Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97- 050 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

A subexponential lower bound for branching programs
restricted with regard to some semantic aspects

Stanislav Zak*
Institute of Computer Science
Academy of Sciences
Pod vodarenskou vézi 2
182 00 Prague 8
Czech Republic

stan@uivt.cas.cz

October 15, 1997

Abstract

Branching programs (b.p.s) or binary decision diagrams are a general
graph-based model of sequential computation. The b.p.s of polynomial size
are a nonuniform counterpart of LOG. Lower bounds of different kinds of
restricted b.p.’s are intensively investigated. The restrictions based on the
number of tests of variables during any computation (along any path in
the case of syntactic b.p.s , resp.) are very important. Various superpoly-
nomial or even exponential lower bounds are known for 1-branching pro-
grams, (1, +k)-branching programs, and syntactic k-branching programs.

In the paper we present a restriction of another type - the so called
gentle branching programs (g-b.p.s) together with the following results.

1. For each 1-b.p. P there is a gentle 1-b.p. P’ computing the same
function such that |P’| < 3|P|.

2. Some Boolean functions which are superpolynomially (or even ex-
ponentially) hard for 1-b.p.s are polynomially easy for g-b.p.s.

3. The same holds for Boolean functions which are superpolynomially
hard for (1, +k)-b.p.s or for syntactic k-b.p.s.

4. The functions whose sequences cause the hierarchies for (1, +k)-
b.p.s and for syntactic k-b.p.s (both with respect to k) are polynomially
easy for g-b.p.s.

5. We find a function in P which is superpolynomially hard for g-b.p.s.
The proof is based on a lower bound theorem.

Both, the lower bound theorem and the definition of gentle branching
programs are derived from a deeper consideration of the phenomenon of
branching of computations.

*This research was supported by the GA CR, Grant. No. 201/95/0976 ”Hypercomplex”
and partly by INCO-Copernicus Contract IP961095 ALTEC-KIT.

1 Introduction

1.1 Branching programs

A branching program (b.p.) is a computational model for representing Boolean
functions. The input of a branching program is a vector consisting of the values
of n Boolean variables. The branching program itself is a directed acyclic graph
with one source. The out-degree of each node is at most 2. Every branching
node , i.e. a node of out-degree 2, is labeled by an input variable (or equiva-
lently: by an iput bit) and one of its out-going edges is labeled by 0, the other
one by 1. The sinks (out-degree = 0) are labeled by 0 and 1. A branching
program determines a Boolean function as follows. The computation starts at
the source. If a node of out-degree 1 is reached, the computation follows the
unique edge leaving the node. In each branching node, the variable assigned
to the node is tested and the out-going edge labeled by the actual value of the
variable is chosen. Finaly, a sink is reached. Its label determines the value of
the function for the given input. By the size of a branching program P we mean
the number |P| of its nodes.

Branching programs are a model of the configuration space of Turing ma-
chines where each node corresponds to a configuration. Thus, the polynomially
sized b.p.s represent a nonuniform variant of LOG. Hence a superpolynomial
lower bound on b.p.s for a Boolean function computable within polynomial time

would imply P # LOG.

Some generalization of b.p.s have been studied. Let us mention nondeter-
ministic b.p.s where each branching node may have more than two out-going
edges. The polynomial sized nondeterministic b.p.s represent a nonuniform
variant of NLOG. Let us mention also the w-b.p.s [13], and the probabilistic
b.p.s [1].

In the present paper we use the classical deterministic branching programs.
We work in one of the main streams of branching programs investigation which
consists in proving lower bounds for restricted branching programs, it means
for branching programs of some special properties.

An example of a restriction from the early beginning of investigation are
branching programs of restricted width [3] or oblivious branching programs of
limited depth. [11].

A special type of b.p.s are the so called ordered binary decision diagrams
(OBDD) where along each computation the tests preserve a fixed ordering of
variables and each variable is tested at most once. OBDD’s play an important
role as a tool for representing Boolean functions in many computer applications.

1.2 Restricted branching programs

The most commonly used restrictions are based on the number of tests during a
computation or along a path in b.p.s in the question. So, the read-once branch-
ing programs (1-b.p.s), where during each computation each variable is tested

at most once, are well-known. The lower bounds range from 2°V7[23][24][5]
through 27/%97 [8] to 2°" [12][2][22] and 2"~°(") [19].There are lower bounds
also in [17][1],[7].

There are some attempts to prove lower bounds for large classes of re-
stricted branching programs. The real-time branching programs are allowed to
do at most n tests during each computation. The related lower bounds are in

[6],[25],[12].

The syntactic k-branching programs are allowed to have at most k tests on

each variable along any (consistent or nonconsistent) path. The lower bounds
are in [14],[4],[9] and the hierarchy with respect to & in [15],[16].

The (1,4Fk)-branching programs are allowed to test at most k variables re-
peatedly during each computation. The lower bounds are in [26][18][10] and
the hierarchy in [20]. (The hierarchy for the syntactic case is proven in [21].)

We present another attempt in this direction with results as stated in the
Abstract. However, the problem of the superpolynomial lower bound for 2-b.p.s
(from 1983) remains open till now.

1.3 The basic ideas and the results

Qur results are derived from two informal ideas.

Let us introduce the first one. For the branching program in question given
any input we want to catch what information about the contents of the input
bits is remembered (or forgotten) at any moment of the computation. We rep-
resent such a knowledge by a word of the length n over the alphabet {0,1, 4, #}
where +, # stand for unknown”.

From some reasoning about TM’s it follows that the definition of crosses
(4+) has to satisfy the next two, very natural conditions:

a) Immediately before a test on a bit ¢, i is crossed.

b) Immediately after a test on a bit 7, ¢ is non-crossed.

From this requirement it follows that the knowledge depends not only on
the node reached during the computation but that different inputs reaching
the same node may have remembered different information. This notion of re-
membered and forgotten information formally defined in Section 3 enables us
to formulate and to prove our two lower bound method theorems.

The second informal idea concerns a situation where two computations reach

the same node v of the b.p. and after v they never branch. In this case we
see that the bits on which these inputs differ have no influence on the common
part of their computations and hence no influence on the reached sink. At v
these computations must have achieved a partial result. In Section 3 we try
to catch this strange phenomenon by defining when a bit of an input has #.
This allows us to define the distribution of inputs over any branching program
which is a key-notion of the definition of gentle branching programs in Section
4. There we also prove the relation of 1-b.p.’s and gentle b.p.’s as indicated in
the Abstract.

In Section 5 we prove a subexponential lower bound 27'"* on the size of
gentle branching programs for a Boolean function which is computable within
polynomial time on Turing machines. The proof is based on the theorems from
Section 3 mentioned above.

In Section 6 we prove an O(n) upper bound (on gentle branching programs)
for the Boolean function f which is defined as follows: f(AZ)=1iff A% = 0
(the input bits are arranged into a matrix and a vector). From [9][18] it is
possible to derive that f is subexponentially hard for syntactic k- and for
(1, +k)-branching programs. Moreover we prove an O(nloggn) upper bound
for functions which are used in the Okolnishnikovova proof of the hierarchy of
syntactic k-branching programs [15],[16]. Further, we prove a polynomial upper
bound O(n?) for multipointer functions which are used in [20] for the proof of
the hierarchy of (1, +k)-branching programs.

In Section 7 we prove an O(n3/2) upper bound for the parity of the number
of triangles in a graph (this function requires 2°*) on read-once b.p.s [2][22]).

Further, we prove a O(n?) upper bound for half-cliques-only function and
a O(n®) upper bound for the Ablayev-Karpinski function [1]. The last upper
bound is proven for the multiplication. Its size is O(n?) (cf. [17]).

2 Preliminaries

First we introduce some technicalities concerning words. For a binary word (a
binary string) m € {0,1}" by m; we mean its i-th symbol. If A C {1,2,...,n},
by m | A we mean the assignment of bits from A consistent with m. If R is
a predicate on {1,2,...,n} by mp we mean m | A where A = {j | R(j)}. E.g.
My, me; where 1 <7 <n. If A,B C{l,...,n},ANB =0 and a (b,resp.) is an
assignment of A (B,resp.) then by [ab] we mean the assignment of AU B such
that [ab] | A = a, [ab] | B =b. E.g. [m¢;ms;] = m. For a word m by |m|; we
mean the number of its ones; similarly |[m/o.

Secondly we introduce some notions concerning branching programs. Let
P be a branching program, m € {0,1}" be an input word. By comp(m) (the
computation on m) we understand the sequence of nodes of P which starts in
the source of P and ends in a sink such that in each branching node v with a

label i comp(m) chooses the successor v’ such that the label of the edge (v, ')
is equal to m;. If a node v € comp(m) we say that comp(m) goes through v
or simply that m goes through v or that m reaches v. Similarly we say that m
goes through an edge.

If v is a node of a branching program P then by P, we mean the branching
program with the source in ». If M C {0,1}" then by P | M we mean the
branching program which is given by deleting of all nodes and edges (from P)
for which no m € M goes through.

Further, let us remember the operation of development of a branching pro-
gram P (from its source) into a tree. By a development of P from its node »
we understand the development of P,.

By a subcube we mean the set M of inputs such that thereis I, I C {1,...,n}
and M = {[uv]|v € {0,1}'} where u is an assignment of {1,...,n} — I. The bits
from I are called free bits, the other are called fixed bits. For a sink » of P M
is called an original subcube if all inputs from M reach v and the free bits of
M are never tested. For a node v € P by an agregate computation we mean
the set of computations (the set of inputs) which follow the same branch of P,
till its sink.

3 Windows

By a window we mean a string w = wy...w, € {0,1,+,#}". By the length [w
of such a window w we understand the number of ¢’s such that w; € {0,1} (the
number of noncrossed bits).

We say that a window w is a window over a word u € {0, 1}" iff for each its
noncrossed bit 7 w; = u; holds.

Definition 3.1 Let P be a branching program (over n variables). Let v be a
node of P and M be a subset of the set of all inputs which (starting in the
source of P) reach v. Let m € M.

Then we define the window w(m,v, M, P) over m in the node v with respect
to M as follows : (Starting at v) we develop the program P, into a tree. In this
tree we perform all computations starting from v which are given by the inputs
from M. We omit all the edges and the nodes of the tree which are not reached
by any of these computations. We omit all non-branching nodes. Now let us
consider the branch b which is followed by the computation comp(m).

1. We assign crosses (+) to all bits of w(m,v, M, P) which are labels of
nodes of the branch b.

2. Now we consider the set L of all inputs (from M) which follow b till
its leaf. We assign the cross (+) to each bit which is not tested during any
computation (from the source to the sink) on any word from L.

3. Further, we assign a double-cross # to each remaining bit @ of
w(m,v, M, P) for which in L there is an input m’ € M such that m; # m/.

4. The remaining bits of w(m,v, M, P) have the same contents as in m.

Comment. a) We see that all inputs following the same branch b have the
same set of crossed (+) bits, of double-crossed (#) bits and that all non-crossed
bits have the same contents.

b) The larger M the lesser number of non-crossed bits.

Before stating the main theorems we will prove some facts to become famil-
iar with the definition.

For a moment due to some technical reasons we shall use a slightly modified
branching programs such that on each path for each node with in-degree > 1 or
out-degree > 1 both its immediate predecessors and successors have in-degree
= out-degree = 1.

Let us fix a set M C {0,1}", let P be a branching program such that
P =P | M. For each node v of P we put M, =4 {m € M|m reaches v}. In
the sequel (before the main theorems) at each node v € P we will consider the
windows with respect to M, only.

Proposition 3.2 Let v be a branching node of P with a test on the bit 1. Let
vy be one of two nodes which immediately succeedes v. Then for any m € M
going through v, vy the following holds: The windows for m at v and at v differ
only in the bit 1. At v 1 is crossed, at vy 1 is non-crossed.

Proof: Let m € M. Let b be the branch of the tree developped at v which is
followed by m. Since P = P [M at v the tree has a branching node labeled by
t. Hence ¢ is crossed. At vy all inputs from A, have the same value of 4, hence
i is non-crossed. The branch by of the tree developped at vy (induced by m)
has the same branching nodes as b has (with the exception of » with the label
i) and its leaf has the same set of inputs as the leaf of b has. Hence the set of
crossed and double-crossed bits remains the same (with the exception of 7). O

Comment. We can follow a computation on any input m from the source
to a sink and consider the changes of the window on m during the computation.
The proposition says that a test on a bit implies that exactly one crossed bit
becomes non-crossed, which is in a good correspondence with the informal idea
that a test is an acquisition of exactly one bit of information.

By a symmetric word we mean any word of the form uv where v = uft.
By a pair of symmetric positions we mean any pair (i,7) , 1 < i,7 < n, where
t=n—7+1.

Theorem 3.3 Let M = {0,1}", let P be a branching program recognizing
symmetric words of the length n. Then for each symmetric word m and for
each pair (i,7) of symmetric positions during comp(m) there is at least one
node v at which, in the window for m (with the respect to M,), both i,j are
non-crossed.

Comment. The theorem corresponds to the informal idea that for com-
paring two bits 7, j it is necessary that both 7, j are known (non-crossed) at the
same moment.

Proof:

By contradiction. Let m be a symmetric word and ¢, j be a pair of symmetric
positions such that during comp(m) they are never both non-crossed at the same
moment (at the same node). We see that for both ¢, j there are some nodes at
which they are non-crossed since both must be tested during comp(m). Let us
assume that the last window on ¢ precedes the last window on j. Let v be the
node from comp(m) such that immediately before v i is non-crossed and this
is the last moment when i is non-crossed during comp(m). Since at » i is not
non-crossed there is an input m’ such that m; # m! and such that a) m,m’
branches after » on 7 or b) m,m’ follow a common path till a common sink.
According to a) there is a window on m with the non-crossed i after ». It is
impossible. It remains only the case b). From b) it follows that m’ is also a
symmetric word. After » j becomes non-crossed. Hence after v there is a test
on j (according to the previous proposition). Since from v m,m’ follow the
same path m, m’ have the same value on j. For our symmetric words m, m’ we
have m{ # m; = m; = m}. A contradiction. O

Now we introduce two main lower bound method theorems.

Theorem 3.4 Let P be a branching program, let v be one of its nodes, let M
be a subset of the set of all inputs which (starting at the source) reach v. Then
the average number of crosses and double-crosses in w(m,v, M, P) for m € M
is at least log, |M|.

More formally: 3~ car(n —lw(m,v, M, P)/|M| > logs|M|.

Proof: Let us develop the program P, | M into a tree T}. Let dy be the average
number of crosses (+) and double-crosses (#) over all m € M.

We transform T; into a tree Ty which in each of its leaves has only one input
from M. In each leaf of 17 which is reached by two or more inputs from M we
start a new subtree such that on each its branch there is a test on each bit which
is crossed according to rule 2 of the definition of w(.,v, M, P) and then on each
branch there are some tests on bits which are double-crossed in w(.,v, M, P)
until in each leaf of the transformed tree 15 there is only one input from M.

If we apply the rules 1 - 3 from the definition of windows on T,, we see
that for each m € M, for each bit ¢ , if 7 is crossed according to 1% then ¢
was a crossed or double-crossed bit according to 7. Since 1% does not give
double-crosses we see that for the average number dy of crosses given by 15 the
inequality d; > d3 holds.

Further, we shall transform 7% into a balanced tree T5. (By a balanced tree
we mean a tree where for each pair of its branches the difference of their lengths

is at most one.) We shall also transform the set M into another set M’ of inputs
such that [M'| = |[M|. Let d3 be the average number of crosses given by T3 to
inputs from M’. We shall prove dy > d3 > log, |M'| = log, | M]|.

Let us describe one step of the transformation of I into 13. Suppose there
are two branches by, by of Ty such that |by| — |bg| > 2 where for any branch b
|b| denotes the number of its tests (its length). Let my (mg, resp.) be the
input which follows by (b, resp.) till its leaf. We delete my from M. The total
number of crosses is decreased by |b1|+1 (]b1] is the number of crosses on by and
1 is given by the disappearing of the last cross on the input m which branches
with mq in the last test of b1). We add such an input m’ to M that m' follows
by till its leaf where m/ branches with my. By the last action the total number
of crosses is increased by |by| + 2 (|by| + 1 is the number of crosses on m’ and 1
is for the additional cross on my).

We repeat this procedure until the resulting tree is balanced. We see that
|LM| = |LMI| and dQ 2 d3.

Now it remains to prove the following proposition.

Proposition 3.5 Let1’s be a ballanced tree. Let M be the number of its leaves.
Then the average length of branches of T is at least log,(|M]).

Proof: Let k be the length of the shorter branches of T5. Let m be the number
of nodes of T5 on the level £ which are not leaves, m €< 0,25 — 1 >.

We see that the number of branches of T3 is 25 + m. Hence, the average
length of branches of T3 is [(2’“ + m).k + Qm]/(Qk + m). We have to ver-
ify logy(2% + m) < k + 2m/(2F + m). It suffices to verify 2m/(2F + m) >
log,(1 4+ m/2F). For m €< 0,2% > we put z = (14 m/2%); hence z €< 1,2 >.

It suffices to verify 22 — 2 > z.log, z. It is the truth for z = 1,2 = 2.
Moreover for z €< 1,2 > (z.log, z)" = (logye)/z > 0. Hence, z.log,z is a
convex function on < 1,2 >. Therefore 2z — 2 > z.logyz.

O

a

Theorem 3.6 Let P be a branching program. Let {X;}/_, be a system of sets
of some inputs. To each X; a node v; of P is assigned such that all x € X; go
through v;. Then

log,r >log,>i_1 |Xi]| — n + average length of w(x,v;, X;, P).

More formally:
logy > logy 377y | Xi| —n+ Yim1 erXi lw(m, v, Xy, P)/ >ic1 | X5l

Proof:

For z € (0,00) we put ¢(z) = z.log,z. We know that ¢(z) is a convex
function since ¢"(z) = (log,e)/z > 0. According to Jensen’s inequality we
|

have o(377_ | Xi|/r) < (3oiey o(| X))/ 7.

Further 370, |Xi[loga(32iy [Xil/r) < 300 [Xil.logy |Xi[and
logy 375y [Xi| —logg m < (305 [Xol. logy [X4])/ oizq [Xl

According to Theorem 3.4, the last expression is not greater than the average
number of crosses and double-crosses in w(.,v;, X;, P) which is equal to n —
average length of windows. Hence

log, r > logy iy | Xi| — n + average length of windows.

O

Comments. a) Under the assumption that {X;}’_, cover all 2" inputs the
statement of the Theorem is abreviated as follows:

?logor > average length of windows”.

If there is a relation between r and |P| we have a lower bound for | P|.

b) The Theorem corresponds to an informal idea that ”If we want to have
a possibitity to remember much information about many inputs then we need
a large memory”.

¢) Both Theorems form a method for proving lower bounds on the size of
general branching programs. We will apply them in Section 5 for our lower
bound. There is an open question to find another nontrivial application.

4 Gentle branching programs

Let us introduce the key-notion for the definition of the gentle branching pro-
grams.

Definition 4.1 By the distribution on a branching program we mean a parti-
tion of the set of all inputs {0,1}" together with a one-to-one assignment of
all classes of the partition to some nodes of the branching program in question.
The partition and the assignment are given by the following rule.

Briefly (with a danger of confusion): We stop each input in the node where
its window has a double-cross # for the first time (or in a sink).

Precisely: By Pr we mean the next procedure.

Input: A C {0,1}". For each computation comp(m), m € A, in each node
v let us consider the window w(m, v, M, P) where M C A is the set of all inputs
from A reaching v.

For each m € A we mark the first v in comp(m) such that w(m,v, M, P)
has a bit with a double-cross #.

In the set S of marked nodes we say that v € § is a mazimum one iff there
is no vy € 8, my € A such that vy is marked for my, and v, precedes v in
comp(my).

For each mazimum node v € S we define M, =54 {m €
A | v is marked for comp(m)}.

Output: Ry =qr {My|v is mazimum} ,

A=A-JRa.

We perform Pr starting with A = {0,1}" until R4 = 0.

The resulting partition is given as R =g Ra, U...Ra, U{M,,,...M,} where
R4, means Ry for the i —th cycle of Pr, and My, is the set of inputs which
reach the sink s; (after the last cycle of Pr).

It is easy to see that the assignment v — M, € R which we have constructed
is one-to-one.

By a proper class of the distribution we mean a class from R4, U...U R4,.

It is clear that each improper class Mj, is an original subcube.

Definition 4.2 For a distribution D, by the factorization of D we mean a finer
partition given by the factorization of each proper class of D according to the
equivalence “to have the same set of (bits with) double-crosses #'s”.

More precisely: Let M be a proper class of D which is distributed at a node
v. We say that my,mq € M are equivalent

Zﬁvz(l = 1...n)(w(m1,U,AM, P)Z' = # — w(mz,v,]\/[, P)Z- = #)

Let M,C be two sets of inputs, C' C M, and let all inputs from M reach
a node v. We say that C preserves the double-crosses of M if for each u € C
and for each 4,1 < ¢ < n the next implication holds w(u,v, M, P); = # =
w(u,v,C, P); = #.

It is easy to see that each class F of the factorization of any class M of the
distribution preserves the double-crosses of M.

We say that a class of M of a distribution D is a signi ficant one iff | M| >
2" /. We say that an fd-class F' subclass of a class M of a distribution is a
significant one iff |F'| > |M|/5. a, 8 will be quantified in the next chapter.

Definition 4.3 Let I’ be an fd-class.

By hr we mean the set of bits which are double-crossed; by tr we mean the
set of the other bits.

HFde {m | hp | mEF}.

Tk =df {m ftF | m € 1‘1}.

Definition 4.4 Let I be an fd-class at a node v. Let D be the set of bits
which are double-crossed (for all f € F). Let S be the tree induced by F at v.

10

Let V1, ...,V be the agregate computations which coincide with branches of Sr.
Let M}, ..., M™ be the mazimum original subcubes which are formed by inputs
following V;. By Gg we mean the set of bits from D which are free for J\/[ij and
by Of we mean the set of bits from D which are fized for Mz-j.

Definition 4.5 Let P be a branching program. We say that P is a gentle
branching program if the following holds:

If there is a significant proper class in the distribution on P then there is
another significant proper class (at a node v) containing a significant fd-class

F fulfilling the following conditions (R1), (R2), (R3)

(R1) Let the sets Wy, Wy of bits be defined as follows :

Wi =df {'Ll(Vfl,fz € F)(‘w(f17‘U7F7 P)l = UJ(fz,?),F, P)Z € {071})}

Wy =gr {i|(3f € F)(w(f,v,F,P); € {0,1})}.

The condition is |Wq — W1| < v. (v will be quantified in the next section.)

(R2)Vh € Hr YVt € Tr fp([h,t]) = fo(t) where Q@ = P, | F.

(R3) For all i,j O is the same set.

From the definition of windows we know that the condition (R3) implies for

all i,j GY = 0.

Theorem 4.6 For each 1-branching program P there is a gentle 1-branching
program P’ with |P'| < 3|P| and fp = fp.

Proof: Let P be a 1-branching program.

Proposition 4.7 Let C' be a proper class of the distribution on P. Then C
consists of a unique fd-subclass satisfying (R1),(R2) of the definition of gentle
programs.

Proof:
Let C be equal to the set {u" € {0,1}"|t = 1,...,s}. Foreach ¢ ,i=1,..., s,
let R; be the set of bits tested during comp(u*) before v is reached. Let R =4f

Proposition 4.8 For each bit i outside R and for each j, j = 1,...,8,
w(uw?,v,C, P);=+.

Proof: Let us develop a tree 7 induced by C from the node v. During comp(u’)
after reaching v the bit ¢ is either read for the first time - therefore in I’ there
is a branching node with the label ¢ and we have the desired 4 on 1, or the bit
7 is not tested at all - we have a + on i, too.

O

Let us remember the well-known fact that after » no u/ tests any bit from

R.

11

Proposition 4.9 For eachi € R if i is a double-crossed bit for an v’ € C then
i is a double-crossed bit for all ! € C.

Proof: let i € R be a double crossed bit for an u € C. Then there is an v’ € C
such that u' follows u to its sink, u,u’ differ on ¢ and at least one from the
inputs u,u’ is tested on i before v.

Let us choose any u/ € C. Let n/ =4 u’ | ({1,2....,n} — R). We see that
[| R,n?] and [u' [R,n’] have the same properties (mentioned above) as u, u'.
Therefore they have a # on i. Moreover, they follow u/ from » to the sink in

question. Therefore u/ has a # on i, too.
O

Corollary 4.10 Allu’ € C have the same region of the crossed (+), the double-
crossed (#) and the non-crossed bits.

We see that C is also an fd-class satisfying (R1),(R2).
O

Proposition 4.11 For each 1-branching program P there is a branching pro-
gram P' such that

(1) fP' = fP ’

(2) [P <317,

(3) P' is a 1-branching program ,

(4) Each proper class of the distribution on P’ satisfies (R3) from the defi-
nition of the gentle branching programs.

Proof:

We will transform P into P’ by a sequence of elementary steps. Each of
them will consist in inserting one redundant test in the program. ”"Redundant
test ” means a test where both out-going edges go to the same node. It is clear

that (1) fpr = fp will be satisfied.

Let @ be a 1-branching program arising from P after some transformation
steps. Let us describe the elementary step on Q.

For any input u by comp”(u) we mean the initial part of comp(u) from the
source to the node at which u is distributed. We say that an edge e of @ is
supported by a path p iff e € p. Let D(Q) be the subgraph of @ given by edges
which are supported by comp®(u), u € {0,1}". D(Q) is also an oriented acyclic
graph with one source. Its special properties are :

a) Its sinks are given by the nodes of @ at which some inputs are distributed.

b) Except of sinks (and the source) all nodes of D(Q) have in-degree 1 in

D(Q).

Let us consider the set of all nodes of () at which a proper class not sat-
isfying (R3) is distributed. Let » be a maximum node of this set (i.e. in P v

12

has no predecessors from this set). Let F' be the proper class distributed at
v. Let vq,...,v; be the immediate predecessors of v in D(Q). In D(Q) for each
j, 1< j <l thereis a unique path p; going from the source to v via v;. Let M/
be the maximum original subcube going through p; to v. Let GY be the set of
bits from D (see def. 4.4) which are free for M7.

There is a j such that G # (} since F does not satisfy (R3). Let a € G%.

On pj, let y be the first node such that the subprogram), does not contain
any test on a. Such a y exists because in @), there is no test on a since a € D.
y is not the source because in () a test on ¢ must exist since ¢ € D. Let x be
the immediate predecessors of y on pj,. In @), there is a test on a therefore no
path from the source to # contains a test on «. Now it is clear that if we insert
a redundant test (= two nodes) on a between z and y the resulting program
@' remains to be 1-branching program. At this moment we see that the point
(3) of the statement of the Theorem is also satisfied.

Let us consider the distribution on @’. In comparison with the situation
on @ there are changes concerning F. In D(Q') the path pj;, from D(Q) is
interrupted at the second node of the test inserted between x and y where a
new class I’ of the distribution (on Q') arises. It is clear that F’ satisfies (R3)
since inputs from F’ have double-crosses (#) only on a.

Slightly more complicated situation is at the node ». If [> 3 than at »
there is some class of distribution with [— 1 in-going original subcubes M.

In the case [= 2 one path p; with only one M/ remains alone. p; expands
to a tree whose branches end by meeting one another or by meeting another
path in D(Q') or by reaching a sink.

We see that D(P’) without the nodes with in-degree > 1 forms a tree. The
first nodes of inserted redundant tests are placed only in the leaves of this tree.
The remaining nodes are from P. Hence, the number of the inserted first nodes
is at most twice the maximum number of leaves of any tree in £ which is equal
to twice (| P|+1)/2. Since at least one leaf of our tree is from P we may estimate
the number of inserted first nodes by |P|. Hence, |P'| < 3|P| (the point 2 of
the statement of the Theorem).

a

From Proposition 4.7 it follows that P’ is a gentle 1-branching program.

The proof of Theorem is completed.
O

13

5 The lower bound

8

=222'* and v = nl/8,

For the purposes of the present paper we put a = 3

We shall define a Boolean function .J for which we shall prove our lower
bound for gentle b.p.’s.

Let us assume that n input bits are organized into a binary (0,1) (ky/n X
v/n/k)-matrix A where & € N,k > 4 and moreover /n/k is an odd number.
(Such a matrix A will be called ”a matrix for J”.) The columns of A are in-

dexed by numbers i €< —(y/n/k —=1)/2,(y/n/k —1)/2 >. The column Cy will

be called the starting column.

In the following definition for two vectors (columns) M, C of the same di-
mension by M & C (M A C, resp.) we shall mean the column which is the
componentwise sum modulo 2 (componentwise conjunction, resp.) of M and
C'. For a column M by |M|; we shall mean the number of 1’s in M. Similarly
| M |o.

On natural numbers larger than (y/n/k —1)/2 for ¢ = 5n'/® we define some
intervals Ny,..., N, and a binary labeling of numbers from these intervals.

For i, 1 < i < ¢, the labeling on N; forms the word (071°)'27. We see that
each two positions in N; which differ by about 7 have different labels and that
the summary length of Ny, ..., N, is at most 24y¢*. (The area of intervals N; is
adjacent to the matrix for J.)

Further the interval < ky/n/4 — (/n/k — 1)/2;k\/n/4 + (\/n/k — 1)/2 >
will be called the marked area M A. We see that the inequality

2y¢> < ky/nfd — /n/k+ 1

holds. It gives more than a sufficient space for [J/_; N; between the matrix

for J and MA.

Outside of [J!_; N;UM A the odd positive numbers greater than (y/n/k—1)/2
will be labelled by 1, the even ones by 0. The negative numbers will be labelled
in the symmetric way with only the exception that bits symmetric to those from
M A will be labelled by zeroe’s.

Definition 5.1 Let A be a matriz for J. Let s be an index of a column of A,
M be a column of dimension ky/n and O € {®,A}.

We define Jump(M,s,0) = (M',s',0%) as follows :

M’ =df Madcs,

Let p =i (IM'hy = [Mo)/2. If s +p €< —(/ii/k = 1)/2 (Virfk = 1)/2 >
then s = s+ p and O’ = @.

If s+ pisin MA, then s' = s+ p—ky/n/4 and O' = A,

If s + p is outside of the matriz for J and not in M A then s’ = s+ p and
0’ remains undefined.

In the sequel M will be called the "memory column” incoming to Cs and
M' will be called the "memory column” out-going from C.

14

We see that if s’ is also an index of a column of A we can iterate Jump on
(M', ¢, 0.

Definition 5.2 Let A be a matriz for J. The value J(A) is given as follows :

Starting with the values M = Okﬁ, s =0 and O = @ we iterate Jump until
the number of iterations is n or the last s' is outside of A(UMA). In the case
of n iterations we define J(A) = 0. In the other case J(A) is defined as the
label of s'.

It is easy to see that J is computable on Turing machines within a polyno-
mial time ; J € P.

Theorem 5.3 Fach gentle branching program computing the function J is of
a size greater than c(n) = o'/

Proof: By contradiction. Let P be a gentle program computing .J, the size of
P is ¢(n). Let us perform the distribution on P and its factorization.

Since the number of sinks is at most ¢(n) there are at most ¢(n) improper
classes of our distribution. Each improper class consists of only one original
subcube otherwise there would be double-crossed bits and the class would be
proper. Each original subcube S in question has at most (y/n/k —1)/2 + 1
free bits on Cy since in the other case there would be a possibility to reach
both output values after the first jump which is in contradiction with the
fact that all inputs from S reach the same sink. Hence, S has at least

b =g k/n— (v/n/k—1)/2 —1 fixed bits.

Therefore, the improper classes cover at most c(n)?”_b inputs. We see that
there is a proper class of the distribution of the cardinality at least

(2" — ¢(n).2"")/e(n) > 27/ a.

Such a proper class is a significant one. Since P is a gentle branching pro-
gram at a node v, there is a significant proper class with a significant fd-subclass
I fulfilling the conditions (R1),(R2),(R3) of the definition of gentle branching
programs. The cardinality of F' is at least f > 2" /(a.f).

Let D,SF,VZ-,ZW;:,mi,O;: be as in the Definition 4.4. We will prove that
D = (; this will be a contradiction.

For each 7 all inputs from V; have the same region O; of non-crossed bits
and also the same region R; of bits with crosses +’s.

Let o; =45 |0;], d =g |D|, 7; =gf |Ri|. For s an index of a column of the
matrix for J we define O,; =4 O; N Cs, Dy =50 DN Cs, Ry =45 R; N C and
further o5; =45 |Osl, ds =ap | Ds|, and rs; =45 |Rs ;|-

We asume w.l.o.g. that each node preceding v in P has out-degree = 1.

15

Proposition 5.4 Leta € Og, 1EC], Lt >, €<, my >

Then immediately before v for all inputs from ZV[Z-j the bit a is a non-crossed
one.

More formally: Let v; be such a node immediately preceding v that all inputs
from M? go through v,. Let X; be the set of all inputs from F which reach v.
Then for all m € Alz-j (w(m, v, X1, P))a € {0,1}.

Proof: By contradiction. There is an input from JV[Z-j which has a) a cross +
or b) a double-cross # on a immediately before v.

Case a) On a a cross may be placed if a test on a is expected - but this is
impossible since @ € D , or if during the computation from the source to the
sink a is not tested - but this is in contradiction with the fact that the original
subcube M 2‘7 is a maximum one.

Case b) If an m € AMZ-]‘ would have a double-cross # on a before v, then m
is distributed to a node before v.
O

Let O‘Z be the cardinality of Of Oii =4 Of N Cs, ogﬂ- its cardinality.
Proposition 5.5 37, . |2V[Z-j|.(og +0;)/f <logye(n)+ n —log, f.

Proof: Let us consider our f inputs from F. Immediately before v they reach
nodes vy, ...,v, (each with out-degree = 1). These nodes define a partition of
F into classes X1,..., X,.

According to the Theorem 3.6 we have

(logy(c(n)) >)logy 2 > log, f —n + Zle(erxl lw(z, v, X1, P))/ f.
Therefore

10g2 C(n) +n - 10g2 f > lezl(ZMij(_:Xl erMzJ lw(ma UlaXla P))/f
> Y= (X icx, erM;(og + 0;))/ f according to the previous proposition
= i Sapre, M0 + 00/]
=3, IM}].(o! +0:)/ .
a

Corollary 5.6 d < log,c(n) 4+ n —log, f < 5n'/5.

Proof: (R3) implies that for all 7, 5 O‘Z =d. O

Corollary 5.7 |Wi| < logye(n) + n — loga f < 5n'/3.

Proposition 5.8 If Dy =0, then Vs #0 Ds = 0.

16

Proof: By contradiction. Let us suppose ds # 0 D, # 0. We are
able to choose hy,hy two assignements of Dy given by Hp such that or i)
a =g (|h1]1 —|P1l0)/2 = (|h2|1 — |h2]o)/2 > 0 or ii) there is a bit j (arow j)in
D, on which hq, hy differ.

Case i).

We know from (R1) that |Wy| < v 4 logae(n) + n — logyf < 6n'/® and
from the Corollary 5.6 that |D| < logae(n) + n — logaf < 5n'/®. Hence,
there is an interval I of columns without any bit from Wy U D containing
2y 4 logae(n) + n — logy f) < 1201/ columns.

On Sy it is easy to see that for any specification of all bits outside of Wo(UD)
there is a number of branches of SF which respect this specification. Some possi-
ble branches may differ on some bits from W5. If we choose such a branch b it is
clear that in any case t induced by b is in T and therefore J([h1,t]) = J([h2,1])
(according to the condition (R2) of the definition of gentle). We shall construct
a specification which induces only such t's € Tr that on [hq,1][, [h2,] the jumps
go from Cg to I then to Cs then to the interval N, and such that the positions
reached by [h1,1], [ho,t] differ by a. Hence, J([h1,t]) # J([h2,t]). This will be

our contradiction.
Outside of I, Cy, Cy, we choose an arbitrary assignment, say all zeroes.

For a set X of input bits by R(X) we mean the set of rows containing at
least one bit from X. For a set R of rows and a set C' of columns by ROC we
mean the set of input bits which are in a row from R and in a column of C'.

We choose a set Ry of rows such that RiN(R(W2)UR(D)) = 0 and |Ry| = |I].
We divide the rows except of R(Wy U D) and R; into two sets Ry, Rs such
that (|Ra| 4+ |R1| — |Rs| — |[R(W2 U D)|)/2 = p1 + ky/n/4 where p; is the left-
most position of . We give one’s into Ry<OCH,R1<OCy, zeroe’s into R3OCh,
R(W3 U D)OCy — Wa. For any t induced by this specification it is clear that
the first jump is to I (via MA) and that the next memory will be created by A.

On I first we give zeroes to IO(R(Wo U D)). We give one’s to Cp, O Ry, to
Cpy+;O Ry we give |Ri| — j one’s and j zeroes (we have defined the content of

IORy).

Further, we choose a set R4 of rows such that Ry C Ry, p1 + (|R1| + |R2 —
R4 — |Rs| — |R4| — |R(W2U D)|)/2 = s. It is clear that such R4 exists since Ry
is sufficiently large. We give ones to (Ry — R4)O1 and we give zeroes to Ry O 1.
It is clear that for any ¢ induced by this specification of bits of I the next jump
is to Cs. Explanation: Zeroe’s in IOR(Wy) eliminate the incertainty about
the contents of CuOW,. The specification of TOR; eliminate the difference of
positions of columns in /. Moreover zeroe’s in IO R(D) ensure that the memory
column incoming to Cs has zeroes on R(Dj).

17

In any case the memory column M incoming to C has zeroes on R(W; U
D), R4, R3 and M has one’s on Ry — R4. The values of M on Ry depends on
the case. The new out-going memory column M’ is created by &.

First we give some values to C'sO Ry, for instance zeroes. For any specifica-
tion of CsO(R2 U R3) it is clear that for any ¢ € Tx induced by any branch of
Sr which respects this specification

a) There is an uncertainty concerning the jumped position of the size of at
most |R(Wao U D)U Ry| < 4(+ logac(n) + n — loga f) < 24n1/8.

b) The positions for [hy,1], [he,t] differ about @ since the incoming memory
column M has zeroes on R(D).

So, we specify CsO(Ry U R3) in such a way that M’ with supposed zeroes
on R(WyU D)U Ry would jump to the leftmost position of the interval N,. In
fact, in R(W2 U D) U Ry there are some ones in M', but the jumped position
still remains in N,. Hence [hq,t], [ho,t] have different values - contradiction.

Case ii)

We proceed in a similar way as in case i) till to the jump on Cs. We choose
another sufficiently large interval K of columns. From C; we jump via M A
to K. On K we arrange zeroes and one’s in a similar way as in the previous
case i) on [with a substantial change that on the row j € R(D;) on which
h1, hy differ we don’t give zeroes but ones. The effect of this change is that
for any ¢ € Tr induced by any branch of Sr which respect our specification
the positions jumped by [h1,1],[he,] will differ by one. Therefore it suffices to
arrange K in such a way that in any case the next jump is to the interval Ny.

O

Proposition 5.9 Dy = ()

Proof: By contradiction. Let us suppose Dg # 0. We are able to choose hq, hy
two assignements of Dy given by Hp such that i) a =g (|h1|1 — |h1|0)/2 —
(|h2|l1 = |h2]0)/2 > 0 orii) there is a bit j (a row j)in Dy on which hq, hy differ.

Case 1).

Outside of Wy and D we specify the bits of Cy in such a way that with
supposed zeroes in Wy N Cy and in Dy the first jump would be to the leftmost
position of the interval N,. N, is sufficiently large , so for any content of W,NCy
and D the first jump must be in N,. For any ¢t € T'» induced by any branch
of Sr which respect our specification the positions jumped by [hq, 1], [he, t] will
differ about a. Hence, J([h1,t]) # J([h2,t]). A contradiction with (R2) of the
definition of the gentle b.p.’s.

Case ii).

We proceed as in the case ii) of the previous proof. We find a sufficiently
large interval K of columns (outside of Wy U D). Then we specify the bits in
such a way that the jumps go from Cy to K via M A, from K to Nj.

18

a

From the last two propositions it follows that D = (). A contradiction. The
theorem is completely proven.
O

6 Upper bounds

6.1 The function f(AZ)

Let us suppose that our n input bits are organized into an (/ X m)-matrix A and
into an (m x 1)-vector #. We define f(AZ) = 1iff A7 =0 (forall j, 1< j <|,
ity ajiwi = 0).

For appropriate choices of I,m f is superplynomially hard for (1,4k)-
branching programs[18]. This follows also from [10]. From [9] it follows that f
is superpolynomially hard also for nondeterministic syntactic k-branching pro-
grams. It is clear that f is computable within polynomial time, f € P.

Theorem 6.1 There is a gentle branching program P which computes f and
which is of the size O(n).
Proof:

Let us describe a natural branching program P which computes f. P is
a concatenation of branching programs P..., P, where for each 7 = 1...l P; is
responsible for the multiplication of the j-th row A; of A with the vector 7.
Fach P; has two sinks; in one of them - with the label 0 - the computations
on inputs for which A;2 = 1 stop, the other sink is sticked with the source of
Pjyq. Hence, P has [sinks with the label 0 and only one with the label 1.

Now, let us describe P;. P; is a levelled branching program of the width 2.
P; has m levels each with two tracks. In the upper tracks of /; - there are two
nodes with label z; (with the only exception of the upper track of [y where only
one node exists - the source of P; labeled by z1). In the lower track of /; there
are two nodes labeled by aj;. On the last [,,,11 level there are only two sinks.

In the upper track of each level [;, m > ¢ > 2, one of the nodes with label
x; is called 0-node, the second one is called 1-node. In the upper track of the
first level there is only the 0-node.

The 0-node in the upper track of the level 7 represents the inputs for which
St ajszs = 0 (i.e. it is reached by computations on these inputs). A similar

rule for 1-node.

For a € {0,1} the 0-edge outgoing from the a-node on the level 7 reaches
the a-node of the level i + 1. The 1-edge reaches one of the two nodes in the

19

lower track of the level ¢ labeled by aj;. The edges out-going from each node in
the lower track reach the 0-node or 1-node of the level ¢+ 1. They are arranged
in such a way that the rule concerning a-nodes is satisfied.

All P;’s (and therefore P too) are completely described. We see that P
computes f and that P is of the size of at most [|P;| < 1.6m < 6n.

Now, we shall prove that P is a gentle branching program. Let us concen-
trate on P;.

Definition 6.2 n} =4 2", fori = 2,...,m, a € {0,1}, nl, is the number of
inputs which reach the a-node of the level i. ngH'l is the number of inputs
which leave Py by the sink sticked with the source of Py, n’ln"'l for the other sink

Of Pl-
Proposition 6.3 n3 = 3n%.

Proof: The 0-node of the level 2 is reached by exactly those inputs AZ which
have 21 =0 or z;y =1 and a; 7 =0. O

Proposition 6.4 Fori=2,....m if n), > n}, then nf)"'l > ni"’l.
Proof:
+1 7 7 i i i+l

ng = 3/4.ny+ 1/4.n] > 3/4n\ + 1/4nf = ni" .

The equalities follow from the fact that 0-edges from the a-node of the level
i go directly to the a-node of the level i +1 (for both @ = 0,1), and that 1-edge
outgoing from the a-node of the level ¢ goes to a node in the lower track of the
level 7 where a branching on aq; is performed. O

Corollary 6.5 nJ"t! > ptt,

Let us perform the distribution on P. From our point of view the first three
nodes with in-degree > 1 will be interesting - the 0-node of level 2 wgy, the
0-node w3 and the 1-node w13 of the level 3. Let M be the set of inputs such
that Y i~y ay;z; = 0. We know that |M]| > 27 /2.

Proposition 6.6 At vgy no m € M will be distributed there.

Proof: By contradiction. Le us suppose that there is an m € M which is
distributed at vgy. All m’ which follow m from vye to a sink are in M too.

For each z;,7 = 1,...,m in voo and after it all m’ following m go through at
least one node with the test on z; (z; is tested at the source of P,). Hence m

has no # on 1, ..., Ty.

For each a;; different from a; ; after vy, all m’ following m simultaneously
test or don’t test a; ;. Hence there is no # on a;; # a;;. The only candidate

20

for # is a1,1.

There are two possibilities .

a) mg, =0

Then for all m' which follow m from vg2 to a sink mgl = 0 holds due to the
test on 27 at the source of P,. Hence for all such m’ a;; is not tested at all,
therefore there is 4 on a; ;.

b) m,, =1

Then for all m’ which follow m from v, to a sink m}. = 1 holds (due to the
test on 1 at the source of P). Since they all have z; = 1 and they all reach
vog, they all must have a;; = 0. Hence, a;; is noncrossed.

We see that there is no # on m at vgy with respect to all inputs reaching
vg2. A contradiction.
O

Proposition 6.7 At vgy there is a unique class of distribution containing all
m € {0,1}" — M going through vy, the double-crosses # are on bits z1,a11.

Proof: 1If we develop the tree from vy, we see that all inputs, which in P go
to the 0-sink, have double-crosses on x1,ay1. Therefore they are distributed at
V02. O

Proposition 6.8 At vy3 there is a unique fd-class (of the distribution) Fy
containing only inputs from M. These inputs have values 1 = 1,29 = 1 and
((a11 =0 and a12 =0) or (a1 =1 and a1 =1)).

Proof: All inputs from {0,1}" — M which go through vg3 and which are not
distributed at vgy have the values 1 = 1,417 = 1,29 = 1, @19 = 1. Therefore at
vp3 there is no # on these inputs.

Let us develop a tree T from wvg3. Since in P z1 and x4 are tested repeat-
edly, at any leaf of 1" the inputs reaching it have the same values of z1, z5.

The case 1 = 0,29 = 0. The bits aq71, @12 are not tested at all, therefore on
ay1,arz there are +’s (not #’). No double-crosses.

The case 1 = 0,29 = 1. aq7 is not tested at all. A cross + on aq;. Since
vo3 18 reached on aq4 there must be the value a¢15 = 0. No double-crosses.

The case z1 = 1,29 = 0. a2 is not tested at all - there is a cross on aq9.
Since vg3 is reached, then there must be the value aq; = 0.

The case 1 = 1,29 = 1. vy3 is reached by inputs from M with the values

21 = 1,29 = 1,017 = 0,410 =0 or 27 = 1,29 = 1,a91 = 1,a12 = 1. There are
double-crosses (#) on {ay1,a12}.

21

Proposition 6.9 At vi3 there are two fd-classes. The first one contains inputs
from {0,1}" — M, the double-crosses are on {x3,a12}. The second one Fy
contains inputs from M, the double-crosses are on {aji,a13}. These inputs
have values 1 = 1,29 = 1,a11 = 0,a12 =1 orxzy = 1,29 = 1,a11 = 1,a15 = 0.

Proof: Let us develop a tree T from the node v;3. We don’t consider the inputs
from {0,1}" — M which are distributed at vge. Each remaining input which
goes to the 0-sink of P; has the values z1 = 1,a11 = 1. Also we see that there
are #£’s on zg, a1g.

Now let us consider the inputs from M reaching vi3. Since in P, the bits
x1 and x4 are tested repeatedly, at any leafs of 1" the inputs from M reaching
it have the same values of z1, z,.

The case ©1 = 0,92 = 1. aq1 is not tested, on aq1 there is a cross. a1 must
be equal to 1. No double-crosses.

The case ©1 = 1,29 = 0. a12 is not tested, a + on aq3. @11 must be equal
to 1. No double-crosses.

The case 1 = 1,29 = 1. For reaching vy3 it must hold a;; = 0,472 = 1 or
a11 = 1,a12 = 0. There are double-crosses on {a11, a12}.
O

Let F' be the largest class from £, F}.

Proposition 6.10 The cardinality of F' is at least 2™ /20.

Proof:

We divide all inputs into the groups G+, ..., G1¢ according to the equalities
T1 = ¢1,a11 = €3,%2 = €3,a12 = ¢4, ¢; € {0,1}. Ten of them G4, ..., G1g reach
vo3, G11,..., Gie Teach vyz. For each i,i = 1,...,10 we define GY = G; N M.
For i = 1,...,10 all GY have the same cardinality since in and after vo3 the
computation depends only on 23, ..., 2, @1 3, ..., @1 5. Similarly for GY,, ..., G%.

Let My (M, resp.) be the set of inputs from M which go through vg3 (v13
sresp.). | Mo| 4+ |Mq| = | M| > 2" /2 (see Corollary 6.5).

At w3 the inputs from two groups from G(l), ...,G(l)o form fy. At vi3 the
inputs from two groups from GY, ..., G{¢ form F.

Hence, |Fo| = |Mo|/5, |F1| = |M1|/3. If |[Mo| > | M| then |Fy| = |Mo|/5 >
|M|/10 > 27/20. If | M;| > | M| then |Fy| = |My]/3 > |M]|/6 > 2"/12. Hence,
|F'| > 27 /20.

O

22

Corollary 6.11 At least one of the distribution classes at wvos and vi3 is a
stgnificant one.

Now it suffices to prove that F is a significant fd-class which satisfies
(R1),(R2),(R3) from the definition of the gentle programs.

First, let us consider the case F' = Fy. We see that Fj is a significant
subclass of Fy.

ad(R1). Let us develop the tree Sr from vg3. We see that z1 = 1,29 = 1
are noncrossed bits on each branch of Sg. The other bits which may sometimes
be non-crossed are @y, Zp,.

ad (R2).

(R2) is clearly satisfied since all ¢ € Tr have 1 = 1,22 = 1. Hence, the
result does not depend on @17 =0,a12 =001 a1 =1,a1 = 1.

ad (R3).

Let D be the set of double-crossed bits . We know that all branches of Sg
have D = {ay1,a1,2}. From Proposition 6.7 it is clear that in D there are no
original subcubes. Hence, for all ¢, 5 Of =D.

Similarly for the case F' = Fj.
The theorem is proven.
O

6.2 Okolnishnikovova function £,

Let us describe the functions F), ;, n,s natural numbers, n > s, s divides n,
which are the witness functions for the hierarchy of syntatic k-branching pro-
grams with respect to k ([15],[16]).

There are N = (7}) variables, each of them is indexed by a subset a, |a| = s,
of the set I, = {1,...,n}. For i = 1..n , W; =45 {a]i € a C I,,,|a|] = s}. We see
that |W;| = (Zj) We define £, s =45 A7_1(Vaew, a)-

Theorem 6.12 There is a gentle program P (on N = (7) variables) such that
a) P computes F, 5, b) |P| < O(Nlog N).

Proof:
We shall describe a branching program P of the size N log N which com-
putes [}, ; such that P is a gentle branching program.

Let P; be a program of a standard form which computes the function
Vaew, Ta. P; has two sinks; in the source of P; there is a test on the first
x4, the 1-edge of this test ends in the 1-sink, the 0-edge leads to the test of
the next variable (or in the case of the test on the last variable to the 0-sink).
On its turn the next variable will be managed in the same way. We see that

|2l =(32]) + 2.

23

Roughly speaking, P will be a concatenation (a conjunction) of P;’s with
some additional properties.

We choose a variable z. Let all P;’s testing = have the tests on z at their
sources. Moreover all P;’s with tests on x will form the initial sequence of our
concatenation of all P;’s. (The number of P;’s with a test on z is s.)

From technical reasons after this initial sequence we insert a chain of re-
dundant tests of all variables different from x into the concatenation of all Z;’s.
The tests of this chain are of specific form so that both 0-edge and 1-edge of
a test of a variable go to the same node where the next variable is tested (in
the case of the last test they go to the source of the first subprogram from the
remaining P;’s).

Later we will define a linear ordering on variables tested in the initial se-
quence of P;’s.

Now we see that P computes F), ; and that |[P| < n|P|+ N < O(NlogN).

Let us investigate the distribution on P. Let vy,...,vs be the sinks of
P;’s from the initial sequnce such that v»;’s are sources of the next parts of
P. vq,...,v5_1 are the unique candidates for a class of distribution before v,
(since they are the unique nodes before vs with indegree > 1). If an input of
m € {0,1}" belongs to a class of the distribution at a node vy,...,v,_1, then
m does not have # on z since in vq,...,v5_1 a test on z follows. Moreover,
comp(m) does not reach v, since the tests on all variables different from 2 fol-
low. Hence, each m which is distributed at vq,...,v5_1 ends in a 0-sink of one

of Py, ..., P;. The number of such m’s is not greater than 5.2N/2(T;:;).

The class of the distribution at v, is a larger one. Each input m with m, =0
which reaches v; has a double-cross # on z since v, is also reached by the input
m’ which differ from m only on x. Further, at v, the double-cross # may be
only on z - this follows from the fact that in the next chain there are tests on
all variables different from z.

We see that the class of the distribution at v, is a significant proper class
which consists from the unique fd-subclass F'.

It is clear that [satisfies (R2) from the definition of gentle programs. It
remains to be verified that (R1),(R3) are satisfied, too.

First we shall complete the specification of the construction of P. We define
a linear ordering < on the set of all variables (different from z). The initial
part of < is given by the (arbitrary) ordering of tests in P;. In P, , first the
tests on variables which are tested also in P; respect <. Moreover they precede
the tests on the remaining variables. In <, these remaining variables follow
after the previous ones and they respect the test ordering in P». In each P;, the
variables from the previous P;’s are tested in respect to < at first, then new

24

variables are tested and < is extended.

Let w1, ...,ys be the variables which in P;,...Ps are tested as the last vari-
ables. Let us suppose that we have m € F. For each variable y # = we shall
find out whether y is crossed (4) at v, or not.

If y is not tested during comp(m) between the source of P; and the node
vs, then y is crossed since there is m' , mj # my and ml, = myz,. Both
comp(m), comp(m’) reach vs and they must branch on y in the chain after v,.

Now, we have m € F, y # x, and y is tested during comp(m) between the
source of P, and wv,.

We have two cases A) m, =0, B) m, = 1.

ad B). Since m; = 1 and m € F there is an m’ such that m/, = 0 and m/
reaches vg. From vs comp(m) and comp(m’) follows the same path, hence they
have the same set of crosses +’s. We see that B) is the same as A) for m/.

ad A). We have m € F', m; = 0. Let y # x be a variable tested during
comp(m) before v;.

a) the case my = 0. There is an input m’ such that mj = 1 and ml,, = my,.

We see that m/, = 0 and m' reaches v, (m' has more one’s than m). There-
fore, m' € I’ (see above). m and m’ branch on y in the chain after v;. Hence,
m,m' have + on y.

b) the case m, = 1. There is an input m' such that m., = m<, and m; =0
and mj_ is an unary word over {1}. If y # y1,...,ys (last variables), then m/
reaches vs. Since m/, = 0 we have m’ € F. m and m’ branches on y in the
chain after vs;. Hence, both m,m' have + on y.

We see that for all input m € F all non-crossed bits are from the set
{1, ..., ys}. Since s < N'/® (R1) is satisfied.

(R3) is satisfied trivially since D = {z} and in any computation on any
input z is tested before v;.
a

6.3 Multipointer functions

In [20] it was proven for k(n) up to k(n) = 27 1.n'/®.log="/*n that multipointer
functions f, () causes the hierarchy for (1,+k(n))-branching programs - it
means that f, i(,) is polynomially easy for (1, +k(n))-branching programs but
superpolynomially hard for (1, +k(n)— 1)-branching programs. We shall prove
that f, k) (for k(n) till n'/®) are polynomially easy for the gentle branching
programs.

25

We define the functions f, as follows: First we describe them informally.
The n variables are divided into & blocks of length m. For every j = 1,2,....,k, a
weighted sum of the bits of block j determines an index i; of some of the input
bits. Then the value of the function is the parity of the bits determined by ¢;
for j =1,2,...,k. The exact definition of f, ; requires some technical notation.

For every natural number n, let p(n) be the smallest prime greater than
n. Consider the set {1,2,...,n} as a subset of Z,,, the field of the residue
classes modulo p(n). Then for every t € Zy(y) let w() =tift € {1,2,....,n}and
w(t) = 1 otherwise.

Definition 6.13 For every t = (t1,...,tx) € {1,...,n}* and every x € {0,1}",
let Par(z,t) =g x4, ® ... B x4,.

Definition 6.14 Let k divide n and let m = n/k. Let ¥, : {0,1}" —
{1,2,...,n}* be defined as follows. For every z let ¥, 1(7) =45 (t1, ..., 1) where

for every j = 1,2,k t; = w(} 2, ix(J 1ym+i) where the sum is evaluated in
Zp(n)- Moreover let for(x) =g Par(z,pp(z)).

Theorem 6.15 Fork < n'/® fn,k is computable on a gentle branching program

of the size O(n?).

Proof:

Given £ € N we shall construct a branching program P computing f, 1.
The structure of P will reflect £ blocks of input bits with the corresponding
pointers.

P will consist from k-parts P;, 72 = 1, ..., k. Each P; will have two input nodes
(with the exception of P; which has only one input node - the source of P) and
two output nodes. The output nodes of Pj are the sinks of P. The two output
nodes of P; are sticked with the input nodes of Piyq foralli=1,....,k—1. One
of the output node of P; is called the 0-node , the other is called the 1-node.
For @ € {0,1} it is the truth that the a-node of P; is reached by all inputs for
which the value of the parity of the first ¢ bits pointed out by pointers from the
first ¢ blocks is equal to a.

P, has m + 1 levels. On each level from the first m ones one bit is tested.
Each output node of the i-th level represents one magnitude of the contribution
of the first ¢ bits to the pointer. On the last level (m + 1) the bits which are
pointed out are tested. The outgoing edges are sticked to the a-nodes of P;.

The other P;’s consist from two copies of P; (labelled by bits from the i-th
block). The only change is on the m+ 1-st levels where the outgoing edges must

point to the correct a-node.

We see that that P computes f, ; and that the size of P is not greater then
(2k — 1)| 1] < O(n?).

26

It remains to prove that P is a gentle branching program. We assume that
at the top of P; there is a small irregularity. The initial part of P; consists of
the full tree of depth 3 where at the root of the tree the variable z4 is tested,
at its successors z3 is tested and the last tests are on zs5. The leaves of the
branches (29 = 1,23 = 1,25 = 0) and (22 = 0,23 = 0,25 = 1) are sticked into
one node v (they give the same contribution to the pointer on the first block).
Moreover we suppose that at the level m of P; the variable z,, is tested.

Now let us perform the distribution on P. The node v is one of the first
candidates for nodes at which some clases are distributed. Let us consider an
input p going through v and assume that p = 1,ps = 1,p5 = 0. Let us take
the input p’ with p), = 0,p4 = 0, pL = 1 such that p’ follows p to a sink. We see
that p, p’ have #’s on x5, 3, z5. Since during the path through P all variables
different from x4, 23,25 are tested p, p’ must equal on these variables. More-
over p,p’ must avoid possible tests on zy, 73,75 at the last levels of P;’s. Let
us estimate the number of such p - i.e. the cardinality of the class F' of the
distribution at v.

We see that from the pair of inputs which differ only in the last variable of
the first block at most one of them goes through a test on one from the variables
X9, %3, x5 at the last level of P; since the possible contribution of the last vari-
able to the pointer is very large. The same fact holds for all remaining blocks.

Hence the cardinality of F is at least (27/4).2=1.2k=1 > 27/922'/* " Therefore
F is a significant class of the distribution.

We see that F is also an fd-class. It remains to verify the conditions
(R1),(R2),(R3) from the definition of the gentle branching programs.

Ad (R1). In each P; we want to avoid the tests on zg,23,25. This can
be ensured by fixing the last variable in each block. Hence at most these n'/8
variables are noncrossed in any computation on input from #F.

Ad (R2). Since after v the inputs from F are not tested on z3,z3, 25 the
reached sink does not depend on these variables.

Ad (R3). Clearly.
O

7 Other upper bounds

7.1 Parity of triangles in the graph

Let G = (V, E) be a graph,V = {v;}/2,, E CV x V. G defines a binary matrix
A= (az'j)zll,j:l where a;; = 1iff (v;,v;) € .

27

Since (G is unoriented, A is symmetric. By a code of G we mean the binary

String € = @12...01,@23---02m -0} j 11+ -Cjm e Oy 1 m -

Let f be a Boolean function such that f(e) = 1iff e is a code of a graph
which has an odd number of triangles.

For f the lower bounds 2/¢ on the size of 1-branching programs have been
proven in [2],[22].

Theorem 7.1 There is a gentle branching program P of size O(n‘o’/z) which
computes f.

Proof: In P the following algorithm is implemented.

We consider all possible triangles (on m vertices), each (possible) triangle
is considered only once.

We fix an (possible) edge, say eq, arbitrarily. In the first phase of the al-
gorithm we consider all (possible) triangles over e;. In the second phase, we
consider the remaining triangles.

P will have k levels F;, 1+ = 1...k where k is the number of all possible tri-
angles. Each level P; will be responsible for considering a triangle.

Each P; has two inputs, two outputs and some internal nodes (with excep-
tion of P, with one input node - the source of P). The output nodes of P;_;
will be sticked with the input nodes of £;. The output nodes of Pi. are sinks of
P.

For ¢« = 1...k , one output node of F; is called 0-node, the other one the
1-node. The following rule is fulfilled : Starting at the source of P, each input
which among the first ¢ considered possible triangles has an even (odd, resp.)
number of actual triangles achieves the 0-node (the 1-node, resp.) of P;.

We see that P computes f. It remains to specify the internal nodes of each
P;. For each 7 the input nodes of P; will be the roots of two copies of the full
ballanced tree of depth 3 with tests on variables which represent the edges of
which the 2-th triangle consists. T'he out-going edges in the depth 3 point to 0-
and 1-node of P; in such a way that the rule concerning the 0- and 1-nodes is
satisfied.

We see that the size of P is at most O(n%/?).

Now we are going to prove that P is a gentle b.p.. Let iy be the last level
of P where the edge ey is tested. Let us perform the distribution on P and let
us consider the situation at the 0-node and 1-node of P;_ . In P only the output
nodes of P;’s have in-degree > 1, hence only at the output nodes the double-
crosses (#) may arise. From the construction of P it is clear that in P 41, ..., Pk

28

all computations have tests on all variables except e;.Hence in P, ..., F;, the
#’s may be at most on e;. Moreover, in P, ..., P;,_; the # on e; is impossible
since a test on e; follows in P .

Let us investigate the possibility of # on e; at the output nodes of F;,.
Let m be an input. m has # on my iff there is m/ such that a) m{ # mq, b)
comp(m') follows comp(m) from the node in question to a sink. In the output
nodes of P;; the condition b) implies that my = m;ﬂ since in the remaining
part of P comp(m) tests all variables different from ey .

W.l.0.g. we suppose that m; = 1,m{ = 0. We see that m is the code of
such a graph G, that deleting the edge e; from G, the parity of the number
of triangles does not change since comp(m'’) goes to the same sink as comp(m).
Hence, in G, the number of triangles with the edge e; is even. Hence, # may
only be at the 0-node of P .

On the other hand, the condition "m; = 1 and in G,, there is an even

Y

number of triangles with e;” is a sufficient one for a # on m;.

Let F be the set of all inputs which have a # on e at the 0-node of Pig.
Later we shall see that F is a significant class of the distribution. It is clear
that F' is also an fd-class and that for /' the condition (R2) from the definition
of gentle b.p.’s is satisfied.

For verifying (R1), from the 0-node of P;, let us develop the tree Sy induced
by F.

Since during each computation each variable different from e, is tested there
are exactly two inputs m, m’, mi # mj, mx1 = ml; in each leaf of Sp.

Let us arbitrarily choose a branch b of Sr. We shall investigate the set of
non-crossed bits of inputs following b.

What concerns variables which have not been tested in Py, ..., P;, there will
be a cross on each of them. It is clear since after P, each computation goes
through nodes with tests on all (till this moment) non-tested variables.

Let m € F be an input following b, let z # e; be a variable tested in
Py, ...P;,_;. Let y be such a variable that the edges represented by e, z,y form
a triangle. W.l.o.g. we suppose my = 1.

If m, = 0 we define an input m’ as follows : m;éJc =qf Myzy and ml, # m,.
Since y = 0 it is clear that m’ has the same number of triangles over e; as m
does (even) and therefore m’ € F. m/ will branch with m on z therefore m has
a Cross on x.

If m, = 1, then we choose m’ such that
(i) me, =4 1,

29

(i) mg #ar M,

(iii) m’ equals m on variables which are tested on b before z,

(iv) On the other variables with exception of those which represent the iy-th
triangle over e; we define m/ arbitrarily.

(v) On the remaining two variables we define m’ in such a way that m’ has
an even number of triangles over e;.

Now we see that m’ € I/, m’ follows m along b till to the test on . Hence
m has a + on z.

We see that on each branch b of Sr the only candidates for non-crossed bits
are the two bits which are tested at the level ig. Hence (R1) is satisfied.

By the way we have obtained the fact that the cardinality of F is at least
27=3_ Hence F is a significant class of the distribution on P.

(R3) is satisfied clearly.
O

7.2 Half-cliques-only

By a half-clique-only we understand an unoriented graph where one half of ver-
tices form the full graph and the other vertices are isolated.(G' = (V, E),V =
ViuVy, Vil = |Va|, E=V; x V7).

In 1984 [24] it was proven that the Boolean function f which gives 1 ex-
actly on the codes of half-cliques-only is subexponentially hard for 1-branching
programs. In 1993 [4] it was proven that f is subexponentially hard even for
nondeterministic 1-branching programs.

By a code of a graph we mean the same string e = sq,..., 8,1 as in the
previous subsection where s; = a; 41, ..., ;.

Let us notice that the code of any half-clique-only has some special proper-
ties :
a) Exactly m/2 — 1 segments s; , ¢ = 1,...,m, contain at least one symbol 1

b) For i < j if a;; = 1 then the segment s; is an suffix of the segment s;.

Let us introduce a natural algorithm computing f.

1. Search for the first segment s; containing a symbol 1; s; is pointed out.

2. Move 1 to a counter C'.

3. Perform Proc until C'=m/2 — 1.

4. Let s; be the last segment which is pointed out. Check whether the
segment s is a zero-sequence for each k, k > j.

Proc:

30

a) Let s be the segment which is pointed out. Search for the first jo, jo > j
such that a;;, = 1 (the leading one).
b) Check whether s; is a zero sequence for each k,j < k.
¢) Check whether s;, is a suffix of s;.
d) s;, is pointed out.
e) Add 1 to C.

It is easy to see that such an algorithm can be implemented in a branching
program P; of the size of at most O(m*) < O(n?).

Theorem 7.2 f is computable on a gentle branching program P of the size

O(n?).

Proof:

At the top of P thereis a tree of the depth 3 with branching on a; 5, a; 3, as 3.
The branches a1 = 1a13 =0as3=1and a12=1a13 =1 a3 = 0 are sticked
into one node v which is a sink of P with the label 0. The other branches are
sticked to a node which is the source of P;.

It is clear that P computes f and that |P| < O(n?). It remains to prove
that P is a gentle program.

The sink v is reached by 2" /4 inputs. Each of them has #’s on a1 3,023, 1
on aj and +’s on the other bits. Hence, these inputs form a significant proper
class of the distribution. It easy to see that this class is an fd-class fullfilling the

conditions (R1),(R2),(R3) from the definition of gentle branching programs.
a

7.3 Ablayev-Karpinski’s function

In [] there is defined a function f on words over four-letter alphabet {0,1,0,1}
as follows : f(u) = 1 iff p(u) = p(u) where p,p are projections such that
pluiuz) = p(uq)p(uz) and p(0) = 0,p(1) = 1 and p(0) = p(1) = A (= the empty
word). Similarly for p.

In [1] the authors prove that f is superpolynomially hard for nondetermin-
istic four-letter 1-branching programs. We use a variant of f where the four
letter alphabet is encoded by strings of the length two {00,10,01,11} where
the first bit represents the value and the second one represents the type.

There is a natural algorithm A computing f which is based on the proce-
dure: ”Search for the next value of the first type and search for the next value

of the second type, and compare”.

Such an algorithm can be implemented in a branching program P; of the
size of at most O(n?).

31

Theorem 7.3 f is computable on a gentle branching program P of size O(n?).

Proof: At the top of P there is a tree on depth four which branches
on the first four variables. The branches induced by inputs with prefixes
0011,1001,0110,1100 are sticked into a node » which is a sink of P with the
value 0. The other branches are sticked into the other node which is the source
of P.

It is clear that P computes f and that the size of P is at most O(n?). Tt
remains to prove that P is a gentle program.

The sink v is reached by 2"/4 inputs. At » each of them has #’s on the
first four bits. The other bits of these inputs have +’s. We see that the class of
these inputs is a significant proper class of the distribution, moreover it is also a
significant fd-class fullfilling the conditions (R1),(R2),(R3) from the definition
of gentle branching programs.

O

7.4 Multiplication

S. Ponzio [17] has proven a 27V Jower bound for 1-branching programs com-
puting a function f which is closely connected with the multiplication. For
the same function f we shall prove a O(n®) upper bound for gentle branching
programs.

Given z,y € {0,1}™, x = zmz™ L. 2%zl y = y"y™ L. y%y! we define
f(zy) =g 2™ where 2™ is the m-th digit (from the right) of the binary number
z=axye{0,1}2m, = 2m2m=1_ ;21

Theorem 7.4 f is computable on a gentle branching program P of the size

O(n?).

Proof: In P we will implement the well-known algorithm for the multi-
plication. The algorithm sums the rows R; = Timet10"Y for 4 = 1...m
where 7;; =4 27 x y'. We will consider the columns Cj = ¢yj...cp,; where
Cij =df Tij—i+1 for j —i+ 1 > 0 and ¢;; =4 0 otherwise. The value f(zy) is
given as the sum of the last digit of the sum of C), and of the last digit of the
transition from the previous columns C,_1, ..., C1.

The structure of P will reflects the columns C4,...,C,, and the magnitude
of the respective transitions.

P will consists of the parts Py, ..., Pp. With exceptiom of P, P;’s are of
the regular form as follows:

FEach P; has some input nodes ad some output nodes. FEach input node repre-
sents one magnitude of the transition after the sum of the columns C4,...,C;_;.

32

It means that all inputs zy having the transition of the same magnitude (after
C1,...,C;_1) go through the same input node of P;. We see that P; has only
one input node - the source of P. The output nodes of P; are sticked with the
input nodes of P;i;.

Fach P;, j = 1,...,m — 1 consists of [; levels. Each level L;, i = 1...[; cor-
responds to the value ¢;;. Fach level L;, 7 = 1,...,[; has some input nodes and
some output nodes. Each input node represents one magnitude of the sum of
the transition after the columns C',...,C;_; and of ¢;;,...,¢,_1 ;. The output
nodes of L; are input nodes of L;;;.

At the level L; it is necessary to find out the value ¢;;. Fach input node of
L; is the root of the full tree of the depth 2. The tree tests the variable 27=+!
at its root and the variable 3' at the two immediate successors of the root. The
leaves of these trees are sticked into the output nodes of L,.

Now P is described till #,,_;. Since the maximal magnitude of the transi-
tion is not larger than 2m the inequality Z;’L_I__ll |Pj| < O(n?) holds.

It remains to describe P,,. Each input node of P, (=an output node of
Pp—1) has out-degree = 1. In any case the outgoing edge leads to a node a if
the last (the rightmost) digit of the transition after C1, ..., Cy,_1 is zero or to a
node b in the other case. Starting with a,b P, consists of levels L; ,72 =1, ..., [,.
(We know that [, = m.) Each level L; has two input nodes and two output
nodes. Each input node of L; represents one value of the last digit of the sum
of the transition after C,...,Cp,—q and of ¢4, ..., €i—1 5. The output nodes of
L; are sticked with the input nodes of L;y;.The output nodes of L,, are the
sinks of P.

Now we see that P will compute f.

At each input node of L; it is necessary to find out the value of ¢;,,,. This is
ensured by two full trees of the depth 2 with roots in the input nodes. In both
trees at the root the variable 2™ ~*t! is tested and at the both succesors of the
root we test the variable y'. With exception of L; the leaves of both trees are
sticked into the output nodes of L;.

Inside of L, firstly, in the tree with the root in a (b,resp.) we stick the
branches 2™ = 0,y' = 0 and 2™ = 1,y' = 0 to a node ¢ (d, resp.). Then we
give edges leading from ¢, d and the remaining leaves of both trees to the output
nodes of L.

We see hat |P| < O(n®). It remains to prove that P is a gentle branching
program.

Let us perform the distribution on P. For all inputs no bit is double-crossed
in Pp,..., P,_1 since each bit is tested in P,,. The nodes ¢,d in L7 of P,, are

33

the first candidates for nodes with a proper class of the distribution.

Proposition 7.5 Fach input zy going through ¢ (d, resp.) has a double-cross
(#) on =™ and only on z™ at ¢ (d, resp.).

Proof: W.l.o.g. let 2y be an input going through ¢. At a there is the first test
on z™ . Hence also the input zy goes through ¢ where z and z differ only on
2™ (y' is non-crossed, y' = 0). Since the test at @ is the last test on 2™, after ¢
xy and Ty never branch and therefore they have a # on ™. After ¢ each input
goes through tests on all remaining bits different from 2™, y!. Hence on these
bits there is no # at c.

O

2"=1 inputs go through nodes c,d. Hence at least one of the classes of the
distribution at ¢ and at d is a significant one. W.l.o.g. we assume that there is
a significant class F’ at ¢. We see that I is also an fd-subclass and therefore it
suffices to prove that F' satisfies the conditions (R1),(R2),(R3) from the defini-
tion of gentle branching programs.

Ad (R1). Let us consider the tree Sy induced by I at c.

Proposition 7.6 Let xy be an input from F following a branch b of Sp.
Then all bits different from z',z2 23, 2™, y', y™"2,y™ 1, y™ are crossed in
w(zy,c, F, P).

Proof: By contradiction. Let e be a non-crossed bit of w(zy, ¢, F, P) different

from z!

sy y™. We shall construct another input z'y’ such that a) z'y’ € F',
b) in Sr 2'y’ follows zy till the test on e where zy, z’y" will branch. (Hence zy

will have a cross on e.) This will be our contradiction.

We choose z'™ arbitrarily, we put y'* =4 0. Then (in P) we follow zy from
tm=1 12, 13
? y Y € 7y
i In 2’y on e we give the opposite value (as in zy). In any case
' 22, 2By y'm=1 ' =2 remain undefined. If some other bits of z'y’ are
also undefined we define them arbitrarily. Further we define /' = 1, 2% = 1,
23, y'™ arbitrarily. ¥~ and 3™~ are defined in such a way that the last digit
of the transition after Cy,...,Cy,—1 (on z'y’) is equal to 0.

¢ to the test on e - this path defines the value of pairs z tm—2

We can argue that this is possible as follows: The starting point is to choose
m—1 Im—2

Yy =y = 0. If the last digit of the transition for C,, is equal to one we
change y™~! y™=2 We know that y"™~! is taken into account only in Cp,_;
(the corresponding bit is 2'') and that y"™~? is taken into account only in Cy,—1

(the corresponding bit is 2'%) and in C,,—5 (the corresponding bit is z'1). Let

2/ =4 2’ x y'. If under the condition y"™~! = y"™~% = 0 we have 2™~ = 1 we
change "™~ to 1. If 2/™~! = 0 and 2/™~2? = 0 we put y'™~! = y™=2 = 1. If
2™l = 0and 2™ 2 =1 we put "' =0,y 2 = 1.

34

Hence 2'y’ goes through a and moreover since y'' = 0 z'y’ goes through ¢
and it has # on 2'™. Therefore z'y’ € F - the condition a) from our plan of the
proof is satisfied. Also b) is satisfied. A contradiction.

O

From the proposition it follows that the only candidates for non-crossed bits
1

are z', z% 23, y™=2, y™~1 y™. Hence (R1) is satisfied.

Ad (R2). Let us choose h € Hp, t € Tr. Let us consider comp([ht]) in P.
We shall prove that [ht] goes through ¢ and after ¢ the computation depends
only on t. Since ¢t € T there is an input zy € F such that zy | tF =t (where
tF contains all bits except of 2™). The input zy goes from the source to a.
Before a there is no test on z™. Hence [ht] follows the same path from the
source to a. Sice zy € F y' = 0 holds - therefore also [ht] goes to c. After ¢
only the bits from ¢z are tested, hence the computation depends only on . We
see that (R2) is satisfied.

Ad (R3) The bit which is double-crossed at ¢ is tested before ¢ at @ for all
inputs from F. Hence (R1) is satisfied.

We see that P is a gentle branching program. The Theorem is proven.
O

Acknowledgements.
I thank K. Bendovd, S. Jukna, P. Pudldk for their discusions. T am grateful
to P. Savicky for his help with the main proofs of Section 3.

References

[1] F.Ablayev, M. Karpinski , On the power of Randomized Branching Pro-
grams , Proc. of ICALP’96, Lecture Notes in Computer Science 1099,
Springer 1996, 348 - 356.

[2] L. Babai, P. Hajnal, E. Szemeredi and G. Turan, A lower bound for read-
once-only branching programs, Journal of Computer and Systems Sciences,

vol. 35 (1987), 153-162.

[3] D. A. Barrington , Bounded-width Polynomial Size Branching Programs
Recognize Exactly those Languages in NC', Proc. 18. ACM STOC, 1 - 5.

[4] A. Borodin, A. Razborov and R. Smolensky, On lower Bounds for Read-
k-times Branching Programs, Computational Complexity 3 (1993), 1 - 18.

35

[5] P. E. Dunne, Lower bounds on the complexity of one-time-only branching
programs, In Proceedings of the FCT, Lecture Notes in Computer Science,

199 (1985), 90 - 99.

[6] M. Ftdcnik, J. Hromkovi¢ , Nonlinear lower bound for real-time branching
programs, Comput. Artificial Intelligence 4 (1985), 353 - 359.

[7] A. Gal, A simple function that requires exponential size read-once branch-
ing programs , to appear in Combinatorica.

[8] S. Jukna, Entropy of Contact Circuits and Lower Bounds on Their Com-
plexity, Theoretical Computer Science, 57 (1988), pp. 113 - 129.

[9] S. Jukna, A Note on Read-k-times Branching Programs, RAIRO Theoret-
ical Informatics and Applications, vol. 29, Nr. 1 (1995), pp. 75 - 83.

[10] S. Jukna, A. A. Razborov, Neither Reading Few Bits Twice nor Reading
Illlegally Helps Much, TR96-037,ECCC, Trier.

[11] M.Krause, S. Waack, On Oblivious Branching Program of Linear Length,
Berlin, 1989

[12] K. Kriegel , S. Waack , Exponential lower bounds for real-time branching
programs , Proc. FCT’87. Lecture Notes in Computer Science, Vol. 278,
Springer 1987, 263 - 267.

[13] C. Meinel, S. Waack , Separating Complexity Classes Related to Bounded
Alternating w-Branching Programs , Math. Systems Theory 28, 21 - 39
(1995)

[14] E. A. Okolnishnikovova , Lower bounds for branching programs computing
characteristic functions of binary codes (in Russian), Metody diskretnogo
Analiza, 51 (1991), 61 - 83.

[15] E. A. Okolnishnikovova , Comparing the complexity of binary k-programs
(in Russian), Diskretnyj analiz i issledovanije operacij, 1995, Vol. 2, No. 4,
pp. 54 - 73.

[16] E. A. Okolnishnikovova , On the Hierarchy of Nondeterministic Branching
k-Programs, FCT’97

36

[17] S. J. Ponzio, A lower bound for integer multiplication with read-once
branching programs, Proceedings of 27’s Annual ACM Symposium on the
Theory of Computing, Las vegas, 1995, pp.130 - 139.

[18] P. Savicky, S. Zak , A lower bound on branching programs reading some
bits twice, Theoretical Computer Science 172, 1997, pp. 293 - 301.

[19] P. Savicky, S. Zak , A large lower bound for 1-branching programs, TR96-
036, ECCC, Trier.

[20] P. Savicky, S. Zak , A hierarchy for (1,4k)-branching programs with re-
spect to k , Proc. MFCS’97, Lecture Notes in Computer Science 1295,
Springer 1997, 478 -487.

[21] D. Sieling , New Lower Bounds and Hierarchy Results for Restricted
Branching Programs , TR 494, 1993, Univ. Dortmund, to appear in JCSS.

[22] J. Simon, M. Szegedy , A New Lower Bound Theorem for Read Only
Once Branching Programs and its Applications, Advances in Computa-
tional Complexity Theory (J. Cai, editor), DIMACS Series, Vol. 13, AMS
(1993), pp. 183 - 193.

[23] 1. Wegener, On the Complexity of Branching Programs and Decision Trees
for Clique Functions, JACM 35 (1988), 461 - 471.

[24] S. 74k , An exponential lower bound for one-time-only branching programs,
Proc. MFCS’84, Lecture Notes in Computer Science 176, Springer 1984,
562 - 566.

[25] S. Zak , An exponential lower bound for real-time branching programs,

Inform. and Control 71, 1986 , 87 -94.

[26] S. Z&k , A superpolynomial lower bound for (1, 4+k(n))-branching pro-
grams, Proc. MFCS’95, Lecture Notes in Computer Science, Vol. 969,
Springer 1995, 319 - 325.

37

