hye € [G],»
(resp. &) for some n* > max{l + 3k,7k} then H, € [G]. (resp. &) for every
n > max{l + 3k, 7k}.

Proof. Since H,+ € [@]n*, there is a derivation for H,. from G. By Lemma 14 it
follows that the ultrasmalls in U(H) that form the formal compression of H can be
derived from the ultrasmalls in U(G) by a derivation of width at most 7k. In other
words, [U(H)], C [U(G)], for all n > 7k. Since G and H have support size at most
[, by Lemma 13, H, € [U(H)], and [U(G)], € [G], for n > [+ 3k, and therefore the

chain:

H, € [U(H)]. C [U(G)]n C [Gln
holds for n > max{l + 3k, 7k}. |
Now we prove a stronger version of Lemma 15, where F' is replaced by F’ that is only

equivalent to F' at n*.

Lemma 17 Let F and the set E consist of ultrasmalls. For somen* > (T+q%)k—qr,

let F' be equivalent to F' at n*, with F = F'. Then if F.. € [E].~ then F, € [E], for
alln > (74 qf)k — gp with n =, n*.

Proof.
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We convert the derivation for F’ into a derivation for F', moving top down and
replacing intermediate module elements E, whenever possible, by appropriate, equiv-
alent module elements B = B’. In the process of showing that a replacement is valid,
one needs to show that the replacement can be carried out not only in the derivation
tree at n*, but more or less independent of n, i.e, for any n > (7 + ¢&)k — qF with
n =gk N

Since relevant replacements are made whenever possible, and the axioms of the
derivation E are ultrasmall, (and applying Lemma 14), we can assume that at any
given step of the derivation where a replacement takes place, the old element A 4+ B’
is replaced by an equivalent element A + B = A 4+ B’, where B is ultrasmall. Note
that A is not being replaced at the current step, and could have been partly replaced
earlier, but may be inseparable from B in the derivation.

The proof is by induction on the number of replacements in the derivation of F).
from E required to get a derivation of F from E as described above. The induction
basis 1s Lemma 15. The induction step is carried out in 2 parts, analogous to the
proof of Theorem 12 for the characteristic 0 case. Although F is itself ultrasmall, in
the induction step, we need to consider intermediate replacements where A + B’ is
replaced by A 4+ B, where only B is ultrasmall.

Inducing Up Assume n' =,; n* for some n’ > n* > (7 + ¢5)k — gr. We show that
if A+ Bl. = /_1 + B,+ can be formally derived from E, then A 4+ B, can be formally
derived from E.
We are given
A—|— Bn* = Z Z ajoEkj
k=1 a57;
where a; € IF and we first assume that each 7; fixes points outside {1,2,...,n*}. Let

7k < a < (7+ q&)k — gr be an constant. We will specify its exact value later. For
each (n* — a)-element subset W C {a + 1,a + 2,...,n'} we let

(A+Byw =) > anwm;Exj,
k=1a;7;
where nw : {a+1,a+2,...,n} =11 W C {a+1,a+2,...,n'} is an arbitrary bijective
(onto W) map. Notice that A might contain higher dimensional elements, but these
have already been replaced and can thus be view as formal objects not depending on
n.

We claim:

A+ B, = Z (A-I—Bn*)w
WC{a+1,a+2,...,n'},|W|=n*—a

To prove this, notice that:
n' —a
> (A4 B, )w = ( ] )A+ 3 (Bp w
WC{a+1,a4+2,....,n'},|W|=n*—a n—a WC{a+1,a4+2,....,n'},|W|=n*—a

Consider a point p = [i1,13,...,25] € {1,2,...,n/}*. Assume p contains d’ coordinates
in {a+1,a+2,..,n'} and k — d' coordinates in {1,2,...,a}. Let us compute the
number of W C {a + 1,a + 2,...,n'} which have p € (B, )w.
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Without loss of generality we can assume B,,« is a single primitive element defined
by:
{(ila 7;2, sy ik—d,jl,j% "'ajd) : jlaj2, "'ajd € {]-, 2) SR n*}}

for 41,12,...,05—q € {1,2,...,7k}. For general ultrasmalls B that are linear combi-
nations of primitive elements, the proof extends straightforwardly. The point p
lies on (B, )w if the first d coordinates of p is #1,13,...,2%—q. The number of sets

W C{a+1,a+2,..n'} of size n* — a which contain d' points is (Zl_“_dl). Now

*—(l—dl
assume a was chosen such that (Z;:Z:jj) = 1 modulo g for 7 = 0,1,2,.., k. Now there
is an s € N such that n’ — n* = s¢j where u is the smallest number with ¢ > k. It
suffices to show we can always deal with the case where n’ = n* 4 ¢§. Thus it suffices

n'—a—j

to show there exists suitable a such that ( . ) = 1 modulo g for 7 =0,1,..., k.
Now clearly (qji;) = 0 modulo ¢gg for 7 =1,2,...,¢93 — 1. Thus (q%;”) = 1 modulo
F
gr for 7 = 0,1,...,¢% — 1 (to see this consider Pascal’s triangle). The function j —

. ~ 7outl u .
(qju) has period ¢i&t' so for any [ € N we have (qu thﬂ)
F F

7=0,1,...,q% — 1. Now pick a such that ¢« = n' — Zq}ﬁ"’l —gp — k. We need a > Tk
so there always exists such an a < (7 + ¢f)k — gr (note that gpk — 1 > ¢ > &, so
qik —qr > ¢! > gpk). Thus if n,n' > (7+ ¢&)k — gF, we can always choose a > Tk
such that (n;zj) = 1 modulo ¢q for j =0,1,..., k(< ¢*). ]

= 1 modulo ¢ for

Inducing Down To complete the proof of the induction step, we need to show that
the replacement of A + B’ by A + B — where B is ultrasmall, equivalent to B’ at n*
and B > B’ — can in fact be carried out at any n with (7k + ¢f) — gr < n < n*,
when n =4 n*. In other words, we need to show that if A+ B/. = A+ B,« can be
derived from E, and all replaceable (ultrasmall) module elements in the tree prior to
A+ B’ have been validly replaced - i.e, the Lemma holds for all of them, then in fact
A+ B; € [E]ﬁ, where 72 < n* is the largest number with 72 =,  n*.

We prove this by an inner induction on the dimension of B. This does not contra-
dict the outer induction on the number of replacements in the derivation of A + B’:
derivations of m dimensional ultrasmalls may theoretically contain replacements of
intermediate elements of dimension greater than m, but as we shall see, the induction
hypothesis is only applied to elements that depend on replacements that occurred
prior to that of B.

The induction basis of the inner induction is if B contains no lines, planes, etc.
and is proved by Lemma 15, since in this case, B’ is in fact identical to B.

To prove the induction step of the inner induction, and complete the induction
step of the outer induction, we first let b = n* — 72 and consider the derivation 7«
of A+ B+, from E. The existence of 7«45 has been proved by the “Inducing Up”
part of the proof above. The derivation 7,«;; contains A+ B._; as an intermediate
element, and its derivation 7.« is a copy of the derivation A + B]. (which is being
considered in the outer induction step). Since B itself is ultrasmall, notice that the
difference Bp«yy — BJ., is equivalent to an ultrasmall A,. ; of dimension one less
than that of B. A,«;; occurs as an intermediate node in 7,+1;, that depends (if at
all) only on elements in 7. that occur prior to A + BJ.,,. Therefore, the (inner)
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induction hypothesis applies to A,+yp, and we can assume that A,+ can be derived
from E. Moreover, A,» must appear as an intermediate node in Tp«.

Now we return to the derivation of A+ B, = A+ B, which is a copy of 7« (except
that the summations in the non-zero dimensional elements or closed terms of A and
B!. now only go up to n* instead of n* 4+ b). Now A,« and therefore A+ B/. — A,
which is equivalent to A+ B,+ — A,«, must occur as elements prior to A+ B/« in this
derivation and hence the (outer) induction hypothesis applies to them. Thus A,«_;
and A + Bp+_y — Ap_p can be derived from E, and hence A+ B,._; = A+ Bj can
also be derived from E.

|
Finally, we are ready to complete the proof of Theorem 12.

Proof (of Theorem 12 for fields IF of finite characteristic).

The proof has the same structure as the proof of Theorem 16. Note that since H’
(equivalent to H at n*) can be generated from G, it follows from Lemma 14 that some
ultrasmall element equivalent (at n*) to each element of U(H) can be generated from
U(G). Now, by Lemma 17, it follows that each element of U(H) can be generated
from U(G) for all n > (7 + ¢&)k — g with n =,_; n*.

—9F,

The remainder of the proof is identical to that of Theorem 16. Since G and H

have support size at most {, by Lemma 13, H, € [U(H)], and [U(G)], € [G], for
n > [+ 3k, and therefore the chain:

H, € [UH)]. C [U(®)]. C [G].

holds for n > max{l + 3k, (7 + g5 )k — qr }, with n =, n*. [ ]

V  Other Applications

V.1 Lifting degree lower bounds for Polynomial Calculus

We now describe how to lift lower bounds on the degrees of Grobner or Polynomial
Calculus proofs of ideal membership of a target multi-linear polynomial in the ideal
generated (modulo z? = z for all variables z) by an S,-closed, uniformly generated
set of multi-linear polynomials in IF[z,n,r]. The PC case differ from the NS case in
three important ways.

e The PS is dual to the NS in the following sense:

In the NS case we showed that if two uniformly generated F'S,, submodules
V., C W, are different for large n this also holds for small n. This followed from
the inducing up, by showing that if the dual spaces V? and W are identical
from some small n* then they must be identical for all large n with n =4, » n”".

In the PS case we have to show that if two uniformly generated F'S,, submod-
ules V,, C W, are identical for large n this also holds for small n. This (modulo
some modifications) follows from the inducing down, without passing to dual
spaces.
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e In the NS case we had to consider linear subspaces closed under the group
algebra IF'S,. In the PC case we have to prove that similar results are valid for
linear subspaces which besides being closed under IF'S,, are closed under certain
uniformly given, S,-closed linear maps.

o In the PC-case it is an advantage to view on the appropriate F'S,-submodule
as a subring of the polynomial ring.

These changes is relative minor and the corresponding result form the PC-case
follows from the work we have already done.

Let Va4, 7 = (71,72, ...,74) denote the vector-space of multi-linear polynomials
of degree < d in the variables 3,61 igeeniin; )3 7 =12, u,01,00, .0 € {1,2,...,n}.
Given finitely many polynomials @1, Q2,...,Q» € Vp74. The support size g of a
polynomial () is the number of index in labels on variables in (). The support /5 is the
support size of Qy,...,Q, added up. Let r := maz{r;: j =1,2,...,u}. Let k:= rd.
Thus % still (like in section IV) denote the maximal number of index in module
elements. An ultrasmall polynomial is a polynomial of support size < 2k = 2dr. A
small polynomial has support size I (typical larger than 2k).

Our next major aim is to prove the following theorem:

Theorem 18 A non-constant degree lower bound — for PC proofs of a multi-linear
polynomial Q) in the ideal generated by an S, -closed, uniformly generated set of mult:-

linear polynomials (such as any set derived from a Universal Second Order sentence
ntqd

¥) Q - lifts to a degree d > min{m, %} lower bound, where l5 is the mazimum

of the support sizes of any of the polynomials in Q, and that of Q*.
We depend on the following result of [7] (paraphrased).

Theorem 19 (Clegg-Edmonds-Impagliazzo) There is a degree d PC proof of member-
ship of a polynomial P’ in the ideal generated by Q,, (modulo z* = z for all variables
z) if and only if P’ belongs in a certain subspace V,, 4(Q) defined as the smallest sub-
space of the space of degree d multi-linear polynomials that contains Q and is closed
under the operations My .(P), acting on polynomials P and defined for each variable
z: My.(P) maps P to the multi-linearisation of zP (under the rule z°> = z) provided
the resulting polynomial has degree at most d; otherwise My.(P) is undefined. It is

assumed that P and P* all have degree less than d.

Suppose that an ultrasmall polynomial P € V, 7, can be derived (from FS,-
operations, and My -operations) from ultrasmall polynomials Q1, @2, ..., @ € Vy 5.4
We want to show that this ensures that there exists a controlled derivation of P which
for example does not involve any pathological polynomials R, R', R"...

Lemma 20 Given polynomials Q1,Q2,...,Qv of support size ly and degree

Then there is a collection Q},Q5, ..., QL of ultrasmall polynomials of degree

such that for all n > 5, [Q1,Q2, ..., Qu)n = [Q1, @Y, -y Qlln-

This lemma is almost identical to lemma 13. However in the PC-case we can
express the result directly in term of multi-linear polynomials. We did not have that
luxury in the NS case.

< d.
< d

32



V.2 The Main Lemmas (the PC case)

In this section we briefly go through the similar lemma’s from section 4. The lemmas
required to complete the proof of Theorem 18 depend on the fact that uniformly gen-
erated submodules of V,, 7 4 are in fact generated by ultrasmall polynomials. Notice
that the concept generated now also include closure under the operators M, .. Basi-
cally we continue the argument very similar to the NS-case. Once more we have to
show that if an ultrasmall polynomial P’ equivalent (this concept remain unchanged)
to P with P > P’ generated by a set Q of ultrasmall polynomials for some large n*,
then, in fact, P is generated from Q at all n beyond a small constant in some residue
class of n*. Both the constant and the residue class depend only on ¢g and (linearly)
on k.

Compression (the PC case)

The next lemma shows that uniformly generated submodules (sequences) of V74
that have generators of small support in fact have ultrasmall generators beyond a
small value of n. We say we compress the collection of small objects into ultrasmall
objects when we carry out this procedure.

Lemma 21 Given an element Q of V,,z4 of support size I, there is a set R of ultra-
small generators such that for all n > 1+ 3dr, [R], = [Q]..

Proof More or less identical to the proof of lemma 13. ]

A proof system for submodule membership

Let Q be and element and R a set of elements of V,, 7 4. Then a formal derivation

of @ from R is defined as follows.

Given @ € V, 74, where n > 2dr(= 2k). The formal compression of @ of
support size [ is a collection U(Q)) of ultrasmall (i.e support size < 2k) elements (i.e.
polynomials) got by taking @, for some n’ > [ + 3k (for instance n’ = n + 3k) and
then by applying the compression procedure to get a collection Ry, Ra, ..., Ry € Va4
of ultrasmalls such that [Q]., = [Ri, Rz, ..., Ry|n. Welet U(E) := {Ry, Ry, ..., Ry}
For convenience we normally also assume U(E) is closed under Sy (i.e. P € U(Q) =
7P € U(Q) for 7 € Sai).

Now the argument continue almost identical to lemma 14. To make the behaviour
of the operators M, more transparent we now express everything in terms of poly-
nomials in V,, z ;. Given any polynomial @ of V, ; ;, with P € [Q]», and a formal
derivation of P from @ in we assign a collection of ultrasmalls T(W) at each inter-
mediate module element W in the derivation as follows. To each “axiom” Q; € Q

we assign {rQ;,m € Sa;}. The assignment of a conclusion £ is unchanged (i.e.
Txp = Tp). The assignment of a conclusion % is given by: T.p := {cR : R € Tp}.

The assignment T'p, 1 p, to conclusion of an application of % is obtained as follows:
we have the assignments T'p, and T'p,, and we get

T;:l_ljfpz = {R : E|7r1,7r2 € S4k, EIRl € TP1,R2 € TP2 R = 7['1R1 + 7['2R2}.
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Notice that all objects in T35 p have support size < 4k. Now let Tp ,p, consist of
all ultrasmall polynomials which can be written as a linear combination of elements
(possible moved by some m € Syt) in U(Tgp,). Notice that each object in Tp 4p,
has a derivation of width < 7k(= 4k + 3k) from objects in Tﬁ;‘_l’fp2. Thus in general
each object in Ty can be derived by a proof of width < 7k. The assignment T,p to
a conclusion of an application of 5 is obtained as follows: We have an assignment
Tp of elements of support in 2k. Let T25* be the collection of polynomials which
appear by taking for each variable z of support in {1,2,...,3k} and each R € Tp the
polynomial zR. Now let T,.p := U(T2p").

Lemma 22 For every polynomial W in the derivation, we have UW) C Tw.

Proof: Most of the lemma is proved exactly as lemma 14. The only new rule to
consider is the rule 5. Assume U(P) C Tp. Then clearly U(zP) C T2p*. Now
U(zP)=U(U(zP)) CU(T2p") = Tep. ]

From this lemma we immediately get the following:

Lemma 23 Let P and the set Q consist of ultrasmall polynomials. Then if Py €

[Q]nx for some n* > Tk then P, € [Q], for alln > Tk.

Now we prove a stronger version of Lemma 23, where P is replaced by P’ that is only
equivalent to P at n*.

Lemma 24 Let P and the set Q consist of ultrasmalls. For some n* > (7+q]2F)Zc—qF,
let P' be equivalent to P at n*, with P = P'. Then if P.. € [Q].« then P, € [Q], for
alln > (74 qg)k — gp with n =, n*.

Proof As the proof of lemma 17. ]

This now proves Theorem 18 exactly like the final argument proving Theorem 12 in
section IV.

V.3 Degree Lower bounds for proving Primality

Let ¢ be a first order sentence which has a model of size n if and only if n is a
composite number. For instance we can let 1 be the conjunction of the following
sentences:

P :=Vz3lz,y A(z) A By) A f(z,y) =2
Yo =Tz, y z £y N Alz) A Aly)
Y3 :=Jz,y ¢ # y A B(z) A B(y).

This system of sentences can (as we showed in Section 2) be translated into
bounded degree polynomial equations. More specifically we get a system essentially
similar to a system first considered in [13]:
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For each 7,57 € {1,2,...,n} we have variables z;,y; and v;;. For each 7,7,k €
{1,2,...,n} we have a variable z; ; ;.
The polynomials are:

(1) QF ==zl - 2 Zijh = V5 ;)

(2) Qi :=1-% z1y;2in

2%
(3) Q@ isiuink 1= Tia Tiy¥is Ysa i s i o,k TOT 41 7 12 OT J1 # Ja.
(4) Z,j,k:l,kz = TiY;525,5,ky Z4,5,ko for kl 7é kg.

First using the conversion mechanism described in the proof of Theorem 18, we
obtain a uniformly generated submodule sequence of V[IF,n, k = 3d,4] (k in this case
is the maximum number of indices in any term, which is the number of indices of any
variable (r = 3) times degree (d), and there are 4 variable types). The support size
(1) of the generating elements is almost 5.

The following corollary of Theorem 12 improves the non-constant degree lower
bound from [13] directly (i.e, without going through his non-constant degree lower
bound and our lifting result Theorem 18):

Corollary 25 For each n, there is no degree < min{%ﬁ, n—910

(i.e, < min{(;‘:;F)r, 2=} Polynomial Calculus refutation proof of ‘n is a prime’.
F

Proof: The proposition ‘n is a prime’ fails (for any fixed m) for some n' in each
residue class modulo ¢f. The proof follows from Theorem 12. [ ]

In Krajicek’s encoding of primality (as a system of polynomial equations) is of
course highly infeasible from a practical point of view. It would be interesting to
consider degree lower bounds on proving primality when the number is represented
in binary representation (rather than unary representation). Our methods does not
settle this question.

An interesting problem

V.4 NS-degree and PC-degree lower bound on the onto-PHP

In this section we solve an open problem from [16]. First, however, we improve the
n® NS-degree lower bound from [4].

Let P,r,, T, € {1,2,..,n}*v = 1,2,..u be a collection of uniformly gener-
ated polynomials closed under S,. The describing variables in the polynomials
P,r,, T = (i1,%2,...,9;) belongs to {1,%2,...,2%}. Consider the question whether
there is a sequence ar, € IF, such that Y- ar, (14 P,1,)=1.

Iin

n
Example: Consider the polynomials P(il,z'z,ia)n Y= 0 Ty iy Tig,;—Liy iy Tig is TOT 21,122,123 €
J

{1,2,...,n} all different. Also consider the collection Py, = i z; ;—x;;. Bach mono-
]

mial corresponds to a branch in a decision tree like the ones introduced in [22]. The

35



sum

Z Z Z Q31,3 Ze,)P(h i88)m T Z O‘(z)P(z)n

11 7.2 13
if and only if all monomials in the polynomial appears a number of times divisible by
IF. Thus there is a sequence o, s, ), @(s) such that

D20 Clirvinis)(L+ Pliyinsis)n) +E a@(l+ Pyy) =0

11 %2 13

if and only if there exists an gqp-exception forest of hight < 2.

&
We can rephrase Theorem 12 (using the fact that [ = k, and thus (7 + ¢f)k — gF) >
[ 4 3k) in the following form:

Theorem 26 Let P, 1., T, € {1,2,...,n}",v = 1,2, ..u be a uniformly given collec-
tion of polynomials closed under S,. Let m denote the smallest integer such that
q" >k andlet 0 <r < q¢™.

The the following are equivalent:

For some n* > (7 + qf )k — qv with n* = r modulo gf there is a sequence ar,, € TF,

such that 3 arP,r, =0, but such that Z o, # 0.
7:Tn

For all n > (7 + q&)k — gr with n = r modulo ¢ there is a sequence ar, € IF, such

that 3. arP,r, =0, but such that Z a1, # 0.
73:Tn

This immediately allows us to give improved NS-degree lower bounds on the fol-
lowing systems of equations which were considered in [4].

Let D and R be two finite sets. Let D = {1,2,...,d} and let R = {1,2,...,7}. In [4]

close upper and lower bounds on NS-refutations of onto-PHP? are given:

Proposition 27 (Beame, Riis) Ifp is prime and p* < N, there is a Nullstellensatz
refutation of onto — PHP%"'Z’[ of degree p* — 1.

Proposition 28 (Beame Rlls) If N > ((pr+2)* —p%)/2 then any Nullstellensatz

refutation of onto — PHPN o over IF must have degree at least 2¢ — 1.

These propositions essentially reduces to giving upper and lower bounds for the
degree of the NS proof for the following system of equations:
Let D :={1,2,..., N +p&} and let R := {1,2,...,N}.
Q}“ = mir — 24, ford € D,r € R.
=% =z4,—1forde D.
T7€ER

Qz,ﬁﬂ“z = Ty Tdr, for d € D,ry, 2 € R with 7 # ro.
Q‘él,dm'f ‘= T4y pTd,r for di,dy € D,r € R with d; # ds.
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QE:E > z4,—1lforreR.

deD

Now this system of equations is uniformly given (for fixed £) with the group S,
operating on {1,2,...., N + p&} by fixing the last p& numbers. Now r = 3 so as a
corollary to Theorem 12 we get a linear degree lower bound:

Corollary 29 For N > (21 + 3p%)(2* — 2) — pr any NS-degree refutation proof of

N+vk y)
onto — PHP,, must have degree at least 2° — 1 over IF.

Now we show that the combinatorics developed in [22], [23] actually is sufficient
to give a non-constant degree lower bound for Polynomial Calculus refutations of the
onto-PHP. For this section we recomend to have [22] at hand.

We want to show that the constant polynomial 1 not can be generated from the
polynomials Q°, we already have defined above. Now let I be the ideal generated by
the polynomisals @5, . and Qj 4 ..

Consider PC-degree lower bounds in IF[Z]/I. Now MES,’T,(XT: Ts,—1) = ZT: T p Tt p1—

zs . Continuing iterating M, we see that anything which can be generated (including
closure under £5) from Q1, @3, .., @ (modulo I) really is generated (as a IF'S,-module)
by all expressions of one of the forms:

Q =) Ldy 1 Ldyyra e Ldp_y,rp_1 Ldp,r — Ldy,r1 Ldg,rg-+-Ldp_1,mp_
7ER
;.
Q = d%:D Ldy 1 Ldyyro - Ldp_g,rp_y Ldyry, — Tdy,r1Tdp,ra e Ldp_q,mp_y -

Now consider a PU-tree as it was defined in [22] or [23]. Such a tree corresponds
to a polynomial Pr: The tree T' = (di,71)(d2,72)...(dh-1,7h—1)(7s) contain labelled
branches corresponding to the monomials in

Pr:= Z Ldy,r1Ldy ey Ldp_q,7p_1 Ld,rp + Z mdhﬁmdzﬂ‘z"'mdh—z,rh—zmdh—h?‘_l_
deD rERr#rH_1

tot Y zap

r€ER,r#r1
Now both @ and Q' can be written on the form Pr— Pr/.. More specifically we can write

Q = Playr1)(dar2)dnorrne)(dn) ~ Pldr,r1)(d2r2) - (dny)- ADD Q' = Play p1)(da,r2)..(dhsimnes) (o) —
P(d1 71)(da ) (dnr) Thus we have:

Lemma 30 For any polynomial R of degree < d, and for any polynomial Q%d) =
> zgr—1 (or Qf’r) = Y 4, — 1) there exists two PU-trees T, T' of height < d+1
deD

7€R

such that Pr — Pr = RQ%d) (or Pr — Pr = RQ?T)) modulo I.

Translating the main result on PU-trees from [23] into this setting we get:
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Lemma 31 Let D and R be two finite sets. Let D = {1,2,...,d} and let R =
{1,2,...,7}. Let Tv(d,r) (or just Tv) denote the collection of D, R-labelled PU-trees
of height < v. For each T let Py denote the multi-linear polynomaial corresponding to
T. Suppose that r = d + ¢™. Then there is no sequence {)‘T}Tei}m such that

Z (1+ Pr)=1.

TEsz

Lemma 32 There is no sequence of constant degree Polynomial Calculus proofs P,
of onto — PHP??" over a field IF of characteristic q.

Proof: We have to show 1 does not belong to V;7,. Anything we generate is a
collection polynomials Pr. If we could generate 1 we could generate a sequence

Ar, T € Td such that > A7 Pr = 1. Thus we would have a forest of PU-labelled
T

trees where each branch appear 0 modulo g times and where the total number of
trees would be 0. (To get the last claim notice that we alway generate a positive
as well as a negative tree whenever we multiply something by @3 or @°). Thus
; Ar (1 + Pr) =1 which would contradict lemma 31. [

These gives us the main result in this subsection which answers an open question [16]:

Theorem 33 For N > (21 + 3p%)(2¢ — 2) — pr any PC-degree refutation proof of

N+vk )
onto — PHP must have degree at least 2° — 1 over IF.

We can apply this result as in [23] and obtain a series of new PC-degree lower
bounds on the relative strength between various versions of the matching principles.

VI Related Representation Theory Problems

Several natural theorems and conjectures on the asymptotic behavior of representa-
tions of S, arise from the discussion of this paper. These are of independent interest,
and related results appear in [9].

The following theorem has been proven by the results of this paper.

Theorem 34 Let [G], and [H], be two uniformly generated submodule (sequence)s of
VI[IF,n, k, t] with support size at most I. Then there is an n* > max{l+3k, (7+qg)k—
qp} with [G)r = [H]nw if and only if [G], = [H], for alln > max{l+3k, (T+¢&)k—qr}

with n =, n*.

A stronger version of this theorem is the following conjecture. This statement
can be viewed as a a stronger version of Theorem 34, where the uniformly generated
module [H], is replaced by an arbitrary submodule of V[IF n, k, t].

Conjecture 1 Let [G], be a uniformly generated submodule (sequence) of V[IF,n, k, 1],
and let [G)s, be the union of this sequence. Let W, be [Gloo N V[IF,n, k,t] (Note that
this module need not be identical to [G],). Then, for n > max{l+ 3k, (7+ ¢&)k — qr}
with n =, n*, [Gl, = W,.
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The following conjecture is easily shown to be true for gp = 0, see [9], and also

7
see Theorem 1 in Section I, but remains unsolved for other characteristics.

Conjecture 2 There 1s a finite set Dy, of polynomials depending on k (of cardinal-
ity exponential in k), such that given any submodule W of V[IF,n, k,t|, there is a
polynomial pyy; € Dy such that the dimension of W is py(n).

Proof (for characteristic 0): We only give an outline the proof which essentially
follows from the representation theory of the symmetric group: Let E(k) denote
the class of equivalence relations on {1,2,...,k}. Let Cl(~) denote the number of
equivalence classes in &. For each equivalence relation ~€ E(k), let V,, ; ~ denote the
linear subspace (IF.S,-submodule) of V,, 5 := f/[]F, n, k, 1], where IF has characteristic
0. which is generated by the vectors e, s,,..s,) Where 1; = 4 if and only if j ~ k.
Thus we have

Vn,k = @zEE(k) Vn,k,z-

In the standard literature [11] on representation theory of S,, the modules M” usu-
ally denotes the vector space generated by the so-called 3-tabloids. Clearly (having
digested the underlying definitions)

Vg = M(n,ld(z)).

Now we employ the rich theory for decomposing modules of the form M) into
their irreducible components. The irreducible components (for fields of character-
istic 0) consists of the so-called Specht-modules S*. There are typically infinitely
many different decompositions of V),  into irreducible components. However all these
decompositions are isomorphic so the multiplicities of each S? is bounded by esti-
mating its multiplicity in each M®1™ " Now this multiplicity 1s independent of n
for n > 2k. Furthermore Hook’s formula allows us to show that each irreducible
component S7U2 et — 4y > 45 > ... > 1) has a dimension which is polynomial in
n.

Thus for each partitioning A = (n —141, %2, ...,;) there is a polynomial py(n) € @Q[z]
such that dim(S*) = py(n). Suppose that the multiplicities of S* in the decomposition
of Vo r is ¢x. Now for each assignment A — b, (where 0 < by < ¢,), we introduce a

polynomial p(n) := 3 bapa(n).
X
Each submodule W C V,,  can uniquely (up to isomorphism) be decomposed into
Specth modules. Thus there exists a choice of multiplicities 0 < b, < ¢, such that

dim(W) = ZA: bapa(n).

The number of A’s which appear in the decomposition is bounded by the number of
partitionings of 2k. The total number 7(k) of polynomials is thus bounded by an
expression which is independent of n. ]

The following conjecture will follow with additional work, from Conjecture 1, and
would give an alternative, more elegant proof of the main technical result of this
paper, i.e, Theorem 12.
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Conjecture 3 Given any uniformly generated submodule [G], of V[IF,n, k, ], there
is a single polynomial p such that for all n > lin(k) in some residue class of qf,
the dimension of |G|, is pa(n). We would like that lin is a linear function and m

1s a small constant. We would expect different polynomials pg for different residue
classes.

VII Appendix
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8 0 0 0 o| o 0 0
. 0 0 0 0 0 0 0
6 2 1 4 3 7 1 0
5 2 5 1 4 | 8 3 0
4 1 7| 2 5 5 5 5
3 1 0| 6 3| 3 3| 3
2 3 1 6 4 2 4 0
1 1 2 | 7 2 4 1 0

1 2 3 4 5 6 7

Figure 1: The generator £

XX
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0 o| o 0 0
4 3 | 7 0 1
0 0 0 0 0
1 4 | 8 0| 3
2 5 5 5 5
6 3| 3 3| 3
6 4 2 1 o0 4
7 2 4 o | 1
3 4 5 6 7

Figure 2: (6,7)E

0 o| o 0 0

4 3| 7 0 1

4 | 3 7 | 0
0 0 0| -3 3

0 0 0 4 | 4
0 0 0 1|1
3 4 5 6 7

Figure 3: E; :=(6,7)E — E
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0 0 o 4 | 1 0
0 1| 4 3| 7 0 1 2
0o | 1 4 | 3 2 0 >
0 0 0 o |o 3 | 3 0
0 0 0 0 o | o 0 0
0 0 0 0 0 0 0 0
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Figure 4: E, := (1,8)E;
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Figure 5: Es:= (7,6,5)(E> — Eq)
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Figure 6: E' := E + F5
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