Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R97- 054 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Arthur-Merlin Games
in Boolean Decision Trees

Ran Raz* Gébor Tardos!
Oleg Verbitsky? Nikolai Vereshagin?

Abstract

It is well known that probabilistic boolean decision trees cannot be much more powerful
than deterministic ones (N. Nisan, SIAM Journal on Computing, 20(6):999-1007, 1991).
Motivated by a question if randomization can significantly speed up a nondeterministic
computation via a boolean decision tree, we address structural properties of Arthur-Merlin
games in this model and prove some lower bounds.

We consider two cases of interest, the first when the length of communication between
the players is bounded and the second if it is not. While in the first case we can carry over
the relations between the corresponding Turing complexity classes, in the second case we
observe in contrast with Turing complexity that a one round Merlin-Arthur protocol is as
powerful as a general interactive proof system and, in particular, can simulate a one-round
Arthur-Merlin protocol.

Moreover, we show that sometimes a Merlin-Arthur protocol can be more efficient
than an Arthur-Merlin protocol, and than a Merlin-Arthur protocol with limited com-
munication. This is the case for a boolean function whose set of zeroes is a code with
high minimum distance and a natural uniformity condition. Such functions provide an
example when the Merlin-Arthur complexity is 1 with one-sided error € € (2,1), but at
the same time the nondeterministic decision tree complexity is (n). The latter should
be contrasted with another fact we prove. Namely, if a function has Merlin-Arthur com-
plexity 1 with one-sided error probability e € (0, %], then its nondeterministic complexity
is bounded by a constant.

Other results of the paper include connections with the block sensitivity and related
combinatorial properties of a boolean function.

*Department of Applied Mathematics, Weizmann Institute, Rehovot 76100, Israel.

tMathematical Institute of the Hungarian Academy of Sciences, Pf. 127, Budapest, H-1364
Hungary.

iDepartment of Mechanics and Mathematics, Lviv University, 290602 Lviv, Ukraine. Part
of this work was done while visiting the Institute of Information Systems, Vienna University of
Technology, supported by an OAD grant.

$Department of Mathematical Logic and Theory of Algorithms, Moscow State University,
Vorobjevy Gory, 119899 Moscow, Russia.

1 Introduction

A boolean decision tree is an algorithm that computes a boolean function
f(z1,...,z,) by asking, step by step, values of the variables z1, ..., z,. Each choice
of a variable to ask is based on the knowledge of the variables that have been asked
before. The cost of computation is the number of variables to be queried. By d(f)
we denote the minimum number of queries needed for a decision tree to compute f
on every input.

Randomized computations via decision trees can be defined in a standard vein.
Let us denote the corresponding complexity measure by r(f). In this section we
assume the error probability % unless it is specified explicitly. It is well known [12]
that randomization cannot help much in boolean decision trees. More specifically,

d(f) = 0(x(f)*). (1)

It is quite natural to ask if randomization can significantly speed up a nondeter-
ministic computation. Two models combining randomness and nondeterminism are
suggested in [1] (Arthur-Merlin games) and [5] (interactive proof systems) and both
can be directly extended over boolean decision trees. Our work is motivated by a
question (posed in [15]) if these models can be more efficient than a mere nondeter-
ministic decision tree.

First we address structural properties of interactive proof systems and Arthur-
Merlin games in boolean decision trees. We consider two cases, the first when
the length of communication between the players is bounded and the second if
it is not. The case when the restriction on communication is a polylogarithm of
input size n is of particular interest, since it is closely related to computations via
polynomial time Turing machines with access to an oracle (see, e.g., [16, page 294]
and [11, Section 5.3] for formal treatment). Bounds on the boolean decision trees
complexity are useful tools in constructing oracles with desired relations between
Turing complexity classes and in proving conditional results [2, 7, 8].

Conversely, all the facts proven for the corresponding Turing complexity classes
that hold true under any oracle can be directly carried over decision trees. We
mention three examples.

1. Arthur-Merlin games are as powerful as a general interactive proof system [6].
2. The error in an Arthur-Merlin game can be made one-sided [18, 4].

3. A one round Arthur-Merlin game can simulate a one round Merlin-Arthur
game [1].

Let us state the latter fact more accurately. We use the following notation. By
am(f) and ma(f) we denote the complexity measures in the boolean decision tree

model that correspond to one round Arthur-Merlin and Merlin-Arthur games, re-
spectively. Here we assume no limitations on the length of communication. When
we allow Merlin to send messages of length at most [, we supply the corresponding
measures with upper index ! writing am®(f) and ma®(f). We impose no restric-
tions on the number of Arthur’s random bits (see Remark 2.1 below). Then a formal
statement of the above claim 3, that follows from [1], is

am®(f) = O(Ima®(f)). (2)

Other complexity measures we are interested in also have bounded and un-
bounded versions. ip(l)(f) denotes the complexity measure of a boolean function
with respect to a many-round Arthur-Merlin game with total length of Merlin’s
messages at most [, while the measure ip(f) is respectively to an interactive proof
system without any limitations in the decision tree model. Similarly, nd”)(f) refers
to the nondeterministic decision tree complexity with witness of length at most I,
while nd(f) is its powerful version.

It turns out that if we do not restrict the length of communication, the structural
properties 1 and 2 can be strengthened and proven much simpler.

1. A one round Merlin-Arthur game is as powerful as a general interactive proof
system, i.e., ma(f) = ip(f).

2. Error probability € in a one round Merlin-Arthur game can be made one-sided
at cost of increasing it to .

As for property 3, relation (2) without any limits on [becomes meaningless.
Instead, by item 1 we have ma(f) < am(f). Thus, we have two hierarchies of
complexity measures

ip(f) < am®(f), am®(f) =OUma®(f), mai(f) < nd ()

(parallel to inclusions NP C M A C AM C IP in Turing complexity), and

ip(f) = ma(f) <am(f) <nd(f). (3)

The problem is how dense or sparse these hierarchies are.

The main result of this paper shows a large gap between ma(f) and nd(f), and
some gap even between ma(f) and am(f). A large gap is also shown between ma(f)
and ma(f) for I much smaller than n.

It is useful to get more broad view of the situation by prefixing some lower
bounds on ip(f) to (3). The first bound of interest is

ip(f) > bs(f)/2, (4)

where bs(f) denotes the block sensitivity of a boolean function [12] !, the maximum
number of zeroes of f that differ from some one of f in disjoint blocks of variables.
This is a simple extension of the bound r(f) = Q(bs(f)) from [12]. Note that
bound (4) together with relations

nd(f) < bs(f)bs(=f) ()

and
d(f) <nd(f)nd(=f) (6)

proven in [12] and [2, 7, 14|, respectively, implies the relation d(f) =
O(ip(f)?ip(—f)?), which is a qualitative generalization of (1) and (6).
We suggest also a bound that is in a sense tighter. Namely,

ip(f) >sep(f)/2, (7)

where sep(f) is a combinatorial characteristic of a boolean function that we call
separability of f and define as follows. Given w, a one of f, and D, a set of zeroes of

f, let sep(w, D) denote the minimum s such that w can be distinguished from any
sep(w,D)
log |D|

all w and D. It is easy to see that sep(f) > lozsb(g()f). The hierarchy (3) can now be
updated to

bs(f)/(2logbs(f)) < sep(f)/2 <ip(f) = ma(f) <am(f) <nd(f).

We point out a simple example when bs(f) < 3 and at the same time sep(f) >
lgfn. Thus, (7) can be considered as a sharpening of (4). This example also shows
that bs(f) can be much smaller than nd(f) (though both bs(f) and bs(—f) cannot
by (5)). We will see that sep(f) also can sometimes be much smaller than nd(f).
Therefore, (7) cannot help if we try to show that ip(f) and nd(f) are polynomially
related. But if we are going to prove the opposite, (7) becomes useful. This relation
suggests a domain which we should inspect to solve the ip(f) versus nd(f) question.
The domain consists of functions f with small sep(f) and large nd(f).

We consider the following class of functions that meet both of these conditions.
Let U be a binary code with minimum distance 6n, where § € (0,3). Set up
Fw) =1iff w ¢ U. We call F the check function of U. It is not hard to see
that sep(F’) is bounded by a constant. If in addition U is densely dispersed in the
boolean cube, which is a natural property of a code, then nd(F') is big. Taking
U random, we get F' with nd(F) = Q(n). It turns out, this construction provides
an example of a function with large gap not only between sep(f) and nd(f), but

element of D by looking at only s positions. sep(f) is the maximum of over

!In fact, our terminology and notation slightly differ from [12]. Our definition of the block
sensitivity corresponds to notion of the block sensitivity on I-instances in [12], where notation
bs!(f) is used. We suppress the index for notation simplicity.

4

even between ma(f) and nd(f). We observe that ma(F) = 1 with one-sided error
probability 1 — 6/2.

Making use of the property that U is dispersed in the boolean cube in a sense
uniformly, we prove lower bounds am(F) = Q(logn) and ma®(F) = Q(%). Sum-
ming up, we have got an example of boolean function F' for which the following
bounds are true simultaneously:

e ma(F) = 0(1);

e nd(F) = Q(n);

o ma®)(F) = 0(2);
e am(F') = Q(logn).

The main question we leave open is if the complexity measures am(f) and nd(f)
are polynomially related. It would be insightful to improve our logarithmic lower
bound on am(F') or, alternatively, give an upper bound.

A related question is if am(f) = O(1) implies nd(f) = O(1). In the last part of
the paper we prove such an implication in a few particular cases. We here mention
only one claim of such a kind. Namely, ma(f) < 1 implies nd(f) < 2 if the error
probability is in range (0,2] or the one-sided error is in (0,2]. This should be
contrasted with our example of function F, for which nd(F) = Q(n) and at the
same time ma(F) = 1 with one-sided error 1 — §/2. Notice that the error here can
be arbitrary in the interval (%, 1), as 0 can be taken arbitrarily close to % Moreover,
we are able to improve this range to (%,1), thereby showing that 2 is the exact
threshold in such kind of examples.

In [9] the characteristic functions of codes were used to obtain lower bounds for
some kind of branching programs. It is interesting to note that both [9] and our
paper employ in essence the same properties of codes.

The paper is organized as follows. In Section 2 we define the model and complex-
ity measures under consideration and discuss their structural properties. Section 3
establishes relations with the block sensitivity and the separability. In Section 4
we introduce check functions for codes and estimate their complexity. We in detail
give a probabilistic construction of codes with the desired properties, mention an
algebraic-geometry construction, and discuss what can be shown for some classical
codes. In Section 5 we consider properties of functions with Merlin-Arthur com-
plexity bounded by a constant. Section 6 sums up our considerations and lists open
questions.

2 The model and its structural properties

A deterministic boolean decision tree T over the variable set X = {x,...,z,} is
a rooted, ordered, binary tree. Each internal node has two out-going edges and

5

) Z3 Figure 1. This depth-2 determin-
istic decision tree computes the
boolean function (1—z;)xe+x173.

Xy

one in-going (excepting the root). Additionally, each internal node is labelled by a
variable from X, and each leaf is labelled by either 0 or 1.

The decision tree T' computes a boolean function f(zi,...,z,) in the following
sense. Each boolean assignment w to the variables x4, ..., z, determines a path in
T from the root to a leaf by the following rule. If an internal node is labelled by 0,
we choose the left out-going edge; we choose the right one otherwise. The value of
f on w must agree with the label of the leaf at the end of the path (see Figure 1).
We write T'(w) = f(w).

A depth-d nondeterministic boolean decision tree S is a collection of depth-d
deterministic decision trees. We write S(w) = 1 in the case that at least one
deterministic member of S outputs 1 on w; otherwise we write S(w) = 0. We say
that S computes f if S(w) = f(w) for any assignment w.

Denote the size of set S by |S|. We say that tree S is of nondeterminism [if [is
an integer and log|S| < I. This number means the length of a prompt sufficient to
find a 1-path consistent with an input.

Equivalently, one can view a nondeterministic tree as several deterministic
branches that go out of a common unlabelled root (see Figure 2). As usually in
a nondeterministic model, such a tree outputs 1 on input w if there is a path from
the root to an 1-leaf that agrees with w. The root is a peculiar nondeterministic
node that has arbitrary out-degree and is disregarded when counting the depth. Had
we allowed many such nondeterministic nodes, the model would not have become
more powerful. The tree is of nondeterminism [log L], where L is the out-degree of
the nondeterministic node.

A depth-d probabilistic decision tree R is a probability distribution over the set
of all the depth-d deterministic decision trees. Suppose that a deterministic decision
tree T is taken randomly according to R, and let p be the probability that T'(w) = 1
for an assignment w. Then we say that R(w) = 1 with probability p, and R(w) =0
with probability 1 — p. R computes f with error e if for any assignment w, R(w) =
f(w) with probability more than 1 — .

Remark 2.1 It is not hard to show that if a function f(z,...,x,) is computable

Figure 2. This depth-1 non-
deterministic decision tree com-
putes the disjunction of variables
T1,T2,T3.

x1 T2 X3

Figure 3. This depth-1 prob-
abilistic decision tree computes
the conjunction of variables z, x9
with error ¢ > 1/3.

via a depth-d probabilistic decision tree with error ¢, then it can be computed via a
depth-d probabilistic decision tree R which is the uniform distribution on set of size
O(n/é?) of depth-d deterministic trees, with error e +§ for any § < (1 —€). Similar
properties hold true for other probabilistic models below. This is the reason why we
measure nondeterminism but pay no attention to randomness in the models under
consideration.

We can view a probabilistic tree as several deterministic branches that go out of
a common root. The root is a probabilistic node of arbitrary out-degree that does not
contribute to the tree depth. It is unlabelled, but the out-going edges are labelled
by probabilities that sum to 1. Any path from the probabilistic node is chosen with
the assigned probability (see an example in Figure 3). Had we allowed many such
probabilistic nodes, the model would not have become more powerful.

A depth-d Arthur-Merlin decision tree) [of nondeterminism [| is a probability
distribution over the set of all the depth-d nondeterministic decision trees [of non-
determinism []. @) computes f with error € if for any assignment w, S(w) = f(w)
with probability more than 1 —¢, where a nondeterministic tree S is taken randomly
according to). In detail this condition can be rewritten as follows.

1. If f(w) = 1, then a random S has a deterministic branch 7" such that T'(w) = 1
with probability exceeding 1 — e.

2. If f(w) = 0, then a random S has a deterministic branch 7" such that T'(w) = 1
with probability less than e.

A depth-d Merlin-Arthur decision tree () is a collection of depth-d probabilistic
decision trees. () computes f with error € if for any assignment w the following is
true.

1. If f(w) = 1, then for some R €) we have R(w) = 1 with probability exceeding
1—e

2. If f(w) = 0, then for all R € @ we have R(w) = 1 with probability less than e.

If in the first case we have a stronger condition that R(w) = 1 with probability 1, we
say that () computes f with one-sided error e. We say that Merlin-Arthur decision
tree Q is of nondeterminism [if [is an integer not less than log |Q|.

Note that the Arthur and Merlin trees admit a visual interpretation using both
probabilistic and nondeterministic nodes similarly to probabilistic and nondetermin-
istic trees.

The next model is most general. A depth-d interactive decision tree Q is a
collection of deterministic depth-d trees {7;} indexed by elements of set I. Given
set I, for each assignment w we consider a game of two persons, the verifier and
the prover, that proceeds as follows. At the beginning the verifier picks a random
string r, unknown to the prover, and initiates the message exchange between the
players. In j-th round of the exchange, the verifier sends the prover message a;, after
which the prover sends the verifier message b;. The choice of a; by the verifier is
determined by 7, b1, ...,b;_;. The prover’s message b; is a function of a4, ..., a;_1, a;.
This function is called a strategy of the prover. After some number £ of rounds,
the verifier terminates the game. Let i = (r, a1,b1, ..., ax,br). The prover wins if
Ti(w) = 1.

An interactive tree) computes a function f with error e if the following condi-
tions are met.

1. If f(w) = 1, then the prover has a strategy that wins with probability more
than 1 — ¢, where the probability is taken over random strings 7.

2. If f(w) = 0, then the prover wins with probability less than e irrespectively of
his strategy.

By d(f) [nd(f)] we denote the minimum depth of a deterministic [nondeter-
ministic| decision tree computing a boolean function f. The minimum depth of a
probabilistic [Arthur-Merlin, Merlin-Arthur, interactive] decision tree that computes
f with error € is denoted by r.(f) [am.(f), ma.(f), ip.(f)]. We use notation mal)(f)
and am{(f) for the case when nondeterminism is limited by I. ma,(f) stands for
the complexity of computing f by a Merlin-Arthur tree with one-sided error e.

Theorem 2.2 For any boolean function f and error € < 1/2 we have the following
relations:

(i) mac(f) = ip.(f);
(i) mao, .« (f) = mac(f);

1—¢

(i) ma.(f) < am(f) < am®(f) < edmal(f), where c. is a constant depending
on e.

Proof: (i) The part “>” is trivial. We prove the part “<”. Let @ be an
interactive tree computing f. Fixing prover’s strategy converts () into a probabilistic
tree. For each w such that f(w) = 1, choose an optimal strategy and denote the
corresponding probabilistic tree by R,,. Compose a Merlin-Arthur tree from all R,,
rooting them at a nondeterministic node. As easily seen, this tree has the same
depth as () does and computes f with the same error.

(ii) The inequality “>” is a simple universal relation. Let us prove the inequality
“<”. Consider a Merlin-Arthur tree) computing f with error e. We will denote
ones of f by w, and zeroes by u. For each one w, tree () contains a probabilistic
branch R, such that R, (w) = 1 with probability greater than 1 —e¢, while R, (u) =1
with probability smaller than e for all zeroes u. Let R! be a distribution induced
by R, on those deterministic branches that evaluate to 1 on input w. Clearly,
R, (w) = 1 with probability 1. For any zero u we have

P[Ry(u) =1] o€
P[R,(w)=1] 1-—¢€

This means that a Merlin-Arthur tree ()’ consisting of probabilistic branches R],
for all ones w, computes f with one-sided error ;.

(iii) The first inequality is an immediate consequence of item (i). The second is
trivial. The third is a translation of [1, Theorem 2.1] into our model. n

P[R,(u) =1] =P[Ry(u) =1|Ry(w) =1] <

We conclude this section with some terminology that will be used throughout
the paper. A d-cylinder is a subset of {0,1}" obtained by fixing any d < n boolean
components. A set W C {0,1}" is called d-open if it is a union of d-cylinders.

Let W be a set of ones of a boolean function f. It is not hard to see that
nd(f) < d iff W is d-open. Indeed, if W is recognizable by a nondeterministic tree
of depth d, then each 1-path in the tree determines an assignment to d variables
whose any extension w belongs to W. Thus, each 1-path determines a d-cylinder
within W. Since every string w from W agrees with an 1-path in the tree, W is
the union of all these d-cylinders. Conversely, a d-cylinder is obviously recognizable
by a deterministic tree of depth d. Gathering such trees together, we obtain a
nondeterministic tree for a d-open set.

This observation also shows that depth-d nondeterministic trees are equivalent
with d-DNF boolean formulae.

A d-neighborhood of an element w € {0,1}" is a d-cylinder containing w.

9

3 Block sensitivity and separability

Given w € {0,1}" and a block of positions P C [n], we define w® € {0,1}" to be
a boolean vector such that w and w®) differ exactly at positions from P. Given
a boolean function f : {0,1}" — {0,1} and w € {0,1}", by bs,(f) we denote the
maximum size of a family of disjoint blocks Py, ..., P, C [n] such that all the values
Flw®),) f(wP) differ from f(w). The block sensitivity bs(f) of function f (on
1-instances) is the maximum of bs,(f) over all w such that f(w) = 1.

We say that a cylinder C separates w € {0,1}" from D C {0,1}" if C contains
w and is disjoint with D. By sep(w, D) we denote the minimum d such that there is
a d-cylinder C' separating w from D. We define the separability sep(f) of a boolean
function f to be the maximum of %""’—Dﬁu over all ones w and sets D of zeroes of f
with |[D| > 1.

Bound (ii) in the theorem below is an easy extension of the bound r.(f) >
(1 —2¢) bs(f) in [12]. We include the proof for completeness.

Theorem 3.1 For any boolean function f we have the following bounds:

(i) maoc(f) > (1 —€)bs(f);

(i) ip.(f) > 5=ZE bs(f);
(i) maoc(f) > sep(f)/(1+ (log¢) *);
(iv) ipc(f) > sep(f)/(1 + (log *5) 7).

Proof: (i) Let ma,(f) = d and @ be a depth-d Merlin-Arthur tree that
computes f with one-sided error e. Consider arbitrary w such that f(w) = 1. There
is a probabilistic branch R of) such that R(w) = 1 with probability 1 and R(u) =1
with probability less than e for any u with f(u) = 0. Number deterministic branches
of R arbitrarily, say, 11, T5, For each m, T,,,(w) = 1. Thus, w determines a 1-path
in T;,,. Fixing all the variables along this path according to w, we get a d-cylinder C,
such that w € C,, and all elements of C,,, are accepted by T,,. We will view R, which
is a probability distribution over deterministic trees 11,75, .. ., as a distribution over
their numbers. Let m be chosen randomly in accordance with R.

Let Py,...,P, C [n] be the largest family of disjoint blocks such that all the
elements w™) ... w™) are zeroes of f. It suffices to show that d > (1 — €)t.

By 1,, we denote the set of positions, whose entries define cylinder C,,. Define
E to be the average number of j € [t] for which P; and I, intersect. Since for any
fixed set I,,, this number is at most d, we have the inequality F < d.

Now we bound E from below. By linearity of the mathematical expectation we
have E = E;-:l E;, where Ej; is the probability of P; intersecting I,,. Note that
whereas w € Cy, with probability 1, w7 € Cy, with probability less than e. We

10

can conclude that E; > 1 — € for all j. This implies E > (1 — €)t. Putting together
the lower and upper bounds on E, we obtain the desired inequality d > (1 — €)t.

(i) immediately follows from (i) by Theorem 2.2 (i),(ii).

(iii) Consider arbitrary one w and set D of zeroes of f. We use definitions of
d-cylinders C,,, where d = ma,(f), and a random variable m introduced in the
proof of claim (i). Recall that w € Cy, with probability 1, but for any zero u of f we
have u € C}, with probability less than e. Let u be a random variable distributed
over D. It follows that P [u € Cy,| < e. This implies that some C, contains less
than an € fraction of D, measured by the distribution of u. We will use this fact for
uniform distributions on subsets of D.

For the uniform distribution on D, we have C,,, containing less than an e fraction
of D. Considering the uniform distribution on DNC,,,, we obtain C),, containing less
than an e fraction of DNC),,. Next we do the same for DNC,,, NC,,,, obtaining C,,,.

Iterating this procedure ¢ < P%gg@-‘ times, we get d-cylinders C,,, ..., Cy,, whose
intersection, which is a dt-cylinder, separates w from D. Thus, sep(w, D)/log|D|
does not exceed d hfg'?-‘ /log|D|, which is less than d((logZ)~* +1). The claim

follows.
(iv) immediately follows from (iii) by Theorem 2.2 (i), (ii).]

Theorem 3.2

(i) sep(f) > %Si(% whenever bs(f) > 1.

(ii) There is a function f(xy,...,x,) with bs(f) < 3 and sep(f) > /n/logn
for large n.

(i) There is a function f(z1,...,z,) with bs(f) <3 and nd(f) = Q(n).

Proposition (i) of the theorem demonstrates that the separability is not less than
the block sensitivity upto a logarithmic factor. Moreover, proposition (ii) shows a
gap between these values. In this sense, bound (iv) in Theorem 3.1 can be considered
as sharpening bound (ii).

Theorem 3.2 (ii) together with Theorem 3.1 (iv) implies that the block sen-
sitivity and the interactive decision tree complexity are polynomially unrelated.
Theorem 3.2 (iii) provides even an larger gap between the block sensitivity and
the nondeterministic decision tree complexity. Notice that such a gap is impossible
between nd(f) and both of bs(f) and bs(—f), as nd(f) < bs(f) bs(—f) [12].

Proof: (i) Given a boolean function f, let bs(f) = ¢t. Consider a one w of f such
that for a family of disjoint blocks Py,..., P, C [n] the set D = {w™) ... w@)}
consists of zeroes of f. Evidently, sep(w, D) =t and sep(f) > t/logt.

(ii) Define a function f(z1,...,x,) by describing its set of zeroes U. Assuming
n =1(1-1)/2, let Ul = 1. We construct an [by n matrix M whose rows are

11

elements of U. For every two-element set {ki,ko} C [I], we put into M the column
with 0 at positions k; and ks, and 1 elsewhere. All rows of the matrix obtained are
distinct, and set U is specified.

To show that bs(f) is at most 3, consider arbitrary four zeroes uy, us, us, us € U.
By construction of U, there is a coordinate ¢ < n in which u; and us have 0, but
uz and u4 have 1. This means that there is no w from which uq, us, uz, uy differ in
disjoint blocks of positions.

Finally, observe that sep(1™,U) > [/2, as a single position can separate 1™ only
from two elements of U. The bound sep(f) > v/n/logn follows.

(iii) Let d = |(5log8)n] and I = [(§)7]. Let the set U of zeroes of f consist
of [strings chosen independently and randomly from {0,1}". Denote the set of
ones of f by W. Our goal is to show that events nd(f) > d and bs(f) < 3 occur
simultaneously with nonzero probability.

Assumption nd(f) < dimplies that either 17 is not included in W or it is included
in W together with a d-neighborhood. The first event happens with probability no
more than /2" < 3. Consider the second possibility.

Let C' be a d-neighborhood of 1. A wu; does not fall into C' with probability
1 — 1/2¢; therefore, no u; fall into C with probability (1 —1/2¢)!. In other words, C
is included in W with this probability. As 1" has no more than n¢ d-neighborhoods,
W contains a d-neighborhood of 1™ with probability no more than n¢(1 — 1/2%)! <
exp(dlnn —274) < 1/3.

Thus, nd(f) < d with probability less than %

Similarly to the proof of part (ii), we use the observation that if bs(f) > 3, then
there are uy, us, us, uy € U that cannot have exactly 2 ones and 2 zeros at one and
the same position. It follows that the probability of the event bs(f) > 3 does not
exceed (i)(l — (3)/24)" < 5 14(5/8)" < 5.

Thus, with non-zero probability, both bs(f) < 3 and nd(f) > d . .

In the rest of this section we give lower bounds on Merlin-Arthur and Arthur-
Merlin complexities in terms of related complexity measures, whose consideration
sometimes can be more preferable. Similarly to Turing complexity, one can consider
another acceptance/rejectance criterion for a probabilistic decision tree. By pp(f)
we denote the minimum depth of a probabilistic decision tree R such that for any
input w, f(w) =1 iff R(w) = 1 with probability exceeding 1. Equivalently pp(f)
can be characterized as the minimum order of a perceptron computing f (see [10]
for definitions). One can easy show that pp(f) < nd(f).

Lemma 3.3 pp(f) < cdmal)(f), where c. > 1 is a constant depending on error e.

Proof: Consider a depth-d Merlin-Arthur tree) computing the function f with
nondeterminism [. We convert () into a depth-c./d probabilistic tree R that computes
f in the above sense. We first use the standard amplification procedure for each
probabilistic branch of) and decrease the error to 27!=! at cost of increasing the

12

depth by a ¢l factor. Second, we make the nondeterministic root of () probabilistic
by assigning probability 1/L to every of L out-going edges. At this stage, we get
a probabilistic tree R'. Recall that [= [log L|. Now, if f(w) = 1, then R'(w) =1
with probability at least 1 (1 —27/=1) > 27/(1 — 2771) > 271=%; while if f(u) = 0,
then R'(u) = 1 with probability less than 271,

At the final stage of construction of R we should lift the threshold 27~! to %
For this purpose, with probability p = (2! —1)/(2""! —1) tree R immediately outputs
1, and with probability 1 — p runs tree R’. .

The last proposition we prove in this section is a lower bound on the Arthur-
Merlin complexity which also can be viewed as an alternative characterization
thereof. Denote the sets of ones and zeroes of a boolean function f by W and
U, respectively. We will consider arbitrary independent random variables w and u
distributed on W and U. We define the partial separability of a function f with gap
1 —2¢, where € < %, to be the minimum d such that for any random variables w and
u there is a depth-d nondeterministic tree S for which E [S(w)]—E[S(u)] > 1 — 2e.
We denote this characteristic of f by ps.(f). The next lemma is a particular case of
the universal observation by Yao [17].

Lemma 3.4 ps,(f) < am,(f) < ps,a(f).

Proof: Given a boolean function f and a natural number d, consider the
following matrix. Rows are indexed by all the depth-d nondeterministic trees S.
Columns are indexed by all the pairs w#u, where w € W and v € U. An entry
at the intersection of the row and the column is S(w) — S(u). By S and w#u we
will denote arbitrary random variables distributed over the index sets of the matrix.
Applying the min-max theorem for the two person zero sum game determined by
this matrix, we obtain the equality

max {Un#ulE [S(w) —S(u)] = VIEI#IEE max E [S(w) = S(u)],

where the random variables w and u in the right hand side are projections of w#u.
Using linearity of the mathematical expectation, we rewrite this equality in the form

max min (E [S(w)] — E [S(u)]) = min max (E[S(w)] — E[S(u)]),

where w and u in the right hand side can now be considered as arbitrary independent
random variables distributed over W and U, respectively.

Consider the inequality ps.(f) < d. It means that for any random variables w
and u there is a depth-d nondeterministic tree S with E [S(w)] —E [S(u)] > 1 — 2e.
By the above equality, this is equivalent to the following claim. There exists a
probability distribution S over depth-d nondeterministic decision trees such that for
any w € W and u € U it is true E [S(w)] — E[S(u)] > 1 — 2¢e. We can view S as a
depth-d Arthur-Merlin decision tree. Clearly, the latter condition follows from the
assumption that am.(f) < d and implies that ams.(f) < d. This proves the first
and the second inequalities of the lemma. "

13

4 Complexity of the check function for a binary
code

In this section we prove the main result of the paper.

Theorem 4.1 There is a boolean function F : {0,1}" — {0,1} with the following
conditions true for any e < %, Il <n, and n large enough:

(i) mac(F) = O(1);
(i) nd(F) = Q(n);
(iii) mal)(F) = Q(3);
(iv) am(F) = Q(logn).

Thus, Theorem 4.1 shows a large gap between the Merlin-Arthur complexity
and the nondeterministic complexity. By Theorem 3.1 (iv) this implies that the
separability of a boolean function and its nondeterministic complexity are unre-
lated, improving Theorem 3.2 (iii). A large gap is proven also between the Merlin-
Arthur complexity without any restrictions on nondeterminism and that with such
restrictions. Finally, a constant versus logarithm gap is established between the
Merlin-Arthur and Arthur-Merlin complexity measures.

When seeking for an appropriate function F' to meet the claims of Theorem 4.1,
we find insightful Theorem 3.1. It suggests to examine functions with low separa-
bility. We address one class of such functions, namely, those whose set of zeroes is a
binary code with some natural properties. More exactly, we need the following two
properties for a code U C {0,1}".

Linear minimum distance. Any two codewords of U differ in at least dn positions
for some 0 < 4 < 3.

Uniformity. We call a code U s-uniform if for any t-cylinder C', where t < s,
fraction of codewords in U that belong to C is equal to 27 i.e. JTl =27t
As easily seen, it is enough to require this condition only for ¢ = |s J W111
need s = an for some a € (0, 3).

We postpone construction of a code with both properties to the end of this
section. Note that a linear code is s-uniform iff the minimum distance of its dual
exceeds s (see Lemma 4.8 below).

Given a binary code U, we call a boolean function with zeroes exactly in U the
check function of the code. All of four claims of Theorem 4.1 are true for F' being
the check function of an an-uniform code with minimum distance dn, where o and ¢
are any constants in (0, 3). Each claim directly follows from one of four forthcoming
lemmas.

14

Lemma 4.2 Let F be the check function of a code U C {0,1}" with minimum
distance more than dn. Then ma,;_s/2(F) = 1.

Notice that one-sided error e can be amplified to * at cost of increasing the
depth by a k factor.

Proof: A Merlin-Arthur tree R we suggest for F' consists of probabilistic
branches R,, for each w outside U. Denote (one of) the nearest to w codewords
by u', and suppose that Hamming distance between w and u' is 7n.

First consider the case that 7 < §/2. Notice that then u’ is unique. Let P C
{z1,...,2,} be the set of 7n variables to which w and u' assign different values. We
construct R, as follows. With probability p to be specified below this probabilistic
branch asks a random variable from {zi,...,z,}, and with probability ¢ =1 —p
it asks a random variable from P. R,, accepts iff the answer is consistent with w.
Clearly, R, (w) =1 with probability 1. Also, R, (u') = 1 with probability p(1 — 7).
Notice that any other codeword u lies at distance at least (6 —7)n from w, where én
is the minimun distance of U. So, R, (u) = 1 with probability at most ¢+p(1—5+7).
Thus, R,, errs with probability at most max{p(1 —7),1+p(7 —J)}. To minimize it,
we set p = 1/(1 +§ — 27) and obtain R, accepting any codeword with probability
at most -5, which is less than 1 —§/2 for all 7 < §/2.

Consider the second case that 7 > §/2. Now let R,, ask just a random variable in
{z1,...,z,} and accept iff its value is consistent with w. Obviously, R,, accepts an
arbitrary codeword u € U with probability at most 1 —7 < 1 —4/2. This completes
the construction of R and proves the lemma. "

Lemma 4.3 Let F be the check function of an s-uniform code U. Then nd(F) > s.

Proof: s-uniformity of U means that every s-cylinder contains a zero of F'.
Therefore, the set of ones of F' cannot be s-open. The lemma follows from the
discussion concluding Section 2. .

Lemma 4.4 Let F' be the check function of an s-uniform code U. Then

(i) pp(F) > s;

(i) mal(F) > s/(cel), where ¢, > 1 is a constant depending on the error €.

Proof: (i) Assume, to the contrary, that pp(F) < s. This means that some
depth-s probabilistic tree R accepts any codeword in U with probability at most
1/2, while any word outside U with probability strictly more than 1/2. It follows
that E[R(w)] — E[R(u)] > 0, where w and u are uniformly distributed on W =
{0,1}™\ U and U, respectively, and expectation is over distributions w, u, and R.

15

This inequality implies that E[T'(w)] — E[T'(u)] > 0 for at least one deterministic
branch 7" of R. Contradictory with this, we show that

E[I'(w)]-E[T'(u)] =0 (8)

for any depth-s deterministic decision tree 7T'.

Let xc denote the characteristic function of set C. We can write T'(w) =
> c Xc(w), where the sum is over all cylinders C' corresponding to 1-paths in 7.
By linearity of mathematical expectation,

E[T(w)] - E[T(w)] = >_(E [xc(W)] - E [xc(u)]).
C
But if C is a t-cylinder, where ¢ < s, then by s-uniformity of U we have E [y¢(w)] =
E [xc(u)] = 27" Equation (8) follows.
(ii) follows from item (i) by Lemma 3.3. .

In the next lemma we use the notion of partial separability introduced at the
end of Section 3.

Lemma 4.5 Let F' be the check function of an s-uniform code U with minimum

distance at least 3 and s > %g—". Then

ps.(F') > logn — 2loglogn
for any € € (0,1) and sufficiently large n.

Together with Lemma 3.4 this immediately provides a lower bound on am(F).

Proof: We present two probability distributions on ones and zeroes of F' that
are undistinguishable by a depth-d nondeterministic decision tree for d = logn —
2loglogn. More specifically, let a random variable u be uniformly distributed on the
entire set U and w be uniformly distributed on set W = {u(i) tue U < n}, where

u® is defined to be a string that differs from u exactly at i-th position. As the code
distance of U is at least 3, all the u(") are distinct ones of F. Consider an arbitrary
depth-d nondeterministic tree S and denote p; = E[S(w)] and py = E[S(u)]. Our

goal is to show that
loglogn

); 9)

b1 —DPo= O(logn

which will imply ps, (F) > d for any constant e.

We split U into two parts U; and U, putting an element u into the first part
if S(u) = 1 and into the second otherwise. Correspondingly, W is divided into
two parts Wp = {u(i) rue U, < n} and Wy, = {u(i) cu € Uy, < n} Clearly,
po = |U1|/|U|. From this and from

_ Uy

P11 = 777 1Y
U

E[S(w)|we W]+ WE[S(W) lw e Wy

16

we infer

o
U]

Given wu, let us denote the number of i such that S(u) = 1 by m(u). Let
m = E[m(u) |u € Uy]. In this notation, E[S(w) |w € Wy] = ™ and (10) can be
rewritten as

p— 10 < 2B [S(w) lw e . (10)

< [Uo|m
P1—Po < (11)
U] n
In particular,
m
P1—Po < o (12)

We will also use one more consequence of (11). Define U' = {u € Uy : m(u) > m/2}.

One can easily check that ‘|g|‘ > gr. Together with (11) this gives
1%
p1—po <2 . (13)
U]

We will show that either (12) or (13) provides the desired bound on p; — py.

Next what we do is upper bounding of |U'|/|U|. Let r = min{m/2, s} and
t = |r/d|. We now describe a procedure consisting of ¢ steps. In j-th step we build
a covering of U’ by at most (2¢ — 1)/ disjoint dj-cylinders. The initial covering is the
entire boolean cube, that is, it consists of one 0O-cylinder. Suppose that before j-th
step we have a covering of U’ by at most (2¢ — 1)/~ disjoint d(j — 1)-cylinders. In
j-th step, every d(j —1)-cylinder C from the covering should be split into 2¢ disjoint
dj-cylinders so that at least one of those can be deleted. To do so, we choose an
element v in C that belongs to U’. Let P be the set of positions specifying C. We
next choose a position 7 ¢ P so that S(u®) = 1. This can be done as u € U’
and |P| = d(j — 1) < m/2. We split C into subcylinders by assigning all the
possible values to the variables that are outside P and are queried by S along a
path accepting (. If the number of such variables is less than d, we assign also
arbitrary additional variables. At least one subcylinder from the splitting of C' does
not intersect U’ and even Uy, namely, one that contains u(). The reason is that each
element of this subcylinder fits the same 1-path of S as u® does.

After ¢ steps of the above procedure, we obtain a covering of |U’| by at most
(2¢—1)* disjoint dt-cylinders. Since dt < s, we can employ s-uniformity of U. Below
the summation goes over all the cylinders C' from the covering.

\U'| \u'nci| C\ [unc| C|
U o% 0 %o S

By (13), we have p; — py < 2(1 — 274t < 2exp{—t27¢}. Substituting d = logn —
2loglogn and t = |r/d|, we obtain

pl—p020<exp{—rl(;gn}). (14)

17

< (2% — 1),

To complete our analysis, we have to consider two cases. In the first case r = s
and (9) follows by (14) from the condition imposed on s. In the second case that

r=m/2, (14) gives
pl—po=0<exp{—mlogn}>- (15)

2n

Finally, we consider two subcases. If 2 < 2RI%B% e ohtain (9) by (12). If 2 >

logn
%};ﬂgﬂ’ (9) follows by (15).

|

To complete the proof of Theorem 4.1, it remains to construct an an-uniform
code with minimum distance dn for some constants o and ¢ in interval (0,1). It
is convenient to fix our attention on linear codes, i.e., suppose that U is a linear
subspace of GF(2)" (see Remark 4.10, though). We first prove that the desired
linear code exists by the probabilistic method, then refer to an algebraic-geometry
construction, and finally discuss what can be done with use of some classical codes.

Probabilistic construction

We use the Chernoff bound [3] stated in the following form.

Lemma 4.6 Let &1,&s,...,&, be independent identically distributed random vari-
ables taking two values 0 and 1, either with probability 1/2. Then for any § € (0,1/2]

P lZ & < 6n] < 2HO)=n,

i=1
where H(0) = —dlogy, d — (1 — §) logy(1 — 9). .

Lemma 4.7 If0 < 6 < 1/2 and 3 < 1 — H(0), then a random |fn|-dimensional
code has minimum distance at least on with overwhelming probability (i.e., with
probability 1 — o(1) for n — 00).

Proof: Denote k = |3n] Suppose that vectors X1, ..., X} are chosen in GF(2)"
randomly and independently (they may happen to be linearly dependent). Denote
the subspace spanned by Xi,..., X, by U. Let us estimate the probability that
code U has minimum distance less than dn. Recall that the minimum distance of
a linear code is equal to the minimum weight of a non-zero codeword. Consider a
linear combination X = 1 Xy @ ... & upXy with coefficients py, ..., ux € GF(2).
If at least one of the coefficients is non-zero, then X is uniformly distributed over
GF(2)". If X = ¢&;...&,, its weight is equal to & + ... + &,. By Lemma 4.6 this is
less than én with probability at most 2(#(®)=Dn_ Therefore, U contains a non-zero
vector of weight less than én with probability at most 2¢2(7()=1n < 9(B+H(@)-1)n

18

Estimate now the probability of the same event under the condition that
Xi,..., X are linearly independent. Note that then U is uniformly distributed over
all k-dimensional subspaces. Observe that random and independent X;,..., X} are
linearly independent with probability

(2n — 1)(2" — 2) - (20 — 2k~1) 1 1 1
Sk = (-5 =5=) (= 5mg) >
N
TR
4

It follows that a random k-dimensional U has has minimum distance less than dn
with probability at most 4 - 200+H()-1n which approaches 0 with n increasing. =

Lemma 4.7 shows that there is no problem with achieving high minimum dis-
tance. It suffices to take at random a code of appropriate dimension. To proceed
with the uniformity property, we need some preliminaries from linear algebra.

Given X =z7 ...z, and Y =9 ...y, in GF(2)", let (X,Y) = 2191 D ... D 2,,yy
be their inner product. X and Y are called orthogonal if (X,Y) = 0. The dual code
of U is denoted by U~. It consists of all those strings that are orthogonal with each
codeword of U. It is well known that dimU+ = n — dimU and that (U+)* = U.
We refer to the following fact (see e.g. [9]).

Lemma 4.8 A linear code U is s-uniform iff the minimum distance of U exceeds s.

Proof: Denote t = |s|. Given a set T C [n] of ¢ coordinates, consider a
linear transformation Pr : U — GF(2)" which is the projection onto 7. For each
v € GF(2)!, the set P;'(v) is exactly the intersection of U and the ¢-cylinder C,
specified by assigning v to 7.

First observe that U is s-uniform iff Pr(U) = GF(2)* for any 7. Indeed, if Pr(U)
is a proper subspace of GF(2), then the uniformity condition is violated because
C, with v ¢ Pr(U) does not intersect U. Conversely, Pr(U) = GF(2)" implies that
all intersections C, N U = Py 1(1}) are non-empty and, therefore, contain the same
number of elements. As they cover U, the uniformity condition follows.

Now show that the inequality Pr(U) # GF(2)" is true for some 7 iff the minimum
distance of UL does not exceed ¢, that is, U+ contains a vector of weight at most t.
Indeed, Pr(U) # GF(2)" iff all z in U satisfy relation (z,y) = 0 for some non-zero y
whose non-zero coordinates all are in 7. It remains to notice that such a y belongs
to UL and its weight does not exceed t. The lemma follows. u

Thus, we need a linear code U C GF(2)" such that both U and U+ have minimum
distances linear in n.

Lemma 4.9 Let 0 < 0,0 < % and H(a) <1 — H(5). Then for n sufficiently large,
there exists an an-uniform code with minimum distance at least on.

19

Proof: Set up o/ = a+ % and pick § between H(a') and 1 — H(§). Denote
k = |fBn]|. Take at random a k-dimensional linear code U. By Lemma 4.7 its
minimum distance is at least dn with overwhelming probability.

Notice that U+ is a random (n — k)-dimensional code. Let n — k = yn. For n
sufficiently large, «y is arbitrarily close to 1— 3, so v < 1—H (/). Once again referring
to Lemma 4.7, we have that the minimum distance of U+ is at least o'm = an + 1
with overwhelming probability. By Lemma 4.8, U is an-uniform with the same
probability.

As with non-zero probability U is simultaneously an-uniform and has minimum
distance at least dn, we conclude that there exists a code with both these proper-
ties. "

Remark 4.10 If we take randomly and independently 2°" words in {0,1}", with
high probability we obtain a code with minimum distance at least dn, provided § < %
and 3 < (3 — 0)%. One cannot expect that such a code is an-uniform for a constant
a, but with high probability it is almost an-uniform in the following sense: for any
t-cylinder C' with ¢t < an, a fraction of codewords in U that belong to C deviates
from 2% in at most 2-2(en~1),

The check function of an almost an-uniform code with minimum distance dn
satisfies all the conditions of Theorem 4.1. Though almost uniformity does not
suffice to prove item (i) of Lemma 4.4, it suffices to keep item (ii) of this lemma
true.

Algebraic-geometry construction

Another way to obtain an an-uniform code with minimum distance dn is to use
the self-dual codes constructed in [13] from algebraic curves. In particular, the
construction in [13] gives us a self-dual code over alphabet GF(64) with minimum
distance 0.3n. Replacing elements of GF(64) by strings from GF(2)® we get a binary
code that is 0.05n-uniform and has minimum distance 0.05n (the code length has
increased by 6). Both properties hold true for an arbitrary one-to-one replacement,
even if the binary code obtained is not linear.

Classical constructions

Somewhat weaker versions of bounds (i)—(iii) (except (iv)) of Theorem 4.1 can be
obtained for the check functions of some classical codes. In this subsection we do
this for two well-known codes. One of them, namely, the dual of BCH-code, was
used in [9], where lower bounds where proven for some kind of branching programs
computing characteristic functions of codes. It is interesting to note that both [9]
and our paper employ in essence the same properties of codes.

20

The first code U; we consider is the simplest version of the Reed-Solomon code.
Let n = p2P and interpret the boolean cube {0,1}" as the set of functions from
GF(2P) into itself (represented by their graphs). Then U; consists of graphs of
univariate polynomials over GF'(2P) of degree at most 7. It is not hard to check that
U, is r-uniform and its minimum distance is at least 27 — r. We set r = 2P~1. Let
F} be the check function of U;. Then by Lemmas 4.2, 4.3, and 4.4 we have

e ma.(F)) = O(logn);
e nd(F)) = Q(:2);

logn
o pp(F1) = Qgg;) and mall (F1) = Q7).

For the next example, let Uy C {0,1}" be the dual of the Bose-Chaudhuri-
Hocquenghem code of designed distance 2¢ + 1. Following [9], we take ¢t = [y/n/4]
to ensure Q(y/n)-uniformity and minimum distance Q(n). For F; the check function
of U,, we obtain

e ma.(Fy) = O(1);
 nd(F) = Q(v/n);
o DB(Fy) = (/) and mald (Fy) = O(%2).

5 Bounded Merlin-Arthur vs. bounded nondeter-
ministic complexity

Theorem 4.1 leaves open an intriguing question if Arthur-Merlin and nondetermin-
istic complexities are polynomially related. A weak version of this question is if
am,(f) = O(1) implies nd(f) = O(1). We can answer it in affirmative only in the
first particular case that am.(f) =1, for all € € (0, 1).

Theorem 5.1 am.(f) <1 implies nd(f) < =5

Proof: By Lemma 3.4, it suffices to show that ps,(f) < 1 implies nd(f) < 1=

Consider an arbitrary boolean function f : {0,1}" — {0,1} with ps.(f) <
Denote by W and U the sets of ones and zeroes of f, respectively. Let d = nd(f
So, set W is d-open and is not (d — 1)-open. Therefore, there must be a d-cylinder
C C W that is not included into any (d — 1)-cylinder inside W. Without loss of
generality, assume that C' is specified by assigning the first d variables to a € {0, 1}
By a® € {0,1}¢, i < d, we denote a string that differs from a exactly at i-th
position. For any i < d, there exists a b; € {0,1}"* such that a®b; € U. Let

2€”
1.
)-

21

random variables w and u be uniformly distributed on sets {aby,...,abs} C W and
{aWby, ..., a b} C U, respectively.

Take an arbitrary depth-1 nondeterministic decision tree S. Denote p; =
E[S(w)] and pp = E[S(u)]. Let us show that py —py < I. The first case we
consider is that some deterministic branch of S asks one of the first d variables and
accepts if it has the same value as in a. Then p; =1 and py > 1 — é. In the second,
opposite case, we observe that S(a¥b;) = 1 whenever S(ab;) = 1 and , therefore,
Po 2 Pi-

The condition ps.(f) < 1 means that p; — pg > 1 — 2¢ for some depth-1 nonde-
terministic tree S. The estimate d < 1%26 follows. u

Theorem 5.2

IN

1;

(i) mag1/2(f) <1 (or, equivalently, may3(f) < 1) implies nd(f)

2;

(i) mago/5(f) <1 (or, equivalently, mays(f) < 1) implies nd(f)

IN

(iii) mag1/3(f) < 2 (or, equivalently, may 4(f) < 2) implies nd(f) < 2.

IN

The proof is deferred to the end of this section. In comparison with Theorem 5.1,
Theorem 5.2 relaxes the premise am(f) < 1 to ma.(f) < 1 and even to ma.(f) < 2
but only for a restricted range of the error €. Such an improvement cannot be done
for all € € (0,1), because this will contradict the example given in Section 4. Notice
that parameter 4 in Lemma 4.9 can be chosen arbitrarily close to % Thus, for any
€ > % this lemma provides a function F for which ma,(F) =1 by Lemma 4.2 but
nd(F) = Q(n) by Lemma 4.3. In fact, we are able to improve this example attaining
the error € as small as it is possible in view of Theorem 5.2 (ii).

Theorem 5.3 For any o > 0 there is a boolean function F : {0,1}" — {0,1} such
that mag 231 (F) =1 and nd(F) = Q(n).

Thus, the value € = % is the exact theshold: if e < %, then ma, (f) < 1 implies
nd(f) = O(1), while if € > £, then ma,(F) = 1 may occur simultaneously with
nd(F') = Q(n).

For the same example of F, we have simultaneously nd(F) = (n) and
ma,(F) < 2 for any ¢ > 3, whereas by item (iii) of Theorem 5.2 the condition
ma, (f) < 2 with € < 3 implies nd(f) < 2. It would be interesting to close the gap
% <e< %.

Proof of Theorem 5.3: The function F' will be specified by its set of zeroes,
that will be denoted by U. Associate with o a constant & = [2/03]. We need a set
U with two properties true for sufficiently large n.

1. The complement {0,1}" \ U is not |an]-open for some constant o € (0, 1).

22

2. Let uq,...,u; be arbitrary pairwise distinct strings from U, and v be an arbi-
trary string from {0,1}*. Define I C [n] to be the set of positions i such that
u1|iual; . . . ugl; = v, where ul; stands for i-th component of u. Then any two
strings «' and u"” from U \ {uy, ..., ux} agree in at most (1+0?)|I|/2 positions
from 1.

The second condition is a strengthening of the fact that U is a code with minimum
distance at least (1 — o%)n/2.

Such U exists for any o > 0. It suffices to take [2°"] strings independently
at random for a constant 5 € (0,1). Property 1 holds true with high probability,
provided o < . Indeed, U does not intersect an |an|-cylinder with probability
(1 —2-Len)[2°"1 'S the probability that the complement of U contains at least one
|an]-cylinder does not exceed 2‘”’(@31 J)(1 — 279" The last value is small for
a < (3 and large n.

Property 2 is fulfilled also with high probability. This can be easily deduced
from the Chernoff bound (see Lemma 4.6), provided 8 = (o) is small enough.
(Note that the projection of U onto I consists of random strings whose length with
overwhelming probability exceeds n/2%1.)

From property 1, it follows immediately that nd(F’) > an. Based on property 2,
we prove the second needed condition that magz/34,(F) < 1. We can restate it as
follows: for any w ¢ U there is a distribution i on [n] such that for all u € U bits
ul; and wl; coincide with probability less than % + o. By the min-max theorem, it
is equivalent to show that, given any w ¢ U and an arbitrary distribution u on U,
there is an index ¢ with

2

When referring to the weight of a u € U, we mean the probability that u = u. If
there is a specific u of weight at least %, then (16) is true for a position i where u and
w differ. So we will suppose that u takes every its value with probability strictly
less than % Let us rank strings in U in descending order of their weights. Denote
the weiths of the first k + 1 strings uq, ..., ug, ugr1 by wi,. .., Wk, wgr1 respectively.

Observe that .
Wry1 < = (17)

Set w = Z;?:l w;. As we assume that w; < 3 for all j, there is ¢ < k such that

+ (18)

o
o=

w 1 <

—— <) wi<

2 6 7
Let I C [n] be the set of all those positions i that

_ [0 forj <t
“j"'—{l for t < j < k. (19)

23

Now let i denote a random index from I. Our goal is to show that u|; = w|; with
probability less than % + 0. This will imply (16) for some specific 7 € I.
By the total probability formula

k
P[U\i = w\i] = ZP[uj\i =wl; u # u; for all j < k|(1-w) (20)

=1

wj+P[u\i = wl;

We will now bound both terms in the right hand side from above. The first term is
less than

(21)

no| &
S

+

by (18) and (19).
Let m = |I| and p; = P [u|; = w|; |u # u; for all j < k]. Without the factor of
1 — w, the second term in (20) can be rewritten as

1/2
1 1 1 1 1 1 1
- = V< —)2
1/2
1 (11 \ N1
=-+(=(= 2 L (1—p)?) — = .
o (2 (B 0-m))

Consider two independent random strings u’ and u”, both having the distrubution
of u conditioned on u # u; for all j < k. Notice that the sum Y ;c; (pZ + (1 — p;)?)
is equal to the everage number of positions where u’ and u” agree. If u’ # u”, the
number of such positions does not exceed (1 + o%)m/2 by condition 2 imposed on
U at the very beginning. Therefore, the second term in (20) can be bounded by

(% + (%2 +Pu' = U"]>1/2> (1 -w).

Suppose that P [u’ = u”] < 02 /2. This provides us an upper bound (1/2+0)(1—
w) on the second term in (20). Using also bound (21) on the first term, we obtain
P [u]; = w|;] < 2 + o, which implies (16).

If P[u' =u"] > 02/2, the set U \ {u4,...,u;} must contain an element whose
weight exceeds 0%(1 — w)/2. Recall that the largest weight in this set is assigned
to Ugy1- S0, wrp1 > 02(1 —w)/2. By (17) and the choice of k, we get 1 — w <
2/(ko?*) < 0. This gives us an upper bound o on the second term in (20). Together
with bound (21) on the first term, this again implies (16).

The proof is complete. "

24

Proof of Theorem 5.2

We will use items (i) and (ii) of the following lemma. Item (iii) is included there,
as it complements the preceding two and shows that the same method cannot be
applied to derive the conclusion nd(f) = O(1) from the assumption ma,(f) < 3.
We employ the notion of separability defined in Section 3.

Lemma 5.4 Let f be a boolean function, w denote an arbitrary one of f, and
U, Ug, U3, . . ., Uy denote arbitrary zeroes of f.

(i) i sep(w, {ur,us}) <1 for all w,u1,us, then nd(f) <1;
(i) if sep(w, {ur, us,us}) < 2 for all w,uq, us, uz, then nd(f) < 2;

(ili) for any y and sufficiently large n, there exists a boolean function f :
{0,1}* — {0,1} such that sep(w,{u1,...,uy}) < 3 for all w,uy,...,u, but
nd(f) > o

We are now able to prove Theorem 5.2. By Theorem 2.2 (ii) it suffices to prove
the claims only for one-sided error. Note that the proof Theorem 3.1 (iii) gives us
bound sep(w, {u1,...,ux}) < may(f)[logk/log(1/€)]. In particular, mag/(f) <

1 implies sep(w, {u1,u2}) < 1, and mag/3(f) < 2 implies sep(w, {u1, u2, us}) < 2.

A more careful inspection of the arguments shows that sep(w,{u,us,usz}) < 2

follows also from the assumption mag,/3(f) < 1. Applying claims (i) and (ii) of

Lemma 5.4, we get the needed implications.

Proof of Lemma 5.4: First we introduce some unary operations over subsets
of {0,1}" that resemble closure operators in Cantor discontinuum. Let U C {0, 1}™.
Given x < n, we define

C,(U)={w e {0,1}" : each z-neighborhood of w intersects U} .

Furthermore, we set up

o= U Clu,...u).

Thus, C,(U) consists of all strings excepting those that can be separated from U by
an z-neighborhood. CY(U) is more restricted. It contains all strings excepting those
that can be separated by an z-neighborhood from any y (not necessarily distinct)
elements of U.

Further on U denotes the set of zeroes of a function f: {0,1}" — {0,1}. Recall
that nd(f) < z iff the set of ones of f is z-open. As easily seen, the latter condition
is equivalent to the equality C,(U) = U. It is also not hard to see that the condition
sep(w, {u1,...,uy}) < x true for any one w and zeroes uy,...,u, of f is equivalent
to CY(U) = U. Thus, the claims of the lemma can be rewritten as follows.

25

(i) for any U C {0,1}", C2(U) = U implies C,(U) = U;
(i) for any U C {0,1}", C3(U) = U implies Co(U) = U;

(iii) for any y and sufficiently large n, there exists a set U C {0,1}" such that
C5(U) =U but C,(U) # U for z = | mreifmn -

Let us prove the first item.

Proof of (i): Suppose C?(U) = U. We have to deduce that C,(U) = U. This will
be done if we show that U is a cylinder.

Let V be a maximum (respectively to inclusion) cylinder contained in U. We
wish to show that U = V. Assume, to the contrary, that there is an element
u € U\V. Let J C [n] be the set of positions, whose entries define V. Let I C J be
the subset of positions, where u has the same entries. We choose v € V so that v
and u differ at all positions outside J. Thus, v and u coincide only at positions from
I. Notice that C,(u,v) is a cylinder definable by setting the coordinates from I as
in u (or v). As this cylinder properly contains the cylinder V' and is itself contained
in C2(U) = U, we get a contradiction. This completes the proof of item (i). 1

Proof of (ii): We will use the following simple fact. Given three boolean vectors
uy, ug, ug € {0,1}", let MAJ(uq, ug, uz) be a vector, whose i-th entry occurs at least
twice among i-th entries of uy, ug, us.

Claim 1: If uy, ug, uz € V, then MAJ(uy, ug, u3) € C3(V).

Proof: As easily seen, MAJ(u1, ug, u3) € Cy(uy,us, us). O

Let us turn to claim (ii). Consider U C {0, 1}" such that C3(U) = U. We have to
prove Co(U) = U. Suppose u € C,(U) and deduce u € U. Tt is not hard to see that
the bounded closure operators commutate with shifting by any element of {0,1}".
So, without loss of generality we may assume u = 1"(=11...1).

We say that V' C {0, 1}" has a complete i-shadow if for any I C [n], |I| = i, some
v € V has 1 at all positions from I.

Claim 2: Let 0 < i <n — 2. Then U has a complete (i + 2)-shadow.

Proof: We proceed by induction on 7. In the case ¢ = 0 the claim is a reformu-
lation of the fact that 1" € C,(U). Suppose the claim is true in the case of i — 1.
Look at the case of i, where ¢ > 1. Choose an arbitrary set of positions I C [n]
with |I| = i + 2. We have to show that U contains some v with 1’s on I. Pick
three distinct positions 1,149,153 € I. Let Iy = I\ {is}, s = 1,2,3. By the induction
hypothesis, U contains some vectors uy, us, u3 with 1’s on Iy, I, I3, respectively. By
Claim 1, MAJ(uq,u9,u3) is in C3(U) and, therefore, in U by our assumption. It is
easy to see that MAJ(u, u, u3) has 1’s at all positions in I. O

When i = n — 2, Claim 2 means that 1" € U, completing the proof of claim (ii).

26

Note that claim (i) can be proven similarly to claim (ii). It suffices to replace
MAJ(Ul, U2, U3) with OR(Ul, ’LLQ).

Proof of (iii): Given V C {0,1}" whose elements vy, ...,v, are arbitrarily or-
dered, we denote a matrix of size y by n with rows vy,...,v, by M(V). By N we
denote the matrix of size y by y — 1

00 ... 0
1 0 ... 0
11 ...0
11 ...1

Claim 3: Let V C {0,1}". If the matrix M (V') contains all the columns of the
matrix N, then C3(V) =V.

Proof: Without loss of generality, suppose that the first (y—1) columns of M (V)
make up the matrix N. Consider a vector v in C4(V'). We have to show that v must
be in V. Let m be the first position, where v has 0 (let m =n + 1 if v = 1"). The
condition v € C4(V') means that for any I C [n| with || = 3, some v; coincides with
v on I. For this reason, v = v, if m > y, and v = vy, otherwise. O

Given y and n, we set | = |[22*"1Inn]| for z = | szrimmnl- Choose ui,...
from {0, 1}" randomly and independently from each other, and put U = {uy, ..., u}.
We are going to show for n large enough that three events 1" € C,(U), 1" ¢ U, and
CY¥(U) = U simultaneously take place with non-zero probability. This will imply
what we need. Let us show that every one of the three events above does not occur
with small probability.

1" ¢ C,(U) means that for some I C [n] with |I| = z none of the uy, ..., u; has all
1’s on I. This happens with probability at most (Z) (1 -2 < nexp{—1277} <
n~?, which is less than 3 for z large enough. It follows P [1" ¢ C,(U)] < 5 for z large
enough.

P[1" € U] < 127" < 3 for n large enough.

CY(U) # U implies that for some V C U with |V| =y, V is properly contained in
C3(V). So, P[CY(U) # U] < ()P [Cs(V) # V], where V = {vy,...,v,} consists of
random elements of {0,1}". By Claim 3, C;(V) # V implies that the matrix M (V)
does not have at least one of the columns of the matrix N. Hence,

l _ _ 1
P[Ci(U) # U] < (y)y(l—? < Pyexp {-n27 < o
for n large enough.

This proves claim (iii).

The proof of Lemma 5.4 is complete. u

27

6 Conclusion and open problems

The main question we leave open is if am.(f) and nd(f) are polynomially related.
A variation of this question can be if am{P°¥1°€™)(f) = polylogn or ma(Peos™) (f) =
polylogn implies nd(f) = polylogn. For F, the check function of an an-uniform
code with minimum distance dn, we have shown that mag;_s/2(F) = 1, while
nd(F) = Q(n) and am.(F) = Q(logn). It would be insightful to improve our
logarithmic lower bound on am,(F') or, alternatively, give an upper bound.

Another related question is if am.(f) = O(1) implies nd(f) = O(1). We answer
it in affirmative only in the particular case of am.(f) < 1. Moreover, we prove that
mago/3(f) < 1 implies nd(f) < 2. The error £ is here the exact threshold, as one
can achieve simultaneously nd(F) = Q(n) and ma, (F) = 1 for arbitrary e > 2. We
prove that mag1/3(f) < 2 also implies nd(f) < 2, whereas in the aforementioned
example nd(F) = Q(n) and ma, (F) < 2 for arbitrary € > . It would be interesting
to investigate the range % <e< %. Does there exist the theshold in this case too?

Given a boolean function f and an integer d, denote erry(f) =
inf {€: ma,(f) < d} (for convenience let inf @ = 1). Clearly, erry(f) < err(f)% It
is interesting to give an example when the latter inequality is strict. Is this true for
the above code-check function F'?

Acknowledgments

We thank Alexander Barg and Alexander Razborov for useful discussions.

References

[1] L. Babai. Trading group theory for randomness. In Proc. of the 17th ACM
Ann. Symp. on the Theory of Computing (STOC), pages 421-429, 1985.

[2] M. Blum and R. Impagliazzo. Generic oracles and oracle classes. In Proc. of the
28th IEEE Ann. Symp. on Foundations of Computer Science (FOCS), pages
118-126, 1987.

[3] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based
on the sum of observations. Annals of Math. Stat., 23:493-509, 1952.

[4] O. Goldreich, Y. Mansour, and M. Sipser. Interactive proof systems: provers
that never fail and random selection. In Proc. of the 28th IEEE Ann. Symp.
on Foundations of Computer Science (FOCS), pages 449-461, 1987.

[5] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of inter-
active proof systems. SIAM Journal on Computing, 18(1):186-208, 1989.

28

[6]

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

S. Goldwasser and M. Sipser. Private coins versus public coins in interactive
proof systems. In Proc. of the 18th ACM Ann. Symp. on the Theory of Com-
puting (STOC), pages 59-68, 1986.

J. Hartmanis and L. Hemachandra. Robust machines accept easy sets. Theo-
retical Computer Science, 74(2):217-226, 1990.

R. Impagliazzo and M. Naor. Decision trees and downward closures. In Proc.
of the 3rd ACM Ann. Conf. on Structure in Complexity Theory, 1988.

S. Jukna and A. Razborov. Neither reading few bits twice nor reading illegally
helps much. Flectronic Colloguium on Computational Complexity, TR96-037,
1996.

M. L. Minsky and S. A. Papert. Perceptrons. MIT Press, Cambridge, MA,
second edition, 1988.

A. A. Muchnik and N. K. Vereshchagin. A general method to construct oracles
realizing given relationships between complexity classes. Theoretical Computer
Science, 157:227-258, 1996.

N. Nisan. CREW PRAMSs and decision trees. SIAM Journal on Computing,
20(6):999-1007, 1991.

W. Scharlau. Selbstduale Goppa-codes. Mathematische Nachrichten, 143:119—
122, 1989.

G. Tardos. Query complexity, or why it is difficult to separate NP4 N coNP4
from P4 by a random oracle. Combinatorica, 9:385-392, 1989.

N. Vereshchagin. Complexity of computation on functions and relativized com-
plexity of computation on words. Manuscript, 1989.

N. Vereshchagin. Relativizable and nonrelativizable theorems in the polynomial
theory of algorithms. Russian Acad. Sci. Izv. Math., 42(2):261-298, 1994.

A. Yao. Probabilistic computations: towards a unified measure of complexity.
In Proc. of the 18th IEEE Ann. Symp. on Foundations of Computer Science
(FOCS), pages 222-227, 1977.

S. Zachos and M. Firer. Probabilistic quantifiers vs. distrustful adversaries. In

Proc. Foundations of Software Technology and Theoretical Computer Science,
pages 443-455. Springer-Verlag, 1987. LNCS v. 287.

29

