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Abstract

We consider recurrent analog neural nets where the output of each gate is
subject to Gaussian noise, or any other common noise distribution that is nonzero
on a large set. We show that many regular languages cannot be recognized by
networks of this type, and we give a precise characterization of those languages
which can be recognized. This result implies severe constraints on possibilities
for constructing recurrent analog neural nets that are robust against realistic
types of analog noise. On the other hand we present a method for constructing
feedforward analog neural nets that are robust with regard to analog noise of
this type.

1 Introduction

A fairly large literature (see [Omlin, Giles, 1996] and the references therein) is devoted
to the construction of analog neural nets that recognize regular languages. Any physical
realization of the analog computational units of an analog neural net in technological
or biological systems is bound to encounter some form of “imprecision” or analog
noise at its analog computational units. We show in this article that this effect has



serious consequences for the capability of analog neural nets with regard to language
recognition. We show that any analog neural net whose analog computational units are
subject to Gaussian or other common noise distributions cannot recognize arbitrary
regular languages.

A precise characterization of those regular languages which can be recognized by
such analog neural nets is given in Theorem 1.1. In section 3 we introduce a simple
technique for making feedforward neural nets robust with regard to the here considered
types of analog noise. This method is employed to prove the positive part of Theorem
1.1. The main difficulty in proving Theorem 1.1 is its negative part, for which adequate
theoretical tools are introduced in section 2. The proof of this negative part of Theorem
1.1 holds for quite general stochastic analog computational systems. However for the
sake of simplicity we will tailor our description towards the special case of noisy neural
networks.

Recognition of a language L C U* by a noisy analog computational system M with
discrete time is defined essentially as in [Maass, Orponen, 1997]. The set of possible
internal states of M is Q = [—1,1]", for some integer n (which is called the “number
of neurons” or the “dimension”). The input set is the alphabet U. We assume given
an auxiliary mapping

f:OxU—Q

which describes the transitions in the absence of noise (and saturation effects), where
Q C R" is an intermediate set which is bounded and measurable; f(-, ) is supposed to
be continuous for each fixed v € U. The system description is completed by specifying
a stochastic kernel' Z(-,-) on Q x Q. We interpret Z (y, A) as the probability that a
vector y can be corrupted by noise (and possibly truncated in values) into a state in
the set A. The probability of transitions from a state x € Q to a set A C , if the
current input value is u, is defined, in terms of this data, as:

K,(z,A) = Z(f(z,u),A).

This is itself a stochastic kernel, for each given u.

More specifically for this paper, we assume given an R"-valued random variable V',
which represents the “noise” or “error” that occurs during a state update. The main
assumption throughout this article is that V' has a density (with respect to Lebesgue
measure) ¢(-) which is continuous and satisfies

¢(v) #0 for allv € R . (1)

For real numbers z, we let sat (z) = sign (2) if |2| > 1 and sat (2) = z if |2| < 1, and
for vectors y = (y1,...,y,)" € R* we write again sat (y) := (sat (y1),...,sat (y,)). We
assume from now on that

Z(y,A) := Prob[sat (y + V) € 4],

!That is to say, Z(y, A) is defined for each y € Q and each measurable subset A C ©, Z(y,-) is a
probability distribution for each y, and Z(-, A) is a measurable function for each A.



where the probability is understood with respect to V, distributed as above.
The main example of interest is that of (first order or high order) neural networks.
In the case of first order neural networks one takes a bounded (usually, two-element)
U CR, and
Fi[-1L,1"xU—-QCR": (z,u) » Wz + h + uc, (2)

where W € R""™ and c¢,h € R" represent weight matrix and vectors, and Q is any
bounded subset which contains the image of f. The complete noisy neural network
model is thus described by transitions

Typ1 = sat (Way + h +we+ Vi),

where Vi, V5, ... is a sequence of independent random n-vectors, all distributed identi-
cally to V; for example, Vi, V5, ... might be an i.i.d. Gaussian process.

A variation of this example is that in which the noise affects the activation after
the desired transition, that is, the new state is

Typ1 = sat (Wzxy + h + we) + V4,
again with each coordinate clipped to the interval [—1, 1]. This can be modelled as
T = sat (sat (Way + h + wie) + Vi),
and becomes a special case of our setup if we simply let
f(z,u) =sat (Wzy + h + uc) .

For each (signed, Borel) measure p on €, and each u € U, we let K,pu be the
(signed, Borel) measure defined on Q by (K, p)(A) := [ Ky(z, A)du(z) . Note that K, u
is a probability measure whenever yu is. For any sequence of inputs w = u, ..., u,, we
consider the composition of the evolution operators K, :

Ky =Ky, 0Ky, ; 0... 0Ky, - (3)

If the probability distribution of states at any given instant is given by the measure p,
then the distribution of states after a single computation step on input u € U is given
by K, u, and after » computation steps on inputs w = uq, ..., u,, the new distribution
is Ky, where we are using the notation (3). In particular, if the system starts at a
particular initial state &, then the distribution of states after » computation steps on
w is K, 0¢, where 6 is the probability measure concentrated on {£}. That is to say, for
each measurable subset F' C 2

Prob [z,41 € F'|z; =&, input =w] = (Ky,0)(F).

We fix an initial state £ € €2, a set of “accepting” or “final” states F', and a “reliability”
level ¢ > 0, and say that M = (M,&, F,¢) recognizes the subset L C U* if for all
weU":



weLl <= (Kybe)(F)>-+e¢

| = Do =

wg L = (Kybe)(F) < 5
This completes our definition of language recognition by a noisy analog compu-
tational system M with discrete time. This definition agrees with that given in
[Maass, Orponen, 1997].

The main result of this article is the following:

— €.

Theorem 1.1 Assume that U is some arbitrary finite alphabet. A language L C U*
can be recognized by a noisy analog computational system M of the previously specified
type iof and only if L = E1\JU*FE; for two finite subsets Ey and Ey of U*.

The proof of this result follows immediately from Corollary 2.2 and Corollary 3.3.

A corresponding version of Theorem 1.1 for discrete computational systems was
previously shown in [Rabin, 1963]. More precisely, Rabin had shown that probabilistic
automata with strictly positive matrices can recognize exactly the same class of lan-
guages L that occur in our Theorem 1.1. Rabin referred to these languages as definite
languages. Language recognition by analog computational systems with analog noise
has previously been investigated in [Casey, 1996] for the special case of bounded noise
and perfect reliability (i.e. [, <,¢(v)dv =1 for some small 7 > 0 and ¢ = 1/2 in
our terminology), and in [Maass, Orponen, 1997] for the general case. It was shown
in [Maass, Orponen, 1997] that any such system can only recognize regular languages
, and if [ <, ¢(v)dv = 1 for some small n > 0 then exactly all regular languages can
be recognized by such systems.

2 A Constraint on Language Recognition

We prove in this section the following result for arbitrary noisy computational systems
M as defined in section 1:

Theorem 2.1 If a language L C U™ is recognized by M, then there are subsets E; and
Ey of UST, for some integer r, such that L = E; J U*E),.

Corollary 2.2 Assume that U is a finite alphabet. If L is recognized by M, then there
are finite subsets E1 and Ey of U* such that L = Ey |J U*Es. ]

Remark 2.3 The same proof shows that Theorem 2.1 as well as Corollary 2.2 remain
valid if condition (1) is weakened to:

oy — f(r,u))>c>0 forallz,y e QueU. (4)

Moreover, the result is also true, under suitable assumptions, when the noise random
variable is not be necessarily independent of the new state f(x,u). The proof depends
only on the fact that the kernels K, satisfies the Doeblin condition with a uniform
constant (see next section).



2.1 A General Fact about Stochastic Kernels

Let (S,S) be a measure space, and let K be a stochastic kernel. As in the special case
of the K,’s above, for each (signed) measure p on (S,S), we let Ku be the (signed)
measure defined on S by (Ku)(A) := [ K(z, A)du(x) . Observe that Ky is a probability
measure whenever y is. Let ¢ > 0 be arbitrary. We say that K satisfies Doeblin’s
condition (with constant ¢) if there is some probability measure p on (S, S) so that

K(z,A) > cp(A) forallze S,A€S. (5)

(Necessarily ¢ < 1, as is seen by considering the special case A = S.) This condition is
due to [Doeblin, 1937].

We denote by ||| the total variation of the (signed) measure p. Recall that ||ul|
is defined as follows. One may decompose S into a disjoint union of two sets A and
B, in such a manner that p is nonnegative on A and nonpositive on B. Letting the
restrictions of y to A and B be “u.” and “—p_” respectively (and zero on B and
A respectively), we may decompose p as a difference of nonnegative measures with
disjoint supports, p = py — p_ . Then, ||u]| = pye(A) + u_(B).

The following Lemma is a “folk” fact ([Papinicolaou, 1978]), but we have not been
able to find a proof in the literature; thus, we provide a self-contained proof.

Lemma 2.4 Assume that K satisfies Doeblin’s condition with constant c. Let u be
any (signed) measure such that p(S) = 0. Then,

[Kpll < (1 =c) [lpell - (6)

Proof. In terms of the above decomposition of y, () = 0 means that u,(A) = p_(B).
We denote g := py(A) = p_(B). Thus, ||p|| = 2¢. If ¢ = 0 then p = 0, and so also
Ku = 0 and there is nothing to prove. So from now on we assume g # 0. Let
v = Kpy, vy :=Ku_, and v := Ku. Then, v = v; — 1. Since (1/q)uy and (1/q)p—
are probability measures, (1/¢)v; and (1/q)v, are probability measures as well. That
is,

n(8) = (S) =¢. (7)
We now decompose S into two disjoint measurable sets C' and D, in such a fashion
that 14 — v, is nonnegative on C' and nonpositive on D. So

[v[l = (11 = 12)(C) + (2 = 1)(D) = 1(C) — 11(D) + 15(D) — 12(C)
= 2q — 2v1(D) — 2v,(C), (8)
where we used that vy (D) + v1(C) = ¢ and similarly for v,. By Doeblin’s condition,
n(D) = [ K(e,D)dus (@) > cp(D) [ dus(w) = cp(D)p(4) = cqp(D).

Similarly, v5(C) > cqp(C). Therefore, v1(D)+1v5(C) > cq (recall that p(C)+p(D) =1,
because p is a probability measure). Substituting this last inequality into Equation (8),
we conclude that ||v|| < 2¢ —2cq = (1 —¢)2¢ = (1 — ¢) ||u]|, as desired. |
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2.2 Proof of Theorem 2.1
The main technical observation is as follows.

Lemma 2.5 There is a constant ¢ > 0 such that K, satisfies Doeblin’s condition with
constant c, for every u € U.

Proof. Pick any subset g C (—1,1)" with nonzero Lebesgue measure (), and let
Ao be the Lebesgue measure normalized to Qg: Ag(A) = M(A)/A(Qp). (For example,
Qo = (—1,1)" and Ay = A/2".) Let ¢y be a lower bound for ¢(v), for v in the bounded
set @ = {a —y,a € Qy,y € Q}. Pick any (Lebesgue) measurable subset A of {2 and
any y € Q. Then

Z(y,A) = Probfsat(y+ V)€ Al =Probly+V € A]
= /A d(v)dv > cpA(Ay) = coA(A) = coA(Q0)Ao(A),

Y

where A, := {a—y,a € A} C Q. We conclude that Z(y, A) > cAo(A) for all y, A, where
¢ = cpA(p). Finally, we extend the measure Ay to all of 2 by assigning zero measure
to the complement of Qq, that is, p(A) := Ag(A N ) for all measurable subsets A of 2.
Pick u € U; we will show that K, satisfies Doeblin’s condition with the above constant
¢ (and using p as the “comparison” measure in the definition).

Consider any = € 2 and measurable A C ). Then,

Ky(z,A) = Z(f(z,u), A) > Z(f(z,u), A Q) > cXo(A[) Q) = cp(A),

as required. |

Remark 2.6 One could extend the proof to classes of examples larger than that treated
here; we specialized to “sat (f(z,u) +v)” in order to make notations simpler.

For every two probability measures uy, 19 on €2, applying Lemma 2.4 to p := p; — po,
we know that [|K,pu; — Ky || < (1 — ¢)||p1 — pe| for each v € U. Recursively, then,
we conclude:

1K i — Kop || < (1= ¢)" |1 — paf| < 2(1 = ¢ (9)
for all words w of length > r.
Now pick any integer 7 such that (1 — ¢)” < 2¢. From Equation (9), we have that

| Ky g1 — Ky pio|| < 4e

for all w of length > r and any two probability measures p;, uo. In particular, this
means that, for each measurable set A,

(K p11)(A) = (Kw i) (A)] < 2¢ (10)

for all such w. (Because, for any two probability measures v; and vy, and any measur-
able set A, 2 |v1(A) — va(A)| < ||lvn — 1a]].)
We denote by w;ws, the concatenation of sequences wy, wy; € U*.
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Lemma 2.7 Pick anyv € U* and w € U". Then
weL < vwel.

Proof. Assume that w € L, that is, (K 6¢)(F) > %-1—5. Applying inequality (10) to the
measures (i := 6¢ and py := K, 0, and A = F', we have that |(K, 0¢)(F) — (Kyy6¢)(F)| <
2¢, and this implies that (Ky,6¢)(F) > 5 — ¢, i.e., vw € L. (Since (Ky0¢)(F) < 5 —¢
is ruled out.) If w ¢ L, the argument is similar. |

We have proved that
LOU*U") = US(L(U").
So,
L= (LNU=)U (LOUTT) = B JUE,
where E, := LNUS" and E, := LN U" are both included in U<". This completes the
proof of Theorem 2.1.

3 Construction of Noise Robust Analog Neural
Nets

In this section we exhibit a method for making feedforward analog neural nets robust
with regard to arbitrary analog noise of the type considered in the preceding sections.
This method can be used to prove in Corollary 3.3 the missing positive part of the
claim of the main result (Theorem 1.1) of this article.

Theorem 3.1 Let C be any (noiseless) feedforward threshold circuit, and let o : R —
[—1,1] be some arbitrary function with o(u) — 1 for u — oo and o(u) — —1 for
u — —oo . Furthermore assume that 6, p € (0,1) are some arbitrary given parameters.
Then one can transform the noiseless threshold circuit C into an analog neural net N¢
with the some number of gates, whose gates employ the given function o as activation
function, so that for any analog noise of the type considered in section 1 and any circuit
input € {—1,1}™ the output of N¢ differs with probability > 1 — 6 by at most p from
the output of C.

Proof. We can assume that for any threshold gate ¢ in C and any input y € {—1,1}
to gate g the weighted sum of inputs to gate g has distance > 1 from the threshold
of g. This follows from the fact that without loss of generality the weights of g can
be assumed to be even integers. Let n be the number of gates in C and let V' be
an arbitrary noise vector as described in section 1. In fact, V may be any R"-valued
random variable with some density function ¢(-) . Let k£ be the maximal fan-in of a
gate in C, and let w be the maximal absolute value of a weight in C.
We choose R > 0 so large that
0

dv < — for i=1,...,n.
/viZRqS(v) v < o or i ey



Furthermore we choose uy > 0 so large that o(u) > 1 — p/(wk) for v > up and
o(u) < =1+ p/(wk) for u < —ug . Finally we choose a factor v > 0 so large that
¥(1 —p) — R > up. Let N¢ be the analog neural net that results from C through
multiplication of all weights and thresholds with v and through replacement of the
Heaviside activation functions of the gates in C by the given activation function o.
We show that for any circuit input z € {—1,1}™ the output of A; differs with
probability > 1 — p by at most p from the output of C, in spite of analog noise V' with
density @(-) in the analog neural net N¢. By choice of R the probability that any of
the n components of the noise vector V' has an absolute value larger than R is at most
6/2. On the other hand one can easily prove by induction on the depth of a gate ¢
in C that if all components of V' have absolute values < R then for any circuit input
z € {—1,1}™ the output of the analog gate g in N that corresponds to g differs by at
most p/(wk) from the output of the gate g in C. The induction hypothesis implies that
the inputs of g differ by at most p/(wk) from the corresponding inputs of g. Therefore
the difference of the weighted sum and the threshold at g has a value > - (1 — p)
if the corresponding difference at ¢ has a value > 1, and a value < —y - (1 — p) if
the corresponding difference at g has a value < —1. Since the component of the noise
vector V that defines the analog noise in gate g has by assumption an absolute value
< R, the output of g is > 1 — p/(wk) in the former case and < —1 + p/(wk) in the
latter case. Hence it deviates by at most p/(wk) from the output of gate g in C. |

Remark 3.2

(a) Any boolean circuit C with gates for OR, AND, NOT or NAND is a special case
of a threshold circuit. Hence one can apply Theorem 3.1 to such circuit.

(b) It is obvious from the proof that Theorem 3.1 also holds for circuits with recur-
rencies, provided that there is a fired bound T for the computation time of such
circut.

(c) It is more difficult to make analog neural nets robust against another type of noise
where at each sigmoidal gate the noise is applied after the activation o. With the
notation from section 1 of this article this other model can be described by

Ty = sat (c(Wzy+ h+wie) +Vp) .

For this noise model it s apparently not possible to prove positive results like The-
orem 8.1 without further assumptions about the density function ¢(v) of the noise
vector V. However if one assumes that for any i the integral f\vi\Zp/(ka) o(v)dv
can be bounded by a sufficiently small constant (which can be chosen indepen-
dently of the size of the given circuit), then one can combine the argument from
the proof of Theorem 3.1 with standard methods for constructing boolean circuits
that are robust with regard to common models for digital noise (see for exam-
ple [Pippenger, 1985], [Pippenger, 1989], [Pippenger, 1990]). In this case one
chooses ug so that o(u) > 1 — p/(2wk) for u > ug and o(u) < 1+ p/(2wk) for
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u < —uqg, and multiplies all weights and thresholds of the given threshold circuit
with a constant vy so that v - (1 — p) > ug. One handles the rare occurrencies
of components V of the noise vector V that satisfy |V| > p/(2wk) like the rare
occurrencies of gate failures in a digital circuit. In this way one can simulate
any given feedforward threshold circuit by an analog neural net that is robust with
respect to this different model for analog noise.

The following Corollary provides the proof of the positive part of our main result
Theorem 1.1.

Corollary 3.3 Assume that U is some arbitrary finite alphabet, and language L C U*
1s of the form L = Ey JU*Ey for two arbitrary finite subsets Ey and Ey of U*. Then the
language L can be recognized by a noisy analog neural net N with any desired reliability
e € (0, %), in spite of arbitrary analog noise of the type considered in section 1.

Proof. Obviously such language L can be recognized by some feedforward threshold
circuit C. We apply Theorem 3.1 to this circuit C for 6 = p = min(% —e, i) We define
the set F of accepting states for the resulting analog neural net N as the set of those
states where the computation is completed and the output gate of AV assumes a value
> 3/4. Then according to Theorem 3.1 the analog neural net N recognizes L with
reliability €.

Note that we may employ as activation functions for the gates of A arbitrary
functions ¢ : R — [—1,1] that satisfy o(u) — 1 for u — oo and o(u) — —1 for
U — —O0. |

4 Conclusions

We have proven a perhaps somewhat surprising result about the computational power
of noisy analog neural nets: analog neural nets with Gaussian or other common noise
distributions that are nonzero on a large set cannot accept arbitrary regular languages,
even if the mean of the noise distribution is 0, its variance is chosen arbitrarily small,
and the reliability ¢ > 0 of the network is allowed to be arbitrarily small. This shows
that there is a severe limitation for making recurrent analog neural nets robust against
analog noise. The proof of this result introduces new mathematical arguments into
the investigation of neural computation, which can also be applied to other stochastic
analog computational systems.

Furthermore we have given a precise characterization of those regular languages
that can be recognized with reliability € > 0 by recurrent analog neural nets of this
type.

Finally we have presented a method for constructing feedforward analog neural nets
that are robust with regard to any of those types of analog noise which are considered
in this paper.



5 Acknowledgement

The authors wish to thank Dan Ocone, from Rutgers, for pointing out Doeblin’s con-
dition, which resulted in a considerable simplification of their original proof.

References

[Casey, 1996] Casey, M., “The dynamics of discrete-time computation, with applica-
tion to recurrent neural networks and finite state machine extraction”, Neural
Computation 8, 1135-1178, 1996.

[Doeblin, 1937] Doeblin, W., “Sur le propriétés asymtotiques de mouvement régis par
certain types de chaines simples”, Bull. Math. Soc. Roumaine Sci. 89(1): 57-115;
(2) 3-61, 1937.

[Maass, Orponen, 1997] Maass, W., and Orponen, P. “On the effect of analog noise on
discrete-time analog computations”, Advances in Neural Information Processing
Systems 9 1997, to appear;
detailed version see http://www.math.jyu.fi/~orponen/papers/noisyac.ps .

[Omlin, Giles, 1996] Omlin, C. W., Giles, C. L. “Constructing deterministic finite-state
automata in recurrent neural networks”, J. Assoc. Comput. Mach. 43 (1996), 937
972.

[Papinicolaou, 1978] Papinicolaou, G., “Asymptotic Analysis of Stochastic Equations”,
in Studies in Probability Theory, MAA Studies in Mathematics, vol. 18, 111-179,
edited by M. Rosenblatt, Math. Assoc. of America, 1978.

[Pippenger, 1985] Pippenger, N., “On networks of noisy gates”, IEEE Sympos. on
Foundations of Computer Science, vol. 26, IEEE Press, New York, 30-38, 1985.

[Pippenger, 1989] Pippenger, N., “Invariance of complexity measures for networks with
unreliable gates”, J. of the ACM, vol. 36, 531-539, 1989.

[Pippenger, 1990] Pippenger, N., “Developments in ‘The Synthesis of Reliable Organ-
isms from Unreliable Components’ 7, Proc. of Symposia in Pure Mathematics, vol.
50, 311-324, 1990.

[Rabin, 1963] Rabin, M., “Probabilistic automata”, Information and Control, vol. 6,
230-245, 1963.

10



