Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:
E( :( :( : FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:  http://www.eccc.uni-trier.de/eccc/

T R97- 055 Email:  ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

A Decision Method for the Rational Sequence Problem

B. Litow §

September 22, 1997

Running Title: Rational Sequence Problem Decidability

Abstract

We give an algorithm to decide whether or not a linear recurrence of finite order
with rational coefficients and initial values produces 0. We also show that this problem
is PSPACE hard, and that m-variate versions are not computable for very small values
of m.
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1 Introduction

A linear recurrence of finite order with constant rational coefficients and initial values is
one of the most basic elements of combinatorics. Linear recurrences also turn up in many
areas of engineering. It is natural to ask about the distribution of values produced by a
linear recurrence. For example, it is a classical result that the magnitude of the n-th term
is bounded by ", for some a > 0, and that « can be computed from the recurrence data.
However, even more slightly exacting questions seem to be very hard. In particular, one
can ask whether or not a recurrence ever produces 0. This is the rational sequence problem
and it is posed as an open problem in [13]. We will present an algorithm for the rational
sequence problem. We also discuss extensions of the problem which are not computable.

Issues related to computability of expressions involving algebraic numbers are briefly
discussed in an appendix. We will not go into much more detail about these issues, except
to say that all the explicit questions about algebraic numbers raised in this paper can be
formulated as sentences in the first order theory of real number arithmetic. Collins [4]
was the first to give a decision method for this theory, and a subsequent refinement was
introduced in [1].

2 Rational sequences and series

The rational sequence problem will be cast in terms of rational series. N is the semiring of
non-negative integers. C,R and Q are the complex, real and rational fields, respectively.
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K[[z]] is the set of formal power series in z with coefficients in a field K, and K[z] is the
subset of polynomials. [z"]f is the coefficient of ™ in f. We will write f(a) to indicate
the value of f € K[[z]] at x = a € K Let p,q € Kz], such that ¢(0) = 1. If f € K[[z]] can
be formally identified (term-by-term) with the expansion of

p-I+(1-—q@+(1—q°+--)

then f is said to be a K-rational series. We will write f = p/q for this. We will drop
explicit mention of the field when it is Q. The concepts of formal series and rational series
can be greatly generalized [13, 9]. It is classical that K-rational series are precisely the gen-
erating series of sequences produced by linear recurrences of finite order whose coefficients
and initial values are in K. A full treatment for Q is given in [7]. Determining whether or
not such a linear recurrence generates 0 as a term is called the K-rational sequence problem
(K-RSP). It is clear that K-RSP is equivalent to determining for a given K-rational series
f whether or not there exists n € N such that [z"]f = 0. The computability status of
K-RSP has been open until now. The main result of this paper settles this status for the
field Q.

Theorem 1 RSP is computable.

We also prove two negative results.

Theorem 2 RSP is PSPACE hard.

Theorem 3 If m is the smallest number of variables such that the m-variate Diophantine
decision problem (Hilbert’s 10th problem) is non-computable, then RSP for rational series
in m commuting variables is non-computable.

It is interesting to note that Berstel and Mignotte were able to prove [3]

Theorem 4 [t is computable to determine for a rational series f whether or not infinitely
many of its coefficients are 0.

We mention that this result is closely connected to the Skolem-Mahler-Lech theorem.

Theorem 5 (Skolem-Mahler-Lech) Let K be any field of characteristic 0 and let f €
K{[z]]. Define I;(0) = {n | [z"]f = 0}. If f is K-rational, then I;(0) can be expressed as
the union of a finite number of arithmetic progressions.

It is clear that I;(0) can be replaced in the theorem by If(a), where a € K, since if f is

K-rational, then so is f — 2.

The assumption that K has characteristic 0 is essential. A counterexample to the asser-
tion of the theorem in non-zero characteristic is given in [5]. Finally, we point out that a
refinement of Thm. 5 has been given by [8]. We use the usual term semilinear set for a
subset of N that can be expressed a finite union of arithmetic progressions. Note that the



collection of semilinear sets is closed under the Boolean operations.

We recall the definition of the Hadamard product h = f o g of formal series f and g.
h is defined by [z"]h = [z"]f - ["]g. Note that the Hadamard product is commutative,
provided the coefficient domain is commutative. Note also that ﬁ = Y2 z" is the
Hadamard product identity. It is clear that RSP is equivalent to determining for rational
f whether or not there is a series g such that fog =) °°,z". In this situation, f and ¢
are said to be Hadamard inverses of one another. It is easy to check that

1 In(1 —z) 1

(l—ac)20 z T 1-1

which shows that a rational series can have a transcendental series as its Hadamard inverse.
Benzaghou has characterized those rational series having rational Hadamard inverses [2].

In the case of rational series in C[[z]] it is possible to make a modest extension of Thm. 5.

Theorem 6 If f is a C-rational series, then for any p > 0, the set {n | |[z"]f| = p} is
semilinear.

Proof : For any series f € C[[z]], define f = > ,[z"]fz", where @ is the complex

conjugate of a € C. It is clear that if f is rational, then f is rational. It is known that the
Hadamard product of K-rational series is again K-rational. See Thm. 4.4 [13]. Hence, if
f is C-rational, then f o f is also C-rational. The theorem now follows from Thm. 5 by
noting that

{n|z"1f| = p} = {n [ [z")(f o /) = °}

a

If A CN, then define f4 to be the series fg = -4 2". If g is any series, then g combed
by A is the series h given by
h=7 [z"]g-a"

neA
This is equivalent to
h=gofa (1)

The following result is a special case of Thm.4.4 in [13].

Lemma 1 Given rational series f and g, polynomials p and q can be computed such that
feg=r/q

Corollary 1 If A is a given semilinear set, and g is a given rational series, then g combed
by A is a computable rational series.

Proof : It is clear that f4 is a rational series for any semilinear set A. The result now
follows from Eq. 1 and Lem. 1. O



3 Technical results

We collect four technical lemmas that form the basis for the decision method. Throughout,
‘root of unity’ will mean complex root of unity.

Lemma 2 Given roots of unity wy,...,ws, and g1,...,gs € Clz], define A to be the set of
n € N such that

S
Stm) = Y ga(muf = 0
i=1
then A is a computable semilinear set.

Proof : It is evident that over all n € N, there are only finitely many distinct s-tuples
(W, ...,w?). For each such s-tuple, (ai,...,as) it is also evident that the set of n for
which (w?,...,w7) = (a1,...,as) is a semilinear set. Call these semilinear sets level sets.

Fix d € N and consider the sum
S
Sd,n = Z[md]giwzn
=1

Now, Sq is a computable constant cq € C for n in a level set. Thus, for n in a level set

D
S(n)=> ca- nd
d=0

where D is the maximum degree of any g;. Over each level set S € C[z] is computable,
so if S # 0, then an upper bound on the modulus of any of its zeros is computable. This
implies that either there is a computable upper bound on 7 in a level set such that S(n)
can vanish, or S(n) = 0 over the level set. If there is an upper bound, then we can
exhaustively test whether or not S(n) = 0 for each n in the level set up to this bound.
Since there are only finitely many level sets, A is a union of level sets and finite sets, hence
A is semilinear and computable. O

A square matrix M is said to be irreducible iff when all non-zero entries are replaced by
1, the result is the adjacency matrix of a strongly connected graph.

Lemma 3 If f is a given rational series, then f can be expressed as f = p/q, such
that the zeros of q of smallest modulus p are exactly p, pw, pw?, ..., pw*~L, for some non-
negative integer k, where w is a primitive k-th root of unity. The polynomials p and q are
computable.

Proof : We will show that from a given rational series f = p/q we can compute a row
vector u, a column vector v, and an irreducible square matrix M, such that all of their
entries are in Q, all entries of M are non-negative and

f=u-(U—-zM)™" v

where U is the identity matrix of the same size as M. It is clear from this that we can
write f = p/q where ¢ = Det(U — zM). Note that the reciprocals of the zeros of ¢ are
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the eigenvalues of M. The Perron-Frobenius theorem asserts that the largest modulus
eigenvalues of M are exactly 1/p,w/p,...,w*"1/p, for some p > 0, positive integer k, and
where w is a primitive k-th root of unity [12].

It is classical that if f = p/q is a rational series, then we have
f=u-(U,—zM)™" v

where u is a 1 X h rational matrix, v is a h X 1 rational matrix, M is a h x h rational
matrix, and Uy, is the h X h identity matrix. We actually have

e u=(0,0,...,0,1)
e v is the transpose of ([z"p, ..., [z°]p)
e M has 0 entries except for
— Column A is the transpose of
(—[a*g, 2" g, .., ~["J0)
—For2<i<h,M;; 1=1

Observe that M is irreducible because M1 p, M3 1,..., Mp 1 are all non-zero. If M is
non-negative, then we are done. Hence, we will assume that M is not non-negative. This
implies that at least one entry in column h must be negative.

Define H to be the 2h x h matrix (recall that Uj is the h x h identity matrix)

n=(5)
We are going to define a nonnegative 2h X 2h matrix M which is a solution to
H-M=M-H (2)
M will be defined entry by entry.
1. For 2<i<h, Mj; 1 =1and My ;pri1=1
2. For 1 <i < h, if My, >0, then M;j, = M;;, and My ion = M.
3. For 1 <4 < h, if Mjj, <0, then M;op = —M;, and My = —M; .
4. All other entries of M are 0.

We check that M is a nonnegative matrix which satisfies Eq. 2. It is clear that M is
nonnegative. Next, we verify that Eq. 2 holds. Note that both H- M and M -H are 2h x h
matrices. Throughout all the following cases we use item 4 implicitly which means that
each row/column product involves a single multiplication.



First observe that if 2 <4 < h, then

(H-M)jj—1=H;;  M;1=M;; 1=1

and
(M . H)i,i—l = Mi,i—l . Hi—l,z'—l = Mi,i—l =1 using item 1
Also,
(H-M)itnivh—1 = Hivhirn- Miynivh-1 = —Mithizh-1 = —1
and
(M - H)iyhjith—1= Miynivh—1 - Hith—1i4n—1 = —M;qpipn—1 = —1 using item 1

Assume that 1 <4 < h. If M; ;, > 0, then

(H-M);p=Hi; M =M,

and
(M . H)i,h = Mi,h, . Hh,h = Mz’,h = Mi,h using item 2
Next,
(H-M)ishp=Hipni Mip=—M;p
and
(M -H)ijihp = Miynon - Hopon = —Miypon = —M,; j, using item 2

If M; <0, then
(H-M);p=H;; M =M

and
(M “H)ip = Mz‘,Qh - Hopp = — Ai,zh = M; p, using item 3
Next,
(H-M)isnn = Hiyni- Mip = —M;p
and

(M - H)iynp = Miypp - Hyp = Mijpp, = —M; ), using item 3
Finally, assume that j & {¢ —1,h} and j < h.
(H-M);; =H;;-M,; ; =0
and noting that Mi,j = Mi,hﬂ =0 by items 1 and 4,
(M - H)ij = M- Hjj+ Mijin- Hipn; =0

Now we check that M is irreducible. Let G be the digraph of M. We again point out

that My, # 0. If My, > 0, then G has the edges
(2,1),...,(h,h —1),(h+2,h +1),...,(2h,2h — 1),(1,h), (h + 1,2h)

and since at least one M, < 0, there are also edges (7,2h) and (h +,h), by item 3. It is
clear from these edges that G is strongly connected. If My, < 0, then G has the edges

2,1),..., (A h—1),(h+2,h+1),...,(2h,2h — 1), (1,2h), (h + 1, h)



with the last two edges coming from item 3, and again G is strongly connected.

We can now finish the proof. Define the 2k x 1 vector v’ by v = H - v. Define 4 to be
the 1 x 2h vector whose first A components match those of u and whose last A are all 0.
It is clear that v’ - H = u. We have

W MY = MY H-v=u -H-M"-v=u-M"-v
This is equivalent to
- Uop—zM) ™ v =u-(Uy—2M) v
O
Lemma 4 Let f be a given rational series, with f = p/q according to Lem. 3. Let « be

the reciprocal of the smallest modulus of any zero of q. There is a constant ¢ > 0 and an
infinite arithmetic progression A such that if n € A, then

[z"]f] > ca®

Proof : Following the exposition in [7] (p. 22-23), and the fact that the smallest modulus
zeros of g are exactly w*/a, for i = 0,1,...,k — 1, for some positive integer k, where w is
a primitive k-th root of unity, we get

k—1
[z"f =" Y ei-w™ 4+ O(1/67)
1=0
where f1,..., [, are the other zeros of ¢ arranged in non-decreasing modulus, and ¢; # 0

for 0 <7 <k — 1. In fact,

ci =" ﬁ(wi/a — Bj)™

Jj=1

where 7 is a non-zero constant and m; is the multiplicity of 3;. Define g € C[z] by

k—1
9= o
=0
0,1 k—1

Now, g has at most k£ — 1 distinct zeros, but since w”,w",...,w are all distinct,
Zf:_ol c;w" cannot be zero for all n. The lemma now follows from Lem. 2. O

A set 01,...,6, is said to be linearly independent over Q (LIQ) iff by, b1,...,b, € Q and
by + > i—1 b;0; = 0 imply that by = by = -+ = b, = 0. Define e(z) by

e(z) = exp(2mv/—1"-2)
Lemma 5 Let 61,...,0 be real numbers at least one of which is irrational. Let g; € C,

such that g; # 0, for 1 < i < s. Then, for any infinite arithmetic progression A, there
exists ¢ > 0 such that for infinitely many n € A

S
1> gie(nb;)| > ¢
i1



Proof : Since e(z + k) = e(z) for any integer k, we can assume that 0 < 6y,...,05 < 1.
In fact, for any z such that 0 < x < 1, and any integer k, when we write kx we will mean
the fractional part only. By re-indexing if necessary, let {61,...,6,} be a maximal subset
of {61,...,65} which is LIQ. There must be a non-empty LIQ subset since at least 6; is
irrational, sor > 1. If r < s, thenfor r+1 < j <s

T
0; =bjo+ Y bjib; (3)

=1

where bj,O, bj,l, ceey bj,r € Q.

Let A be an arbitrary infinite arithmetic progression A = {h + gn | n € N}. It is easy to
reduce the restriction n € A to n € N. Notice that if m € A, then

S gie(mbi) = 3 gi - e(hh) - e(gnt)
=1 =1

where m = h + gn, and n € N. Since the factors e(h6;) are non-zero constants, we will
ignore them. Therefore, it suffices to establish the result for an expression

S
> gie(ndb;)
i=1
where g divides d.

Let d be the least positive integer such that g divides d and db;; is an integer for r +1 <
j <sand1l<i<r. Notethat {dfi,...,df,} is a maximal LIQ subset of {df,...,d0s}.
The Weyl-von Neumann Theorem asserts that for any 0 < 71,...,7, < 1 and any € > 0,
there exists n € N, such that for 1 <7 <r,

|ndb; — n;| < e (4)

Let n; = i0. We will choose 0 shortly. Let z = e(#). Using the fact that if 0 < e < 1,
and z is real, then |e(z + ¢€)| = e(z) + O(¢), and Eq. 3, and Eq. 4 we have

Zgie(ndﬁi) = Zgizi + Z gje(dbj,o)zZLI dbj,i + 0(6) (5)
=1

i=1 j=r+1

Note that the big-O notation indicates a dependence only on the number of terms and the
gi, and not on n. We remark that e(db;) = 1. Every power of z in Eq. 5 is an integer, so
we can write .

Zgie(ndOi) =2"B 4+ O(e)

i=1

such that k is an integer, and B € C[z].

B is not identically zero since each g; # 0, hence it has only finitely many zeros. Choose
z = e(f) not to be one of these zeros, then |2¥B(z)| = |B(z)| = ¢ > 0. Thus, we can
choose ¢ = /2, say, and € such that ¢ + O(e) > /2 =c. 0



4 The decision method

The following expression for the n-th coefficient of a rational series f = p/q is well known.

A full derivation is given in [7]. Let ay, ..., as be the reciprocals of the distinct zeros of g.
S
[z")f =Y gi(n)af (6)
i=1

Each g; € C[z] has degree less than the degree of g. The g; can be computed from p and
q.

We next prove Thm. 1 by giving the steps of a decision method, and verifying their
computability.

Proof : We are given a rational series f = p/q.

Step 1 Compute the reciprocals of a4, ..., ay of the distinct zeros of ¢, and polynomials
g1,---,9s € C[z], such that Eq. 6 holds.

Step 2 Arrange the o; in sets T7,...,T; such that all elements of T; have the same
modulus, and if j < j', then the modulus of elements in T} is larger than the modulus
of elements in Tj. Let p; be the modulus of the elements in T;. We define 6; € R by
0<6;<1and
oy = |a,|e(01)
The set of 0; associated with the elements in T; will be called the arguments of T;. Define
Sj(n) as
Si(n) = > gi(n) - e(nb;)

aiETj

If all of the arguments of T} are rational, then we will say that T} is rational, otherwise
we will say that T} is irrational. By the techniques in the proof of Lem. 2, if T} is ratio-
nal, then we can decide whether or not S;(n) = 0 for infinitely many n. If Sj(n) = 0 for
infinitely many 7, then we will say that 7T} is null, otherwise we will say that it is is non-null.

Step 3

e If all T; are rational, then go to Step 6.

e If Ty is irrational, then let A = N. If T1,...,T;_; are rational, and T} is irrational,
then define A = /] A;, where 4; = {n | Si(n) = 0}. Note that A is always a
computable semilinear set. If A is finite, then go to Step 5.

Step 4 Let h be f combed by A. We know by Cor. 1 that A is a rational series computable
from f. Notice that if [z"]h # 0, then n € A, and if n € A, then

[2"]h = gi(n)off (7)
i=j



Let h = p'/q’, according to Lem. 3. Let of,...,c, be the reciprocals of the distinct

zeros of ¢', ordered according to the scheme used for aq,...,a;. Eq. 6 for h becomes
m .
[z"]h = |eq|" - D gi(m)w™ + of|ag | (8)
i=1

where w is a primitive m-th root of unity. Lem. 4 implies that |o)| = p1.

By Lem. 2,

m

> gi(n)w™

i=1
vanishes on a semilinear set B. If B were infinite, then for n € B

[z")f] = o(le4|™ = o(p7)

However, this would contradict Lem. 5, since over any infinite arithmetic progression
B' C B, there exists some ¢ > 0 and infinitely many n € B’ such that

|S1(n)| > c|p1]"

Thus, we conclude that B must be finite. By Lem. 2, we can compute N € N such
that n > N implies that [p] >7%; gi(n)w'| dominates the o(|c}|") term in Eq. 8. Now,
[z™]f = 0 can be tested explicitly for n =0,1,..., N.

Step 5 If A is finite, then by Lem. 2, we can compute an N as in Step 4, and test [z"]f =0
explicitly for n =0,..., N.

Step 6 The computability of RSP is clear, based on Lem. 2. O

5 Negative results

We first prove Thm. 2.

Proof : The problem of deciding whether or not a finite automaton F with binary
input alphabet A accepts A* is PSPACE-complete [6]. The generating series of F' is just
=Xl cn-z", such that ¢, is the sum over all words of length n of the number of their
accepting computations by F. The computation of f from F as a ratio of polynomials
from by solving a linear system is in PTIME in the size of F'. Now, F' accepts A* iff f has
an Hadamard inverse. Thus, whether or not F' accepts A* is PTIME reducible to RSP. O

RSP can be generalized to multivariate series. A formal series f in £ non-commuting
variables is a mapping f : A* — Q, where A is a k-ary alphabet. A formal polynomial is
a series which is non-zero only on a finite subset of A*. A series f is said to be rational iff
there are polynomials p and ¢ such that g(A\) = 0 and

f=p-Q+qg+@+-)

Here, 1 is the series such that 1(A\) = 1, and otherwise 1(w) = 0. Given a rational f,
determining whether or not f(w) = 0 for some w € A* is the non-commuting bivariate
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version of RSP. A proof that this version of RSP is non-computable via reduction from
Hilbert’s 10th Problem is given in [9].

It is also possible to say something about the multivariate versions of RSP in the com-
muting case. A series f € Q[[z1,...,z,]] is said to be rational if there are polynomials
p,q € Qz1,...,z,], such that ¢(0,0,...,0) =1 and f = p/q. We next prove Thm. 3.

Proof : We adapt the proof for the non-commuting case to the commuting case. If all the
coefficients of p € Q[z — 1,...,x,| are integers, then p is called a Diophantine polynomial.
Hilbert’s 10th Problem was to produce an algorithm which would decide whether or not
there exist non-negative integers mi, ..., m, such that p(my,...,m,;) = 0. A set of non-
negative integers {ms,...,m;} such that p(mq,...,m,;) = 0 is said to be a Diophantine
solution for p. It is known that there is a positive integer N such that no algorithm for
Hilbert’s 10th Problem exists for r-variate Diophantine polynomials with » > N. See [9].

We reduce the N-variate version of Hilbert’s 10th Problem to the commutative, N-variate
RSP. Given any N-variate Diophantine polynomial p, we will construct a rational series
f such that

[}t -] f = p(na, ... nw) (9)

It is clear from eq. 9 that p has a Diophantine solution iff f does not have an Hadamard
inverse.

A Diophantine polynomial p can be obtained through a finite number of additions and
multiplications, starting with the polynomials 1, —1, and z1,...,zx. The rational series
Hi]il 1+zl and the polynomial 1 satisfy Eq. 9. The same is true for the rational series
— Hfil 1—1@ and the polynomial —1. For 1 < 5 < N, the rational series 1351- -Hz-lil 1—1:%

and the polynomial z; also satisfy Eq. 9.

Let us write f ~ p to indicate that Eq. 9 holds between a rational series f and a
Diophantine polynomial p. It is clear that if f1 ~ p1 and fo ~ po, then f1 + fo ~ p1 + po
and f1 o fo ~ p; - py (ordinary polynomial product). Since fi o fy is again rational by
Thm.4.4 of [13], we have shown how to construct a rational series f such that f ~ p for
any given Diophantine polynomial. O

We conjecture that RSP is non-computable in the bivariate, commuting case.

Appendix

We make some remarks about the notion ‘given’ that has been used throughout this paper.
By a given rational series f = p/q, we mean that the polynomials p and ¢ are known
explicitly as sequences of rational numbers. Let g have the distinct zeros aj,...,as,
with multiplicities my,...,ms, respectively. It is well known for any & € N that a list
((é&1,m1), (@s.ms)) can be computed such that |o; — &;| < 1/2F. @& is a pair of rationals
a;, b; representing the complex number a; + v/—1 - b;. See [10, 11]. Tt is also well known
that whether or not «;/|a;| is a root of unity can be computed. If o;/|a;| is a root of
unity, then its argument can be computed.
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