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Abstract

Spiking neurons are models for the computational units in biological neural
systems where information is considered to be encoded mainly in the temporal
pattern of their activity. In a network of spiking neurons a new set of parame-
ters becomes relevant which has no counterpart in traditional neural network
models: the time that a pulse needs to travel through a connection between
two neurons (also known as delay of a connection). It is known that these
delays are tuned in biological neural systems through a variety of mechanisms.
We investigate the VC-dimension of networks of spiking neurons where the
delays are viewed as programmable parameters and we prove tight bounds for
this VC-dimension. Thus we get quantitative estimates for the diversity of
functions that a network with fixed architecture can compute with different
settings of its delays. In particular, it turns out that a network of spiking
neurons with & adjustable delays is able to compute a much richer class of
functions than a threshold circuit with k adjustable weights. The results also
yield bounds for the number of training examples that an algorithm needs
for tuning the delays of a network of spiking neurons. Results about the
computational complexity of such algorithms are also given.

1 Introduction and Definitions

During the last few years the paradigms for computation in biological neural systems
have undergone drastic changes. With the help of refined experimental techniques
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one has learnt that information is not only encoded in the firing rates of biological
neurons, but often also in the temporal pattern of their firing. Whereas threshold
circuits and sigmoidal neural nets provide a suitable model for neural computation
based on rate coding, i.e. in terms of firing rates, they cannot be used for modelling
neural computation based on temporal coding, i.e. in terms of temporal patterns of
neuronal activity. In order to model temporal patterns of activity, one has to con-
sider networks consisting of a different type of computational unit: spiking neurons,
or leaky integrate-and-fire neurons, as they are commonly called in biophysics and
theoretical neurobiology.

We will focus in this article on a simple version of the spiking neuron model
(“spiking neurons of type A” in the terminology of (Maass, 1997b)). This model
allows us to study some fundamental new learning problems that arise in the context
of computation with temporal coding. Since this model is sufficiently simple, the
basic aspects of this new mode of computation are not obscured by the myriad of
additional subtleties and complications that occur in a more detailed neuron model.
In addition, this simple model for a spiking neuron has the advantage that it provides
a link to silicon implementations of spiking neurons in analog VLSI.

1.1 The Model for a Spiking Neuron

We consider a spiking neuron v that receives inputs in the form of short pulses, also
known as spikes, from n input neurons a,...,a,. We assume that there exists for
i=1,...,n aconnection from a; to v with weight w; € R and delay d; € R* (where
R" ={z € R:xz>0}). We treat time as a continuous variable. For simplicity we
assume that if the input neuron a; fires, i.e. emits a spike, at time ¢;, this causes a
rectangular pulse in v of the form h;(t — ¢;) with

0 forz<d; or x>d;+1,
w; ford;, <z <d;+1.

We assume that the neuron v fires as soon as the sum P,(¢t) = I, hi(t — ;) of
these pulses reaches a certain threshold 6,. In a biological context these pulses are
called postsynaptic potentials. The function h; models the effect of a firing of neuron
a; on the membrane potential P,(t) at the trigger zone of v. The firing threshold
6 of a biological neuron depends on the time which has passed since its last firing.
For simplicity we assume here that the neuron has not fired for a while (say at least
20 ms), so that its firing threshold has returned to its “resting value” 6,. There is
some disagreement among neurobiologists whether the sign of a synaptic efficacy w;
can change in the course of a learning process. This issue will not be relevant for
the results of this article.

The model is a simple version of a leaky integrate-and-fire neuron. In contrast
to more complex models (see e.g., (Tuckwell, 1988; Gerstner, 1995; Maass, 1997a))
it models a pulse as a step function, rather than a continuous function of a similar



shape. Pulses of this shape are actually very common in silicon implementations of
networks of spiking neurons (Murray and Tarassenko, 1994).

A spiking neuron of this type was called a “spiking neuron of type A” in (Maass,
1997b). In this article we will refer to it simply as a spiking neuron.

1.2 Temporal Coding

A spiking neuron may be viewed as a digital or analog computational element,
depending on the type of temporal coding that is used. For binary coding we assume
that input neuron a; fires at time 0 if it encodes a “1”, and that it does not fire at
all if it encodes a “0”. Correspondingly, we assume that v outputs a “1” if it fires
as a result of this input from a4, ..., a,, and that v outputs a “0” if it does not fire.

For analog coding we assume that a; encodes a real number ¢; € [0,1] by firing
at time t;. The output value of v is the time ¢, when it fires (or ¢, — T for a suitable
constant T if one wants to scale the real-valued output of v into a specific range
such as [0, 1]). In case that v does not fire, we assume that this encodes some fixed
analog output ¢ (e.g. to = 0).

We will consider both types of coding in this article. Moreover, the type of
coding for the inputs may differ from that for the output, e.g., analog coding for the
inputs and binary coding for the output may occur. We prove each result for that
type of coding for which it is more difficult. Lower bounds for sample or learning
complexity tend to be more difficult for binary coding, upper bounds tend to be
more difficult for analog coding.

We view in the following the delays d; as “programmable parameters” of a neu-
ron, in addition to the weights w; of its synapses. This is reasonable since in biology
many mechanisms are known that can change the effective delay between two neu-
rons. One well-known mechanism is the selection of a few synapses out of an initially
very large set of synapses between two neurons. Some other biological mechanisms
for changing the effective delay between two neurons are discussed in (Agmon-Snir
and Segev, 1993; Gerstner et al., 1996).

Our results about the VC-dimension of a spiking neuron are complementary to
those achieved in (Zador and Pearlmutter, 1996). In that article the integration
time constant and the threshold were viewed as the only variable parameters of a
spiking neuron, whereas the effect of variable delays has not been addressed.

1.3 Complexity of Learning

In this article we investigate the complexity of learning for a spiking neuron within
the framework of probably approximately correct learning, or PAC-learning for short.
For detailed definitions of this paradigm we refer the reader to (Anthony and Biggs,
1992; Blumer et al., 1989; Valiant, 1984). In Section 2 we estimate the computational
power and the sample complexity of a single spiking neuron. We give upper and
lower bounds for its computational power when using binary coding in terms of



several classes of Boolean functions. The sample complexity is analyzed in terms of
the Vapnik-Chervonenkis dimension, or VC-dimension for short. As the main result
of this section we show that for binary and analog coding the VC-dimension of the
corresponding function class is ©(nlogn). It is well known that the VC-dimension of
a function class gives fairly tight bounds on the sample complexity, i.e. the number
of training examples needed, for PAC-learning this class. According to (Haussler,
1992), these estimates of the sample complexity in terms of the VC-dimension hold
even for agnostic PAC-learning, i.e. in the case when the training examples are
generated by some arbitrary probability distribution. In particular, these bounds
remain valid when the training examples are not generated by a spiking neuron.

In Section 3 we consider feedforward networks of spiking neurons. We show that
such networks can have a VC-dimension that is quadratic in the number of delays
that are programmable. Interestingly, this bound matches the quadratic lower bound
for sigmoidal nets in terms of the number of weights due to (Koiran and Sontag,
1997). We further show that this bound is asymptotically tight by proving that
any feedforward network of spiking neurons has a VC-dimension that is at most
quadratic in the number of its edges. Moreover, this upper bound holds even if all
delays, weights, and thresholds are programmable and even for analog coding of the
inputs. The proof of this bound relies on a well-known and far-reaching result by
(Goldberg and Jerrum, 1995).

In Section 4 we investigate the computational complexity of PAC-learning using
a particular spiking neuron as hypothesis class. We show that for a bounded set of at
least two delay values the consistency problem for the corresponding hypothesis class
is NP-complete. This implies that there are no efficient PAC-learning algorithms
for these hypothesis classes unless the complexity classes RP and NP are equal.
The intractability results presented in this section have also consequences for the
case of agnostic PAC-learning. According to known results (Kearns et al., 1992;
Hoffgen et al., 1995), polynomial-time agnostic PAC-learning with some hypothesis
class H is possible only if the minimizing disagreement problem for A is in RP.
Now, for each hypothesis class H the consistency problem for H can be solved
in polynomial time if the minimizing disagreement problem for H can be solved
in polynomial time. (More precisely, there is an easily definable polynomial-time
reduction from the consistency problem to the minimizing disagreement problem.)
Therefore, polynomial-time agnostic PAC-learning is not, possible for the hypothesis
classes considered in this section, provided that RP # NP.

The final Section 5 contains some concluding remarks and discussion.



2 Computational Power and VC-Dimension of a
Single Spiking Neuron

We first introduce some notation. The class of Boolean functions that can be com-
puted by a spiking neuron with n binary coded inputs and a binary coded output
is denoted by SP® (where “bb” stands for “binary input and binary output”). Cor-
respondingly, §2? is the class of functions from R" to R that can be computed by
a spiking neuron with analog coding of the inputs and the output. The subclass of
S22 restricted to Boolean output values encoded in binary is denoted by S2.

We use a similar notation for the threshold gate and for the sigmoidal gate: A
threshold gate, also known as Perceptron or McCulloch-Pitts neuron, with inputs
Z1,--.,%, has weights wy, . . ., w,, where w; is associated with z; fort = 1,...,n, and
a threshold 0. It outputs 1 if wyz; + - - - +w,z, > 0, otherwise 0. By 7.°® we denote
the class of Boolean functions that can be computed by a threshold gate. A threshold
gate with real-valued inputs and binary-valued output corresponds to a half-space
over R". We denote the corresponding function class by 7,2°. The sigmoidal gate is
a neuron model that computes functions from R" to R. We assume that it calculates
its output value by applying the standard sigmoidal function 1/(1+e7¥) to the sum
w1 + - -+ + wpx, — 0. We denote the corresponding function class by 7,2%.

For assessing the computational power of a spiking neuron in the Boolean domain
it turns out that it is useful to consider two further classes of Boolean functions:
the first is a special type of disjunctive normal form (DNF), the second is a disjunc-
tion of linearly many threshold gates. The class u—DNE, is the class of Boolean
functions each of which can be written as a DNF formula over n variables where
each variable occurs at most once. By OR—of—O(n)—7,°® we denote the class of
Boolean functions that can be computed by a disjunction of O(n) threshold gates.

2.1 Computational Power

It is obvious that in the case of binary coding a spiking neuron has at least the
computational power of a threshold gate: just assume that all delays d; are equal.
However, it is easy to see that its computational power is strictly larger. In order
to characterize its power more precisely we compare it with the Boolean function
classes defined above. The following theorem clarifies the relationships among these
classes. It shows that a spiking neuron with binary coding can also compute any
function in u—DNF. On the other hand, it can be simulated by a disjunction of
linearly many threshold gates. The results are graphically depicted in Fig. 1.

Theorem 2.1

a) TP* ¢ u—DNE, for all n > 3.

b) u—DNE, € T.*® for all n > 4.

c) TP> C S for all n, and T,°® # SP° for alln > 4.
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Figure 1: Upper and lower bounds for the computational power of a spiking neuron
in the Boolean domain as established in Theorem 2.1.

d) u—DNE, C 8" for all n, and u—DNE, # S°® for all n > 3.

e) SP* C OR—of —O(n)—T,°*. More precisely, each function in S2° can be computed
by an OR of 2n — 1 threshold gates. For n > 2, however, there exist functions
computable by an OR of two threshold gates that are not in StP.

Proof. All proofs are straightforward. We give evidence of the inequality claims by
presenting for each of them a function that separates the two classes involved for
the smallest n. It is then easy to obtain a separating function also for higher values
of n.

a) The function (x1 A z2) V (21 A 23) V (22 A 23), which is 1 if and only if the
input vector contains at least two 1’s, can obviously be computed by a threshold
gate. Assume that it can be written as a uy—DNF; formula. Then this formula either
contains an AND with only one variable or it consists of at most one AND, both of
which contradicts the definition of the function.

b) Consider the p—DNF; formula (z; A x3) V (23 A 4). Assuming that it can
be computed by a threshold gate implies that w; + wy > 6 and w3 + wy > 6, but
also that wi; + w3 < 6 and wy + wy < 6. All four inequalities together form a
contradiction.



¢) The inclusion is obvious. For the inequality consider the function in b) which
can be computed by a spiking neuron as follows: Choose equal values for delays
which belong to the same AND and take care that pulses from different ANDs do
not overlap. This is also the general way of computing a u—DNF formula by a
spiking neuron, which is the first claim of d).

d) For the inclusion see ¢). For the inequality consider the function (z; A z3) V
(z2 A x3) which is in SPP: Choose delays such that the pulses for z; and z3 do not
overlap but that those for each pair x1,z9 and x9, 3 do overlap. It is easy to see
that this function cannot be written as a u—DNF; formula.

e) A spiking neuron v with binary coding has at most 2n points in time at which
the potential P, changes. Hence, there are at most 2n — 1 intervals during which P,
can be non-zero. Define for each of them a threshold gate that has as inputs those
x; having pulses intersecting this interval. For the inequality, it is easy to see that
the Exclusive-OR of two bits, which outputs 1 if and only if z; + 29 = 1, can be
computed by an OR of two threshold gates and is not in SEP. O

2.2 Lower Bound for the VC-Dimension

A dichotomy of a set S C IR" is a partition of S into two disjoint subsets Sy, S such
that Sy US; = S. Given a set F of functions from R™ to {0,1} and a dichotomy
So, 51 of S, we say that F induces Sy, S1 on S if there is a function f € F such that
f(So) C {0} and f(S1) C {1}. We say further that F shatters S if F induces all
dichotomies on S. The VC-dimension of F is defined as the largest number m such
that there is a set of m elements that is shattered by F. (If arbitrarily large finite
sets are shattered by F then its VC-dimension is defined to be infinite.)

It is well-known that the VC-dimension of the classes 7,°® and 7,?* is n + 1 and
hence equal to the number of programmable parameters of these neuron models.
The following result shows that the VC-dimension of the classes S*® and S2P is sig-
nificantly larger even if only the delays are adjustable and the weights and threshold
remain fixed.

Theorem 2.2 The VC-dimension of a spiking neuron with n variable delays as
programmable parameters is Q(nlogn). This holds even if the inputs are restricted
to binary values and all weights are kept fized.

The statement follows from the following more general result choosing k =
(log(n/2))/2 and m = n/2, and observing that k-2¥+m < n and k-m = Q(nlogn).
We give a proof for binary coding of the inputs and indicate afterwards how to derive
the result for the case of analog coding of the inputs, i.e. the class S2°.

Theorem 2.3 For each m,k > 1 there exists a set S C {0, 1}m+k'2k of cardinality
|S| = m - k that can be shattered by a spiking neuron with fized weights.



Proof. We first describe the construction of S, then we fix the weights and a part
of the delays, and finally we show that for each subset S’ C S there exists a delay
vector such that the neuron fires on elements of S’ but does not fire on elements of
S\S'.

The set S consists of m - k elements s*/ for 1 < i < m, 1 < j < k where the first
m bits of 5"/ are formed by the unit vector e; € {0,1}™. The remaining k - 2 bits of
the elements are defined as follows: Assume a fixed enumeration of all 2* subsets of
the set {1,...,k}. Reserve for each A C {1,...,k} a block by of k bits. The block
b of element s/ is then defined as

the unit vector ¢; € {0,1}%, if j € 4,
the zero vector 0 € {0,1}*,  otherwise.
The weights are defined as w; = 1 for 1 < i < n, and the threshold is 3/2.
The delays for the last k - 2¥ inputs are fixed in such a way that inputs from the

same block b, have identical delays, but the pulses for inputs from different blocks
ba,bar, A # A’ do not overlap. (For instance, integer values {0,...,2* — 1} would

do this.)
It remains to show that S can be shattered. Let S’ C S. The delays for the first
m inputs are specified as follows: For each i € {1,...,m} define the set

Al={je{l,...,k}:s" €S}

and choose the delay for the i-th input equal to the delay of the inputs of block by4:.
Obviously then the neuron fires only for elements of S’. O

Theorem 2.3 can be shown to hold also for analog coding of the input values at
the cost of adding an extra input with value 0. Its weight is chosen such that all
pulses from inputs that encode 0 are cancelled. This weight can also be kept fixed
because all elements of S constructed in the proof have the same number of 0’s.

The proof of Theorem 2.3 gives also rise to a lower bound when the number of
different values for the delays is bounded. One obtains the bound Q(nlogl) where
[ is the number of different delay values that are allowed.

2.3 Upper Bound for the VC-Dimension

The lower bound of Theorem 2.2 holds for a very restricted spiking neuron with
fixed weights and integer delays. The following suprising result shows that this
bound is asymptotically tight even if the delays and weights range over arbitrary
real numbers.

Theorem 2.4 The VC-dimension of a spiking neuron with n analog coded inputs
and binary coded output is O(nlogn).



The following statement is an immediate consequence of Theorems 2.2 and 2.4.
It summarizes the results of this section in terms of the function classes computed
by a spiking neuron.

Corollary 2.5 The classes S*® and 82 have VC-dimension ©(nlogn).

In the proof of Theorem 2.4 we will use the following result which is a consequence
of Theorem 2 in (Cover, 1965)! and Proposition A2.1 of (Blumer et al., 1989).

Lemma 2.6 Let m hyperplanes in R" passing through the origin be given, where
m > n. They partition R" into at most 2(em/(n — 1))~V different regions.

Proof. By Theorem 2 of (Cover, 1965), m hyperplanes through the origin partition
R" into at most 2 375 (mk_ 1) different regions. By Proposition A2.1(iii) of (Blumer
et al., 1989), 25525 (1) < 2(e(m — 1)/(n — 1))@V for m > n. O

Proof of Theorem 2.4. The proof is structured as follows: We first estimate
the number of dichotomies induced by a spiking neuron on an arbitrary finite set
S C IR” of cardinality m. This will result in the upper bound

2(4emn)™ - 2(2em)". (1)

Then the assumption that S is shattered by a spiking neuron, i.e. that all 2™ di-
chotomies can be computed, will lead to the bound m = O(nlogn) and hence to
the claimed result.

The computation of a spiking neuron can be considered in the following way:
Given an input vector and a delay vector, the time that is relevant to determine if
the neuron fires is divided into at most 2n — 1 intervals which are specified by the
starting and ending points of the n pulses. With each interval there is associated
a subset of the weights corresponding to the set of pulses that are active during
this interval. The neuron fires if within some interval the sum of the weights in the
associated subset reaches the threshold.

In order to prove (1), we first estimate the number of different delay vectors that
are relevant. For each fixed s € S, the space R" of delay vectors d is partitioned
into regions by hyperplanes of the form

8i+di+y=Sj+dj+Z,

where y,z € {0,1} depending on whether the term corresponds to a starting or
ending point of a pulse. There are (2n)? such hyperplanes for each fixed s. They
partition R" into regions of delay vectors that are equivalent with regard to the
computation of the neuron on input vector s. If one partitions R" by the at most

!This reference is frequently cited when using this result. Cover himself, however, attributes
the first proof of this theorem to (Schlifli, 1901).
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m - (2n)? hyperplanes that arise for all s € S, the resulting regions consist of delay
vectors d that are equivalent with regard to all input vectors s € S. Estimating
the number of different regions, one has to take into account that the hyperplanes
not necessarily pass through the origin. But the number of different regions of R"
generated by m - (2n)? arbitrary hyperplanes is at most as large as the number of
different regions of R"*! generated by m-(2n)? hyperplanes that all pass through the
origin. By Lemma 2.6 this partition consists of at most 2(4emn)” different regions.
Hence, for inputs from S it suffices to consider these many delay vectors.

Now we show that for each fixed delay vector at most 2(2em)” many weight
vectors are relevant. The upper bound (1) follows then from this number and the
number of different delay vectors. For each fixed input vector s € S and each
delay vector d there are at most 2n — 1 hyperplanes that have to be considered
corresponding to the intervals during which there are pulses active. Each hyperplane
is characterized by a subset of {wi,...,w,} and by the threshold 6,. If for the
given s and d two weight vectors of the spiking neuron result in different outputs,
then these outputs must be different for one of the intervals and hence, for the
hyperplane corresponding to this interval. Consequently, the number of regions of
the space R™ " of weights wy, . .., w, and threshold 6, is not larger than the number
of regions that arise from the at most 2n — 1 hyperplanes. Taking into account all
s € S, the space R™™! is partitioned by at most m - (2n — 1) hyperplanes that all
pass through the origin. By Lemma 2.6 the number of different regions that arise
from these hyperplanes is bounded by 2(2em)™. From this (1) follows.

Finally, the following claim implies the bound O(nlogn) for the VC-dimension
and hence the statement of the theorem.

Claim. The VC-dimension of §2" is at most 8nlog(2n) for all n > 8e2.

Assume that S has cardinality m and is shattered by S2. Hence, all 2™ dichotomies
of S can be computed by a spiking neuron. Then (1) implies

2m

IN

2(4emn)" - 2(2em)"
= 4(8¢*m*n)"
< 4(mn)*™,

where we have used the assumption n > 8¢? for the last inequality. Taking loga-
rithms on both sides yields

m < 2nlog(mn) + 2,

which implies
m < 2n(log(mn) + 1). (2)

For any m > logn there is a real number r > 1 such that m = rlog(rn). (This can
easily be seen from the fact that for arbitrary n the function ¢, : [1, 00) — [logn, c0)
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defined by ¢,(z) = zlog(zn) is 1-1 and onto.) Substituting m = rlog(rn) on both
sides of (2) yields

rlog(rn) < 2n(log(rnlog(rn)) + 1)
2n(log(rn) + log(log(rn)) + 1)
< 2n(log(rn) + log(rn/2) + 1),

where the last inequality follows from log(rn) < rn/2. (This requires rn > 4 which
is guaranteed by the assumption n > 8¢?.) Hence we have

rlog(rn) < 4nlog(rn).
Dividing both sides by log(rn), which is positive due to rn > 8e?, we get
r < 4n,

which implies
rlog(rn) < 4nlog(4n?).

Resubstituting m = rlog(rn) for the left hand side and rearranging the right hand
side yields
m < 8nlog(2n)

as claimed. This completes the proof of Theorem 2.4. O

The bound (1) can also be used to estimate the number of Boolean functions that
can be computed by a spiking neuron. Substituting m = 2" yields the bound 20(n?),
Combining this with the lower bound 2%"") of (Muroga and Toda, 1966) for 7,°"
and our Theorem 2.1(c), we get the upper and the lower bound almost matching.

Corollary 2.7 There are 20(n?) many Boolean functions computable by a spiking
neuron with binary coding of the inputs.

For the case of binary coding the analysis can even be made simpler, because the
factor 2(4emn)™ in (1) that is due to the number of relevant delay vectors can be
replaced by a bound that is easier to obtain: One observes that for a set S C {0,1}"
of input vectors at most n? many different values have to be considered for each
delay. Hence, the number of relevant delay vectors is at most 227!°6™  Thus one
derives the upper bound gn*+0(nlogn) for the number of Boolean functions. This
result is particularly interesting in the light of the fact that there are at most on’
many different functions in 7,°® (Muroga, 1971).
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2.4 Pseudo-Dimension

When analyzing the PAC-learnability of real-valued function classes the pseudo-
dimension plays a similar role as the VC-dimension does for binary-valued func-
tion classes (Haussler, 1992). Following the terminology of (Macintyre and Son-
tag, 1993) we say a set {s',...,s™} C IR" is H-shattered by a class F of real-
valued functions if there exist real numbers z?, ..., 2™ such that every dichotomy of
{(s',x!),..., (s™, 2™)} is induced by some function of the form (s, ) — sign(f(s) —
x) for some f € F. (Here sign(x) denotes the function which outputs 1 if z > 0, oth-
erwise 0.) Analogously to the VC-dimension, the pseudo-dimension of F is defined
as the largest number m such that there is a set of m elements that is H-shattered by
F. Obviously, if F contains only binary-valued functions then its pseudo-dimension
is equal to its VC-dimension.

Using known results about the pseudo-dimension (see, e.g., (Haussler, 1992)) it
is easy to derive that the class 7,** has pseudo-dimension n+ 1, which is equal to the
number of programmable parameters. From our definitions for binary and analog
coding it follows immediately that a set which is shattered by a spiking neuron with
binary coding of the output is also H-shattered by a spiking neuron with analog
coding of the output. Hence, by Theorem 2.2 the pseudo-dimension of the class S3*
is Q(nlogn). Thus, the pseudo-dimension of a spiking neuron is significantly larger
than the pseudo-dimension of a sigmoidal gate even when the delays are the only
adjustable parameters of the spiking neuron. The following result shows that this
lower bound is almost tight.

Theorem 2.8 The pseudo-dimension of a spiking neuron with n analog coded inputs
and analog coded output is O(nlogn).

Proof. We follow the same lines of reasoning as in the proof of Theorem 2.4,
i.e. we first estimate the number of dichotomies that are induced on a set S =
{(s},zY),...,(s™, ™)} C R™™ by the functions (s, z) — sign(f(s) —z) for f € S22

For each fixed (s,z) € S, the space R" is partitioned into regions of equivalent
delay vectors d by hyperplanes of the form

Si+di+y:8j+dj+2’

and
si+di+u:x,

where u,y,z € {0,1} depending on whether the term corresponds to a starting
or ending point of a pulse. For all (s,z) € S together we obtain so at most m -
((2n)? 4+ 2n) = m - 2n(2n + 1) hyperplanes that define regions of delay vectors that
are equivalent with regard to the computation on S. We bound the number of these
regions by the number of regions of R"** that arise from m-2n(2n+ 1) hyperplanes
passing through the origin. These are by Lemma 2.6 at most 2(2em(2n + 1))"
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different regions. Hence, for inputs from S it is sufficient to consider these many
delay vectors.

Now, for each fixed delay vector the number of relevant weight vectors can be
estimated as in Theorem 2.4 by 2(2em). Multiplying both bounds, we have that the
number of dichotomies that are induced on S by the functions (s, z) + sign(f(s)—z)
is at most

2(2em(2n + 1))" - 2(2em)".

If all dichotomies of S are induced then this bound must be greater or equal to 2™.
From this we obtain the claimed result m = O(nlogn) by a calculation which is
analogous to that in Theorem 2.4 and omitted here. O

Corollary 2.9 The class S* has pseudo-dimension ©(nlogn).

3 VC-Dimension for Networks of Spiking Neu-
rons

We consider feedforward networks of spiking neurons (SNNs), where the structure,
or architecture, of a network is defined in terms of an underlying directed acyclic
graph. The network inputs and outputs can encode Boolean or analog variables
as in the preceding section. The output of an internal gate is assumed to be an
analog variable encoded through the timing of its output spike. The following lower
bound for the VC-dimension of an SNN in terms of the number of delays matches
the quadratic lower bound in terms of the number of weights due to (Koiran and
Sontag, 1997), which holds for sigmoidal neural nets. The agreement between these
two bounds is somewhat surprising, since the settings and the constructions are
quite different. The result shows in particular that the VC-dimension of an SNN
with k adjustable delays can be substantially larger than the VC-dimension of any
threshold circuit with £ adjustable weights.

Theorem 3.1 For each n one can construct a feedforward SNN N with O(n) edges
that has VC-dimension Q(n?). This even holds if all weights and thresholds remain
fized.

Proof. We first build for any given m € IN a module M,, that can read out (and
remove) the most significant bit from any m-bit binary number that is given in the
form of a temporal delay of a spike. More precisely, M,, accomplishes the following
(see Fig. 2): Assume that T,, and 7}, are constants which will be defined later.
When a spike arrives at IN; at time d = 7", b;2¢ and at IN, at time 0, then OUT,
emits a spike at time T;, + 21@_11 b;2¢. Further, OUT, emits a spike if and only if
b, = 1. This conditional spike from OUT, is then generated at time 77", + 37" b;2".

Module M,, is implemented as a feedforward SNN consisting of 5 neurons (see
Fig. 3): Neuron v fires if and only if the spike from IN; (which arrives at v at time
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Figure 2: Module M,,.

d + A — 2™) arrives strictly before the spike from IN, (which arrives at time A).
Hence, the firing of v is equivalent to d + A — 2™ < A, and thus to d — 2™ < 0
which holds if and only if b,, = 0. This conditional firing of v takes place at time
d+ A — 2™, Neuron u fires in any case at time d + A — 2™. If v fires, it prevents
u' from firing. Hence, v’ fires if and only if b,, = 1. This conditional firing of v’
takes place at time d + A + A’ — 2™ = A + A’ + Y771 ;2" Neuron o' fires if and
only if v fires, hence if and only if b,, = 0. This conditional firing of v’ takes place
at time d + A — 2™ + A’ + 2™ = A+ A’ + Y71 5,20 (Note that b,, = 0.) Thus
v" (which defines OUT)) fires in any case at time A + A’ + A" + 715,21 and v’
(which defines OUT,) fires if and only if b,, = 1. We set T,,, = A + A’ + A" and
T =A+ A

The architecture of A is shown in Fig. 4. The only programmable parameters
are the delays di,...,d,. A fixed offset dy > 0 is added to prevent a delay of 0 if
d; = 0. The shattered set is {e; : i = 1,...,n}? where ¢; € {0,1}" is the i-th unit
vector. Inputs and output are assumed to be encoded in binary. The weights and
delays for the edges that are not programmable are suitably chosen. O

Corollary 3.2 It is impossible to give an upper bound for the VC-dimension of an
SNN with fized weights in terms of the number n of its delays that are adjustable.

The proof of Corollary 3.2 follows immediately from the preceding construction.
One chooses any m € N and constructs a network N, ,,, with O(n + m) edges and
VC-dimension at least n - m that has just n adjustable delays d,...,d, as shown
in Fig. 3, so that N, ,, can read out the first m bits of any d; with the help of
m modules My,..., M,, and additional inputs y,...,4,. Note that the delays in
My, ..., M,, are not required to be adjustable.

The following result, which employs a bound from (Goldberg and Jerrum, 1995),
shows that the lower bound of Theorem 3.1 is optimal.

Theorem 3.3 Consider an SNN N with rectangular pulses where all delays, weights,

and thresholds are programmable parameters, and let | be the number of edges. Then
the VC-dimension of N is O(I?) even for analog coding of the inputs.
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Figure 3: Module M,, and its realization as an SNN. For each edge the sign of its
weight (positive or negative) and the value of its delay is indicated.

Proof. Assume without loss of generality that the output of the network is coded
in binary. Let [ be the number of edges and k£ be the number of programmable
parameters of the network, hence & = O(l). The behavior of the network, i.e.
whether its output neuron fires or not, can be decribed by a Boolean formula &y,
that involves as variables the £ programmable parameters and the n input variables
of the network. To decide whether the output neuron fires we consider all possible
paths from an input neuron to the output neuron. There are at most 2°®) such paths.
This leads to a Boolean formula ®; ,, containing s = 20() distinct atomic predicates,
where each predicate is a polynomial inequality of degree d = 1 over k+ n variables.
According to Theorem 2.2 of (Goldberg and Jerrum, 1995), the VC-dimension of
the class of functions described by this formula is at most 2k log(8eds) = O(1?). O

4 Computational Complexity of Delay Learning

In order to investigate the computational complexity of learning within the PAC
framework one has to specify which class of hypotheses the learner may use. If SPP
were PAC-learnable with some arbitrary polynomial-time computable hypothesis
class, then this would imply the same result for DNF (which is one of the major open
problems in computational learning theory). This follows from our Theorem 2.1(d)
in combination with the corresponding result in (Kearns et al., 1994).
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Figure 4: Architecture of the network N. The output gate, which is not shown,
fires if and only if any of the n AND-gates fire. An AND-gate fires if and only if it
gets pulses from both of its inputs.

In this section we consider the complexity of PAC-learning when only hypotheses
from 8PP may be used by the learner, also known as proper PAC-learning. This
appears to be the more adequate assumption for the analysis of learning for a single
spiking neuron.

We investigate the computational complexity of the consistency problem for a
spiking neuron which is defined as follows: Given a set of labelled examples from
{0,1}" x {0, 1}, does there exist a function in SP® that is consistent (i.e., does agree
with) all examples?

In the following we show that this problem is NP-complete for a spiking neuron
that may choose its delay values only from the set {0,1}. A spiking neuron with
two delay values and binary coding is only slightly more powerful than a Boolean
threshold gate, which can be thought of as a spiking neuron with only one delay
value. Therefore, this intractability result appears to be optimal in a certain sense.
Moreover, the proof shows that the result also holds when the weights and the
threshold are kept fixed.

Theorem 4.1 The consistency problem for a spiking neuron with delays from {0,1}
1s NP-complete.
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The proof is by a reduction from 3SET-SPLITTING (Garey and Johnson, 1979),
a problem which was also used in (Blum and Rivest, 1992) for intractability results
concerning certain two-layer networks of threshold gates. In fact, the problem con-
sidered here seems to be closely related to the consistency problem for the AND of
two threshold gates analyzed in (Blum and Rivest, 1992). However, their reduction
cannot be used here in a straightforward manner (e.g., by flipping the labels to
change the AND into an OR), because due to our Theorem 2.1(e) the OR of two
threshold gates is not equivalent to a spiking neuron with delays from {0, 1}.

Proof of Theorem 4.1. The problem is in NP because the delay values are binary
and the weights can be bounded polynomially in size. The latter is shown similarly
as in the case of threshold gates.

To prove NP-hardness we define a polynomial-time reduction from 3SET-SPLIT-
TING, which is the problem to decide for an instance (U, C'), where U is a finite set
and C is a collection of subsets of U such that |c¢| = 3 for all ¢ € C, if there exists a
partition Uy, U; of U such that all ¢ € C satisfy ¢ € Uy and ¢ U, .2

Let (U, C) be given and n = |U|. The set of examples is defined as S = STUS™ C
{0,1}?™ x {0,1}, where the elements of ST and S~ are labelled by “1” and “0”,
respectively. For a set I C {1,...,2n} we denote by 1; the binary vector of length
2n that has “1s” exactly at the positions in /.

o Let 1y S™.
e For each u; € U let 1(3_193 € S™.

e For each ¢ € C where ¢ = {u;, u;, u} let
1{2i—1,2i,2j-1,2j,2k—1,2k} € S~

Obviously, there is a function computable in polynomial time that maps each
(U, C) to the corresponding S. We show now that (U, C) has a set splitting if and
only if there exists a function in SE? with binary delays that is consistent with S.

(=) Assume that (U,C) has a set splitting § : U — {0,1} (i.e., u; € U; iff
B(u;) = j). Define the weights wy, ..., wy, and threshold 6, as follows:

Woip = 1 . _
wy = _Q}forZ—l,...,n and 6, =1/2.

Define the delays dy, ..., ds, as:

dyi1 = f(ui) .
d; 1 - 1—ﬂ(ui)}f0”_1""’”'

2Strictly speaking, the restriction of SET-SPLITTING as defined in (Garey and Johnson, 1979)
allows that |c| < 3. However, it is straightforward to define a reduction that avoids subsets of size
2.
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This spiking neuron is consistent with S: For input 1p it does not fire because
0y > 0. For each 1yy;_1; one of the two active inputs generates a pulse of height
1, hence the output is 1. For each 1jo;_19;2j-1,2j2k—1,2¢} corresponding to a c € C
there is associated with each delay value at least one of wsy;, woj;, we,. Hence, for
both delay values the corresponding potential cannot be larger than 0.

(<) Assume that the spiking neuron is consistent with S. Let g be the threshold
function which has threshold 6, the weights assigned to delay value 0, and where
the weights of delay value 1 are replaced by 0. Define g : U — {0,1} as

B(ui) = g(12i-1,2¢})-

We claim that 3 is a set splitting of (U, C'). Assume the contrary. Then there exists
c € C,c={u;,u;,u,} and b € {0,1} such that

B(ui) = B(uz) = Blux) = .

(i) If b = 1 then g(1{g—1,23) = 1 for each I € {4, 4, k}. Because 1 is a negative
example and g is a threshold function this implies g(1{2i—1.2i,2j—1,2j26—1,26}) = 1.
Hence, the neuron fires on the input vector corresponding to ¢, in contradiction to
the definition of S.

(ii) If b = 0 then consider the threshold function ¢’ consisting of the weights assigned
to delay value 1. Accordingly, ¢’ must output 1 on input 1y9;_; 9 for each I € {1, j, k}
(because the label is 1 and g outputs 0). The label of 13 then implies that ¢’ outputs
1 on input 1lyoi_19i2j-12j2k—1,2¢}- It follows that the neuron fires on this input in
contradiction to the definition of S.

Finally, (i) and (ii) imply that 3 is a set splitting of (U, C). O

The fact that the weights need not be modifiable in the previous proof leads to
the following stronger result.

Corollary 4.2 The consistency problem for a spiking neuron with binary delays and
fized weights is NP-complete.

In a similar way, NP-completeness can be shown for the case that the delays
are allowed to take on values from a bounded set {0,...,k — 1} where k > 3. The
reduction is from GRAPH-k-COLORABILITY and is basically a modification of
the reduction used in (Anthony and Biggs, 1992) for the AND of & threshold gates.
Again, the weights and the threshold can also be kept fixed. Combining this with
Theorem 4.1 we get the following result.

Corollary 4.3 For each k > 2, the consistency problem for a spiking neuron with

delays from {0, ...,k —1} is NP-complete. This holds also for a spiking neuron with
fized weights.
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5 Conclusions

We have investigated a new type of computational model where a set of parameters
becomes quite relevant that plays little or no role in other models: transmission
delays. We have shown that these new parameters have an even larger impact on
the richness of the class of Boolean functions that can be computed by a spiking
neuron than those parameters that are traditionally considered to be the main “pro-
grammable parameters” of a neuron: the “weights” of its synapses. We have shown
that the VC-dimension of a single spiking neuron is superlinear in the number of de-
lays that can be varied, and that the VC-dimension of a network of spiking neurons
can grow quadratically with the number of adjustable delays.

Both of these lower bounds hold already for the most simple version of a spiking
neuron, respectively network of spiking neurons, where all pulses have a rectangular
shape. However, our constructions remain valid for biologically more realistic pulse
shapes. These lower bounds are complemented by matching upper bound results,
which hold (in terms of the total number of programmable parameters) even if
delays and weights can be varied simultaneously. Furthermore, these upper bounds
hold even in the case of analog network inputs, whereas the lower bounds are valid
already in the Boolean case. Hence we get tight bounds for either type of network
input.

We have also shown that the learning complexity of a single spiking neuron is
surprisingly large, in particular much larger than the learning complexity of a sin-
gle threshold gate. Similarly as the corresponding result for multi-layer threshold
circuits, this should not be interpreted as saying that supervised learning is impos-
sible for a spiking neuron. However it tells us that it will become quite difficult to
formulate rigorously provable positive learning results for spiking neurons.
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