Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97- 056 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Combinatorial Property Testing (a survey)*

PRELIMINARY VERSION

Oded Goldreich!
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.
E-mail: oded@wisdom.weizmann.ac.il.

December 1, 1997

Abstract

We consider the question of determining whether a given object has a predetermined property
or is “far” from any object having the property. Specifically, objects are modeled by functions,
and distance between functions is measured as the fraction of the domain on which the functions
differ. We consider (randomized) algorithms which may query the function at arguments of their
choice, and seek algorithms which query the function at relatively few places.

We focus on combinatorial properties, and specifically on graph properties. The two standard
representations of graphs — by adjacency matrices and by incidence lists — yield two different
models for testing graph properties. In the first model, most appropriate for dense graphs,
distance between N-vertex graphs is measured as the fraction of edges on which the graphs
disagree over N2. In the second model, most appropriate for bounded-degree graphs, distance
between N-vertex d-degree graphs is measured as the fraction of edges on which the graphs
disagree over dN.

To illustrate the two models, we survey results regarding the complexity of testing whether
a graph is Bipartite. For a constant distance parameter, a constant number of queries suffice in
the first model, whereas @(\/ﬁ) queries are necessary and sufficient in the second model.

*Based on joint work with Shafi Goldwasser and Dana Ron [17, 18], and joint works with Dana Ron [19, 20].
tCurrently visiting LCS, MIT. Supported by DARPA grant DABT63-96-C-0018.

1 Introduction and Summary of Known Results

The following general formulation of Property Testing was suggested in [17]:

Let P be a fixed property of functions, and f be an unknown function. The goal is to
determine (possibly probabilistically) if f has property P or if it is far from any function
which has property P, where distance between functions is measured with respect to
some distribution D on the domain of f. Towards this end, one is given examples of
the form (z, f(z)), where z is distributed according to D. One may also be allowed to
query f on instances of one’s choice.

The above formulation is inspired by the PAC learning model [37]. In fact, property testing is
related to variants of PAC learning as has been shown in [17]. The general formulation above
allows the consideration of arbitrary distributions rather than uniform ones, and of testers which
utilize only randomly chosen instances (rather than being able to query instances of their own
choice). However, we do not consider these latter generalizations here, but rather focus on the
special case (formulated previously in [34, 33]) where the distribution is uniform on the domain of
the function, and testers are allowed to query the function on instances of their choice. Thus, the
above formulation simplifies to the following definition, in which we associate a property with the
class of functions satisfying it.

Definition 1 (property tester): Let S be a finite set, and P a subset of functions mapping S to
{0,1}*. A (property) tester for P is a probabilistic oracle machine', M, which given a distance
parameter € > 0 and oracle access to an arbitrary function f : S+ {0,1}* salisfies the following
lwo conditions:

1. (the tester accepts f if it is in P)
If f € P then Pr(M/(e)=1)> 2.

2. (the tester rejects f if it is far from P)
If {zeS: f(z)#£g(x)} > e-|S|, for every g € P, then Pr(M/(e)=1) <

W=

Property testing (as just defined) emerges naturally in the context of program checking [10, 29, 16,
34] and probabilistically checkable proofs (pcp) [6, 7, 14,4, 3, 8, 11, 5, 9, 22, 24]. Specifically, in the
context of program checking, one may choose to test that the program satisfies certain properties
before checking that it computes a specified function. This paradigm has been followed both in
the theory of program checking [10, 34], and in practice where often programmers first test their
programs by verifying that the programs satisfy properties that are known to be satisfied by the
function they compute. In the context of probabilistically checkable proofs, the property tested is
being a codeword with respect to a specific code. This paradigm, explicitly introduced in [7], has
shifted from testing codes defined by low-degree polynomials [6, 7, 14, 4, 3] to testing Hadamard
codes [3, 8, 11, 5, 28, 36], and recently to testing the “long code” [9, 22, 24, 36].

Much of the work cited above deals with the development and analysis of testers for algebraic
properties; specifically, linearity, multi-linearity, and low-degree polynomials [10, 29, 6, 7, 14, 16,
34, 4, 3, 8, 11, 5]. In contrast, following [17] we focus on testing combinatorial properties, and
specifically on testing graph properties such as Bipartiteness.

! Alternatively, one may consider a RAM model of computation, in which trivial manipulation of domain and
range elements (e.g., reading/writing an element and comparing elements) is performed at unit cost.

The relevant parameters. The main parameter relevant to property testing is the permitted
distance parameter, denoted €. In addition, one may consider a confidence (or error bound) param-
eter, denoted §, rather than fixing an error bound of 1 (as done in Definition 1 above). Standard
amplification techniques do apply here, and thus we choose to fix the error bound. The complexity
measures we focus on are the query complexity and the running time of the tester. All testers
discussed in this survey have running-time which is substantially smaller than the full description
of the function.

1.1 Motivation

The definition of property testing is a relaxation of the standard definition of a decision task: The
tester is allowed arbitrary behavior when the object does not have the property, and yet is “close”
to an object having the property. Thus, a property tester may be far more efficient than a standard
decision procedure (for the same property).

In case the object is huge, as in case one thinks of a function and algorithms which operate in
time polynomial in the length of the arguments to the function, there is actually no other alternative
to property testing. That is, it is typically infeasible (i.e., requires exponential time in the length
of the arguments) to decide whether such a function has the desired property. A property testing
algorithm which operates in time polynomial in the length of the arguments thus offers a feasible
approximation to a problem which is intractable in the exact formulation.

Property testers are valuable also in case one deals with objects of feasible size (i.e., size for
which scanning the entire object is feasible): If a property tester is much faster than the exact
decision procedure then it makes sense to run it before running the decision procedure. In case the
object is far from having the property, we may obtain an indication towards this fact, and save
the time we might have used running the decision procedure. In case the tester supplies proofs of
violation of the property (as in some of the testers discussed below), we have obtain an absolutely
correct answer without running the decision procedure at all. Thus, we may only need to run the
decision procedure on objects which are close to having the property. In some natural setting where
typical objects are either good (i.e., have the property) or very bad (i.e., are very far from objects
having the property), we may gain a lot. Furthermore, if it is guaranteed that objects are either
good or very bad then we may not even need to run the decision procedure at all. The gain in such
a setting is enormous.

Being close to an object which has the property is a notion of approximation which, in certain
applications, may be of great value. In some cases, being close to an object having the property
translates to a standard notion of approximation. In other cases, it translates to a notion of “dual
approximation”. This point is clarified and exemplified below (by referring to specific properties).
In both cases, a fast property tester which is more efficient than the decision procedure is of value,
both if the decision procedure is feasible and more so if it is not.

Alternatively, we may be forced to take action, without having time to run a decision procedure,
while given the option of modifying the object in the future, at a cost proportional to the number
of added/omitted edges. For example, suppose you are given a graph which represents some design
problem, where Bipartite graphs corresponds to a good design and changes in the design correspond
to edge additions/omissions. Using a Bipartiteness tester you always accept a good design, and
reject with high probability designs which will cost a lot to modify. You may still accept bad
designs, but then you know that it will not cost you much to modify them later.

1.2 Testing Graph Properties — An Overview

As stated above, this survey focuses on testing graph properties. Two natural representations of a
graph are offered by its adjacency matrix and by its incidence list. Correspondingly, we consider
two representations of graphs by functions.

1. An N-vertex graph, G = (V,E), can be represented by the adjacency predicate, f:VxV —
{0, 1}, so that (u,v) € E if and only if f(u,v)=1.

2. An N-vertex graph of degree bound d, G = (V,E), can be represented by the incidence
Junction, g : V x[d] — V U {0}, so that g(u,i) = v if v is the i vertex incident at u, and
g(u,i) =0 ¢ V if u has less than ¢ neighbors.

As usual, the choice of representation has a fundamental impact on the potential algorithm. Here
the impact is even more dramatic since we seek algorithms which only inspect a relatively small
fraction of the object (graph represented by a function). Furthermore, there is another fundamental
impact of the choice of representation on the task of property testing. This has to do with our
definition of distance, which is relative to the size of the domain of the function. In particular,
distance € in the first representation means a symmetric difference of 2¢ - N? edges, whereas in the
second representation this means a symmetric difference of 2¢-dN edges. (In both cases, the extra
factor 2 is due to the redundant representation which is adopted for sake of simplicity.)

As usual, the first representation (i.e., adjacency predicate) is most appropriate for dense graphs
(i.e., |E| = Q(]V]?)), whereas the second representation (i.e., incidence function) is applicable and
most appropriate for graphs of degree bound d. We demonstrate the difference between the two
representations by considering the task of testing whether a graph is Bipartite.

1.2.1 Some known results in the first (i.e., adjacency predicate) representation

Testers of complexity which depends only on the distance parameter, ¢, are known for several natural
graph properties [17]. In particular, the following properties can be tested in query-complexity
poly(1/€) and time complexity exp(poly(1/¢)):

¢ k-Colorability, for any fixed & > 2. The query-complexity is poly(k/e€), and for k£ = 2 the
running-time is O(1/€*). The Bipartite Tester is presented in Section 2.

e p-Clique, for any p > 0. That is, does the N-vertex graph have a clique of size pN.

e p-CUT, for any p > 0. That is, does the N-vertex graph have a cut of size at least pN2. A
generalization to k-way cuts works within query-complexity poly((logk)/e).

e p-Bisection, for any p > 0. That is, can the vertices of the N-vertex graph be partitioned
into two equal parts with at most pN? edges going between them.

Remarks:

1. For all the above properties, in case the graph has the desired property, the testing algorithm
outputs some auxiliary information which allows to construct, in poly(1/€) - N-time, a parti-
tion which approximately obeys the property. For example, for p-CUT, we can construct a
partition with at least (p — €)N? crossing edges.

2. Except for Bipartite testing, running-time of poly(1/¢) is unlikely, as it will imply NP C BPP.

3. The k-Colorability tester has one-sided error: It always accepts k-colorable graphs. Further-
more, when rejecting a graph, this tester always supplies a poly(1/¢)-size subgraph which is
not k-colorable. All other algorithms have two-sided error, and this is unavoidable within
o(N') query-complexity.

All the above property testing problems are special cases of the General Graph Partition Tesling
Problem, parameterized by a set of lower and upper bounds. In this problem one needs to determine
whether there exists a k-partition of the vertices so that the number of vertices in each part as well
as the number of edges between each pair of parts falls between the corresponding lower and upper
bounds (in the set of parameters). A tester for the general problem has been presented in [17] too.
The algorithm uses 5(1{32/6)2k+0(1) queries, runs in time exponential in its query-complexity, and
has two-sided error.

Going beyond the General Graph Partition Problem, we remark that there are graph properties
which are very easy to test in this model (e.g., Connectivity, Hamiltonicity, and Planarity) [17]. The
reason being that for these properties either every N-vertex graph is at distance at most O(1/N)
from a graph having the desired property (and so for ¢ = Q(1/N) the trivial algorithm which always
accepts will do), or the property holds only for sparse graphs (and so for e = Q(1/N) one may reject
any non-sparse graph). On the other hand, there are (“unnatural”) graph properties in AP which
are extremely hard to test; namely, any testing algorithm must inspect at least Q(N?) of the vertex
pairs [17]. In view of the above, we believe that providing a characterization of graph properties,
according to the complexity of testing them, may be very challenging.

Relation to recognizing graph properties: Our notion of testing a graph property P is a
relaxation of the notion of deciding the graph property P which has received much attention in the
last two decades [30]. In the classical problem there are no margins of error, and one is required to
accept all graphs having property P and reject all graphs which lack it. In 1975 Rivest and Vuillemin
[35] resolved the Aanderaa—Rosenberg Conjecture [32], showing that any deterministic procedure
for deciding any non-trivial monotone N-vertex graph property must examine Q(N?) entries in the
adjacency matrix representing the graph. The query complexity of randomized decision procedures
was conjectured by Yao to be Q(N?). Progress towards this goal was made by Yao [38], King [27]
and Hajnal [21] culminating in an Q(N%3) lower bound. This stands in striking contrast to the
testing results of [17] mentioned above, by which some non-trivial monotone graph properties can
be tested by examining a constant number of locations in the matrix.

Application to the standard notion of approximation: The relation of testing graph prop-
erties to the standard notions of approximation is best illustrated in the case of Max-CUT. Any
tester for the class p-cut, working in time T'(¢, N), yields an algorithm for approximating the maxi-
mum cut in an N-vertex graph, up to additive error e N2, in time %-T(e, N). Thus, for any constant
€ > 0, using the above tester of [17], we can approximate the size of the max-cut to within eN?
in constant time. This yields a constant time approximation scheme (i.e., to within any constant
relative error) for dense graphs, improving over previous work of Arora et. al. [2] and de la Vega [13]
who solved this problem in polynomial-time (i.e., in O(N'<")~time and exp(O(1/¢%)) - N?~time,
respectively). In the latter works the problem is solved by actually constructing approximate max-
cuts. Finding an approximate max-cut does not seem to follow from the mere existence of a tester

for p-cut; yet, as mentioned above, the tester in [17] can be used to find such a cut in time linear
in N.

Relation to “dual approximation” (cf., [25,26]): To illustrate this relation, we consider the p-
Clique Tester mentioned above. The traditional notion of approximating Max—Clique corresponds
to distinguishing the case in which the max-clique has size at least p N from, say, the case in which
the max-clique has size at most pN/2. On the other hand, when we talk of testing “p-Cliqueness”,
the task is to distinguish the case in which an N-vertex graph has a clique of size pN from the case
in which it is e-far from the class of N-vertex graphs having a clique of size pN. This is equivalent
to the “dual approximation” task of distinguishing the case in which an N-vertex graph has a
clique of size pN from the case in which any p/N subset of the vertices misses at least e N? edges.
To demonstrate that these two tasks are vastly different we mention that whereas the former task
is NP-Hard, for p < 1/4 (see [9, 22, 23]), the latter task can be solved in exp(O(1/€?))-time, for
any p,e > 0. We believe that there is no absolute sense in which one of these approximation tasks
is more important than the other: Each of these tasks may be relevant in some applications and
irrelevant in others.

1.2.2 Some known results in the second (i.e., incidence function) representation

Testers of complexity which depends only on the distance parameter, ¢, are known for several
natural graph properties [19]. In particular, the following properties can be tested in time (and
thus query-complexity) poly(d/¢):

o Connectivity. The tester runs in time O(1/¢). In case the graph is connected the algorithm
always accepts, whereas in case the graph is e-far from being connected the algorithm rejects
with probability at least 2 and furthermore supplies a small counter-example to connectivity
(in the form of an induced subgraph which is disconnected from the rest of the graph).

e k-edge-connectivity. The algorithms run in time 5(1{:3 -e=3). For k = 2,3 improved algorithms
have running-times O(e™') and O(e?), respectively. Again, k-edge-connected graphs are
always accepted, and rejection is accompanied by a counter-example.

o k-vertex-connectivily, for k = 2,3. The algorithms run in time 6(6_’“).
e Planarity. The algorithm runs in time O(d*- ™).

o (ycle-Freeness. The algorithms run in time 6(6_3). Unlike all other algorithms, this algo-
rithm has two-sided error probability, which is unavoidable for testing this property (within

o(v/N) queries).

The complexity of Bipartiteness testing is considered in Section 3. We survey an Q(\/ﬁ) lower
bound on the query complexity of any tester [19] and a recent result of [20] by which a natural
algorithm of running time (and query complexity) 6(poly(1/e) -v/N) is a good tester. The lower
bound stands in sharp contrast to the situation in the first model (i.e., representation by adjacency
predicates), where Bipartite testing is possible in poly(1/¢)-time. We note that the O(poly(1/e) -
V/N)-time tester (for the incidence function representation) is significantly faster than the linear
time decision procedure (provided that € is not too small).

1.3 Combinatorics beyond Graph Theory — Testing Monotonicity

In this subsection we mention a partial result referring to testing a combinatorial property (which
is seemingly unrelated to graph theory). A function f :{0,1}* — {0,1} is called monotone if
f(z) < f(y), for every z < y, where the partial order between strings is defined analogously to the

set inclusion relation. That is, 1292, < y1y2 - Yn if 2; < y; for all i’s, and = # y. Let w(z)
denote the weight of x (i.e., the number of 1’s in). The following natural test of Monotonicity
was was suggested and partially analyzed in [18].

Algorithm 1 (Candidate Monotonicity Tester):
Given n, € and oracle access to a function f:{0,1}"— {0, 1}, repeal 2n? /e times:

1. Uniformly select x € {0,1}", and obtain the value f(z).

2. In case f(z) =1, obtain the values of f(y) for all y’s satisfying y > & and w(y) = w(z)+ 1.
If one of these f(y)’s is 0 then reject.

3. Analogously, in case f(x) = 0, obtain the values of f(y) for all y’s satisfying y < x and
w(y) = w(z) — 1. If one of these f(y)’s is 1 then reject.

If all iterations were completed without rejecting then accept.

The conjecture that the above constitutes a tester for Monotonicity was reduced in [18] to the
following combinatorial conjecture referring to the Boolean Lattice (cf., background in [12]). For
each ¢, 0 < i < n,let L; C {0,1}" denote the set of n-bit long strings of weight 7. Let G,, be the
leveled directed (acyclic) graph over the vertex set {0, 1}", where there is a directed edge from y to
z if and only if z < y and w(z) = w(y) — 1 (i.e., 2 and y are in adjacent L;’s).

Conjecture 1 Let r and s be integers satisfying, 0 < r < s < n, and let R,S C {0,1}", be sets
such that R C L., and S C L, and |R| = |S| = m. Suppose that there exists a 1-to-1 mapping
from S to R such that for every y € S, there is a directed path in G, from y to ¥(y). Then there
exist m vertex-disjoint directed paths from S to R in G, .

We stress that these vertex-disjoint paths do not have to respect ¥. In fact, if one requires these
paths to respect ¢ then the conjecture becomes false (cf., [18]).

Theorem 1 [18]: If Conjecture 1 holds then Algorithm 1 is a property tester for monotonicity.
In particular, if f is monotone then Algorithm 1 always accepts, whereas if f is e-far from being
monotone then Algorithm 1 rejects with probability at least 2/3.

1.4 Rest of this survey

In Sections 2 and 3 we consider the complexity of testing Bipartiteness in the two graph represen-
tations discussed above: In Section 2 we consider representation by an adjacency predicate, and in
Section 3 by an incidence function. Concluding remarks appear in Section 4.

2 Testing Bipartiteness in the First Representation

In this section we consider the representation of N-vertex graphs by adjacency predicates mapping
pairs {1,2,..., N} x{1,2,..., N} to {0, 1}. The bipartite tester is extremely simple: Tt selects a tiny,
random set of vertices and checks whether the induced subgraph is bipartite.

Algorithm 2 (Bipartite Tester in the first model [17]):
On input N, d, € and oracle access to an adjacency predicate of an N -vertex graph, G = (V,E):

1. Uniformly select a subset of 6(1/62) vertices of V.
2. Accept if and only if the subgraph induced by this subsel is Bipartite.

Step (2) amounts to querying the predicate on all pairs of vertices in the subset selected at Step (1).
As will become clear from the analysis, it actually suffice to query only O(1/€?) of these pairs.

Theorem 2 [17]: Algorithm 2 is a Bipartite Tester (in the adjacency predicate representation).
Furthermore, the algorithm always accepts a Bipartite graph, and in case of rejection it provides a
witness of length poly(1/¢) (that the graph is not bipartite).

Proof: Let R be the subset selected in Step (1), and Gg the subgraph induced by it. Clearly, if G
is bipartite then so is Gg, for any R. The point is to prove that if G is e-far from bipartite then
the probability that Gy is bipartite is at most 1/3. Thus, from this point on we assume that at
least e N? edges have to be omitted from G to make it bipartite.

We view R as a union of two disjoint sets U and S, where ¢ = |U| = O(e~! - log(1/¢)) and

m Y |S| = O(t/€). We will consider all possible partitions of U, and associate a partial partition of
V with each such partition of U. The idea is that in order to be consistent with a given partition,
(U1, Us,), of U, all neighbors of U; (resp., Uy) must be placed opposite to U; (resp., U,). We will
show that, with high probability, most high-degree vertices in V do neighbor U and so are forced
by its partition. Since there are relatively few edges incident to vertices which do not neighbor U, it
follows that with very high probability each such partition of U is detected as illegal by Ggr. Details
follow, but before we proceed let us stress the key observation: It suffices to rule out relatively few
(partial) partitions of V (i.e., these induced by partitions of U), rather than all possible partitions
of V.

We use the notations I'(v) € {u: (u,v)€E} and T(X) & U,exI(v). Given a partition (Us, Us)
of U, we define a (possibly partial) partition, (Vi,Vs), of V so that V, = I'(Uy) and V, = I'(Uy)
(assume, for simplicity that V; NV, is indeed empty). As suggested above, if one claims that G can
be “bipartited” with U; and U, on different sides then V; = I'(U;) must be on the opposite side to
U, (and I'(Uy) opposite to Uy). Note that the partition of U places no restriction on vertices which
have no neighbor in U. Thus, we first ensure that most “influential” (i.e., “high-degree”) vertices
in V have a neighbor in U.

Definition 2.1 (high-degree vertices and good sets): We say that a vertex v € V is of high-degree
if it has degree al least $N. We call U good for V if all bul at most N of the high-degree vertices
in 'V have a neighbor in U.

Note that NOT insisting that U neighbors all high-degree vertices allows us to show that a random
U of size unrelated to the size of the graph has this feature. (If we were to insist that U neighbors
all high-degree vertices then we would have had to use |U| = Q(log V).)

Claim 2.2 With probability at least 5/6, a uniformly chosen set U of size t is good.

Proof: For any high-degree vertex v, the probability that v does not have any neighbor in a
uniformly chosen U is at most (1 — €/3)" < < (since { = Q(e "log(1/¢))). Hence the expected
number of high-degree vertices which do not have a neighbor in a random set U is less than -5 - NV,

and the claim follows by Markov’s Inequality. O

Definition 2.3 (disturbing a partition of U): We say that an edge disturbs a partition (U, Us) of
U if both is end-points are in the same T'(U;), for some i € {1,2}.

Claim 2.4 For any good set U and any partition of U, at least $N? edges disturb the partition.

Proof: FEach partition of V has at least e N? violating edges (i.e., edges with both end-points on
the same side). We upper bound the number of these edges which are not disturbing. Actually, we
upper bound the number of edges which have an end-point not in I'(U).

e The number of edges incident to high-degree vertices which do not neighbor U is bounded by
SN - N (at most g N such vertices each having at most N incident edges).

e The number of edges incident to vertices which are not of high-degree vertices is bounded by
N - £N (at most N such vertices each having at most $N incident edges).

This leaves us with at least $N? violating edges connecting vertices in T'(U) (i.e., edges disturbing
the partition of U). O

The theorem follows by observing that Gg is bipartite only if either (1) the set U is not good;
or (2) the set U is good and there exists a partition of U so that none of the disturbing edges occurs
in Gg. Using Claim 2.2 the probability of event (1) is bounded by 1/6; and using Claim 2.4 the
probability of event (2) is bounded by the probability that there exists a partition of U so that
none of the corresponding > £N? disturbing edges has both edge-point in S. Actually, we pair the
m vertices of S, and consider the probability that none of these pairs is a disturbing edge for a
partition of U. Thus the probability of event (2) is bounded by

m/2 1
2|U| . <1 — E) < -
3 6

where the inequality is due to m = Q(¢/¢). The theorem follows. W

Comment: The procedure employed in the proof yields a poly(1/¢) - N-time algorithm for 2-
partitioning a bipartite graph so that at most e N? edges lie within the same side. This is done by
running the tester, determining a partition of U (defined as in the proof) which is consistent with
the bipartite partition of R, and partitioning V as done in the proof (with vertices which do not
neighbor U, or neighbour both Uy, Us, placed arbitrarily). Thus, the placement of each vertex is
determined by inspecting at most 6(1/6) entries of the adjacency matrix.

3 Testing Bipartiteness in the Second Representation

In this section we consider the representation of N-vertex graphs of degree bound d by incidence
functions mapping pairs {1,2,..., N} x {1,2,...,d} to {0,1,2,...,N}.

3.1 A lower bound

In contrast to Theorem 2, under the incidence function representation there exists no Bipartite
tester of complexity independent of the graph size.

Theorem 3 [19]: Testing Bipartiteness (with constant ¢ and d) requires Q(vV' N) queries (in the
incidence function representation).

Proof Idea: For any (even) N, we consider the following two families of graphs:

1. The first family, denoted G, consists of all degree-3 graphs which are composed by the union
of a Hamiltonian cycle and a perfect matching. That is, there are N edges connecting the
vertices in a cycle, and the other N/2 edges are a perfect matching.

2. The second family, denoted G, is the same as the first except that the perfect matchings
allowed are restricted as follows: the distance on the cycle between every two vertices which
are connected by an perfect matching edge must be odd.

Clearly, all graphs in GI¥ are bipartite. One first proves that almost all graphs in GV are far from
being bipartite. Afterwards, one proves that a testing algorithm that performs less than av/N
queries (for some constant a < 1) is not able to distinguish between a graph chosen randomly from
G2 (which is always bipartite) and a graph chosen randomly from G¥ (which with high probability
will be far from bipartite). Loosely speaking, this is done by showing that in both cases the
algorithm is unlikely to encounter a cycle (among the vertices it has inspected). W

3.2 An algorithm

The lower bound of Theorem 3 is essentially tight. Furthermore, the following natural algorithm
constitutes a Bipartite tester of running time poly((log N)/¢)-/'N.

Algorithm 3 (Bipartite Tester in the second model [20]):
On input N, d, € and oracle access to an incidence function for an N -vertex graph, G = (V,E), of
degree bound d, repeat T = O(1) times:

1. Uniformly select s in V.

2. (Try to find an odd cycle through vertex s):

(a) Perform K Lt poly((log N)/€) - VN random walks starting from s, each of length

def

L poly((log N)/e).
(b) Let Ry (resp., Ry) denote the vertices set reached from s in an even (resp., odd) number
of steps in any of these walks.

(c) If Ro N Ry is not empty then reject.

If the algorithm did not reject in any one of the above T iterations, then it accepts.

Theorem 4 [20]: Algorithm 3 is a Bipartite Tester (in the incidence function representation).
Furthermore, the algorithm always accepts a Bipartite graph, and in case of rejection it provides a
witness of length poly((log N')/¢) (that the graph is not bipartite).

Motivation — the special case of rapid mixing graphs. The proof of Theorem 4 is quite
involved. As a motivation, we consider the special case where the graph has a “rapid mixing”
feature. It is convinient to modify the random walks so that at each step each neighbour is
selected with probability 1/2d, and otherwise (with probability at least 1/2) the walk remains in
the present vertex. Furthermore, we will consider a single execution of Step (2) starting from an
arbitrary vertex, s, fixed in the rest of the discussion. The rapid mixing feature we assume is that,
for every vertex v, a (modified) random walk of length I starting at s reaches v with probability
approximately 1/N (say, upto a factor of 2). Note that if the graph is an expander then this is
certainly the case (since L > O(log N)).

The key quantities is the analysis are the following probabilities, referring to the parity of the
length of a path obtained from the random walk by omitting the self-loops (transitions which
remain at current vertex). Let p°(v) (resp., p'(v)) denote the probability that a (modified) random
walk of length L starting at s reaches v while making an even (resp., odd) number of real (i.e.,
non-self-loop) steps. By the rapid mixing assumption we have (for every v € V)

<P 1) < = (1)

2N N

We consider two cases regarding the sum Y, . p°(v)p'(v) — In case the sum is (relatively) “small”,
we show that V can be 2-partitioned so that there are relatively few edges between vertices placed
in the same side, which implies that G is close to be bipartite. Otherwise (i.e., when the sum
is not “small”), we show that with significant probability, when Step (2) is started at vertex s
it is completed by rejecting G. The two cases are presented in greater detail in the following
(corresponding) two claims.

Claim 3.1 Suppose 3, v P°(v)p'(v) < €/50N. Let V, v e V:p'v) < p'(v)} and V, =
V\ Vy. Then, the number of edges with both end-points in the same V, is bounded above by edN .

Proof Sketch: Consider an edge (u,v) where, without loss of generality, both u and v are in
Vy. Then, both p'(v) and p'(u) are greater than I - 7. However, one can show that p°(v) >
é -p'(u): Observe that a walk of length I, — 1 with path-parity 1 ending at u is almost as likely
as such a walk having length I, and that once such a walk reaches u it continues to v in the next
step with probability exactly 1/2d. Thus, such an edge contributes at least % to the sum
> wev P’(v)p'(v). The claim follows. W

Claim 3.2 Suppose 3_, v p°(v)p'(v) > €/50N, and that Step (2) is started with vertex s. Then,
with probability at least 2/3, the set Ry N Ry is not emply (and rejection follows).

Proof Sketch: Consider the probability space defined by an execution of Step (2) with start
vertex s. We define random variables (; ; representing the event that the vertex encountered in the
L™ step of the i*" walk equals the vertex encountered in the L™ step of the 5™ walk, and that the
i** walk corresponds to an even-path whereas the 5*® to an odd-path. Then

E(|Ro N Ry|) > ZE(Q’J)

i#]
= K(K-1)-) p’(v)p'(v)
vEV
500N
> Y P(0)p'(v)
€ vEV
> 10

where the second inequality is due to the setting of K, and the third to the claim’s hypothesis.
Intuitively, we expect that with high probability |RoNR;| > 0. This is indeed the case, but proving it
is less straightforward than it seems, the problem being that the (; ;’s are not pairwise independent.
Yet, since the sum of the covariances of the dependent (; ;’s is quite small, Chebyshev’s Inequality

is still very useful (cf., [1, Sec. 4.3]). Specifically, letting p = Svev P2(v)p'(v) (= E((y)), and

10

= def
Ci,j = Gij — M, We get:

r S V(Ei;&j Cu)
P (Z Cw - 0) < (KZ,u)Q

i#]

1 5 o
= T (Z E(C;)+2) E(cz-,,-cz-,,n)

i,k
1 2

< K?u + Kp?

“E(¢1,2¢1.3)

For the second term, we observe that Pr((; 5 = (23 = 1) is upper bounded by the probability that
(12 = 1 times the probability that the L™ vertex of the first walk appears as the L™ vertex of the
third path. Using the rapid mixing hypothesis, we upper bound the latter probability by 2/N, and
obtain

1 2 2

P = .
I'(|R0 N R1| 0) < K?u K;ﬂ N

<

W

where the last inequality uses K < N/4, u > ¢/50N and K? > 6 - 50N /e. The claim follows. W

Beyond rapid mixing graphs. The proof in [20] refers to a more general sum of products; that
is, 3", ev Podd(?)Peven(v), where U C V is an appropriate set of vertices, and pyaa(v) (resp., Peven(?))
is the probability that a random walk (starting at s) passes through v after more than /2 steps
and the corresponding path to v has odd (resp., even) parity. Much of the analysis in [20] goes
into selecting the appropriate U (and an appropriate starting vertex s), and pasting together many
such U’s to cover all of V. Loosely speaking, U and s are selected so that there are few edges
from U and the rest of the graph, and poqq(%) 4+ peven(u) = 1/4/|V]-|U], for every u € U. The
selection is based on the “combinatorial treatment of expansion” of Mihail [31]. Specifically, we use
the couterpositive of the standard analysis, which asserts that rapid mixing occurs when all cuts
are relatively large, to assert the existence of small cuts which partition the graph so that vertices
reached with relatively high probability (in a short random walk) are on one side and the rest of
the graph on the other. The first set corresponds to U above and the cut is relatively small with
respect to U. A start vertex s for which the corresponding sum is big is shown to cause Step (2)
to reject (when started with this s), whereas a small corresponding sum enables to 2-partition U
while having few violating edges among the vertices in each part of U.

The actual argument of [20] proceeds in iterations. In each iteration a vertex s for which Step (2)
accepts with high probability is fixed, and an appropriate set of remaining vertices, U, is found.
The set U is then 2-partitioned so that there are few violating edges inside U. Since we want to
paste all these partitions together, U may not contain vertices treated in previous iterations. This
complicates the analysis, since it must refer to the part of G, denoted H, not treated in previous
iterations. We consider walks over an (imaginary) Markov Chain represting the H-part of the walks
performed by the algorithm on G. Statements about rapid mixings are made with respect to the
Markov Chain, and linked to what happens in random walks performed on G. In particular, a
subset U of H is determined so that the vertices in U are reached with probability = 1//|V|-|U]
(in the chain) and the cut between U and the rest of H is small. Linking the sum of products
defined for the chain with the actual walks performed by the algorithm, we infer that U may be

11

partitioned with few violating edges inside it. Edges to previously treated parts of the graphs are
charged to these parts, and edges to the rest of H\ U are accounted for by using the fact that this
cut is small (relative to the size of U).

4 Concluding Remarks

Randomness plays a pivotal role in the theory of property testing: A deterministic tester for any
“non-degenerate” property (and in particular for any of the properties discussed above) needs to
query the function on a constant fraction of its domain, and so is of little interest.

The results regarding property testing, known to date, are rather sporadic. For more than a
dozen natural graph properties, testers are known in the adjacency predicate representation, and
for some testers are known in the incidence function representation. More than half a dozen of
these testers are interesting, and though they share some techniques, no general structure seems
to arise. Some negative results in [17] seem to indicate that general results may be hard to obtain:
For example, it was shown that there exist properties in AP which require high query complexity
for testing. Also some properties are easy to test with one-sided error, whereas other require two-
sided error to be tested efficiently. Thus, obtaining “structural” results regarding easily testable
properties may be very challenging as well as of great interest.

One of the original motivations of [17] was to use property testing (with or without queries) as a
preliminary stage to learning. So far no example has been shown for a natural concept class which
is PAC-learnable and yet has a tester which is more efficient that the known learning algorithm
for the class. Furthermore, all the natural testers presented so far utilize queries, and it will be
interesting to see a tester (for a natural property) which makes no queries (but rather works based
on random examples). Likewise, it will be interesting to see a tester which works with respect to
any distribution (i.e., distribution-free).

Acknowledgments

This survey is based on joint work with Shafi Goldwasser and Dana Ron [17, 18], and joint works
with Dana Ron [19, 20].

References

[1] N. Alon and J.H. Spencer, The Probabilistic Method, John Wiley & Sons, Inc., 1992.

[2] S. Arora, D. Karger, and M Karpinski. Polynomial time approximation schemes for dense
instances of NP-hard problems. In Proceedings of the Twenty-Seventh Annual ACM Symposium
on the Theory of Computing, pages 284-293, 1995.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification and intractabil-
ity of approximation problems. In Proceedings of the Thirty-Third Annual Symposium on
Foundations of Computer Science, pages 14-23, 1992.

[4] S. Arora and S. Safra. Probabilistic checkable proofs: A new characterization of NP. In Pro-
ceedings of the Thirty-Third Annual Symposium on Foundations of Compuler Science, pages
1-13, 1992.

12

[5] M. Bellare, D. Coppersmith, J. Hastad, M. Kiwi, and M. Sudan. Linearity testing in character-
istic two. In Proceedings of the Thirty-Sizth Annual Symposium on Foundalions of Computer
Science, pages 432-441, 1995.

[6] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover inter-
active protocols. Computational Complexity, 1(1):3-40, 1991.

[7] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking computations in polylogarithmic
time. In Proceedings of the Twenty-Third Annual ACM Symposium on Theory of Compuling,
pages 21-31, 1991.

[8] M. Bellare, S. Goldwasser, C. Lund, and A. Russell. Efficient probabilistically checkable
proofs and applications to approximation. In Proceedings of the Twenty-Fifth Annual ACM
Symposium on the Theory of Compuling, pages 294-304, 1993.

[9] M. Bellare, O. Goldreich, and M. Sudan. Free bits, pcps and non-approximability — towards
tight results. Extended abstract in Proceedings of the Thirty-Sizth Annual Symposium on
Foundations of Computer Science, pages 422-431, 1995. To appear in SICOMP.

[10] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to numerical
problems. Journal of Computer and System Sciences, 47:549-595, 1993.

[11] M. Bellare and M. Sudan. Improved non-approximability results. In Proceedings of the 26th
Annual ACM Symposium on the Theory of Compuling, pages 184-193, 1994.

[12] B. Bollobas. Combinatorics. Cambridge University Press, 1986.

[13] W. F. de la Vega. MAX-CUT has a randomized approximation scheme in dense graphs. To
appear in Random Structures and Algorithms, 1994.

[14] U. Feige, S. Goldwasser, L. Lovisz, S. Safra, and M. Szegedy. Approximating clique is almost
NP-complete. In Proceedings of the Thirty-Second Annual Symposium on Foundations of
Computer Science, pages 2—-12, 1991.

[15] A. Frieze and R. Kanan. The regularity lemma and approximation schemes for dense problems.
In Proceedings of the Thirty-Seventh Annual Symposium on Foundations of Computer Science,
pages 12-20, 1996.

[16] P. Gemmell, R. Lipton, R. Rubinfeld, M. Sudan, and A. Wigderson. Self-testing/correcting
for polynomials and for approximate functions. In Proceedings of the Twenty-Third Annual
ACM Symposium on Theory of Computing, pages 32-42, 1991.

[17] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learn-
ing and approximation. Extended abstract in Proc. of the 37th IFEFE Symp. on Foun-
dation of Computer Science, pages 339-348, 1996. Available as TR96-057 of FCCC,
http://www.eccc.uni-trier.de/eccc/, 1996.

[18] O. Goldreich, S. Goldwasser, and D. Ron. A note on
testing monotinicity. Unpublished working draft, 1996. Manuscript, 1997. Available from
http://theory.lcs.mit.edu/~oded/test.html.

[19] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. In Proc. of the 29th
ACM Symp. on Theory of Computing, pages 406415, 1997.

13

[20] O. Goldreich and D. Ron. A sublinear Bipartite Tester for Bounded Degree Graphs.
Manuscript, 1997. Available from http://theory.lcs.mit.edu/~oded/test. .html.

[21] P. Hajnal. An Q(n*/3) lower bound on the randomized complexity of graph properties. Com-
binatorica, 11(2):131-144, 1991.

[22] J. Hastad. Testing of the long code and hardness for clique. In Proc. of the 28th ACM Symp.
on Theory of Computing, pages 11-19, 1996.

[23] J. Hastad. Clique is hard to approximate within n'=¢. In Proc. of the 37th IEEE Symp. on
Foundation of Computer Science, pages 627-636, 1996.

[24] J. Hastad. Getting optimal in-approximability results. In Proc. of the 29th ACM Symp. on
Theory of Computing, pages 1-10, 1997.

[25] D.S. Hochbaum and D. B. Shmoys. Using dual approximation algorithms for scheduling prob-
lems: Theoretical and practical results. Journal of the Association for Computing Machinery,
34(1):144-162, January 1987.

[26] D. S. Hochbaum and D. B. Shmoys. A polynomial approximation scheme for machine schedul-
ing on uniform processors: Using the dual approximation approach. SIAM Journal on Com-
puting, 17(3):539-551, 1988.

[27] V. King. An Q(n5/*) lower bound on the randomized complexity of graph properties. Combi-
natorica, 11(1):23-32, 1991.

[28] M. Kiwi. Probabilistically Checkable Proofs and the Testing of Hadamard-like Codes. PhD
thesis, Massachusetts Institute of Technology, 1996.

[29] R. J. Lipton. New directions in testing. Unpublished manuscript, 1989.

[30] L. Lovasz and N. Young. Lecture notes on evasiveness of graph properties. Technical Report
TR-317-91, Princeton University, Computer Science Department, 1991.

[31] M. Mihail. Conductance and convergence of Markov chains — A combinatorial treatment of
expanders. In Proceedings 30th Annual Symp. on Foundations of Computer Science, pages
526531, 1989.

[32] A. L. Rosenberg. On the time required to recognize properties of graphs: A problem. SIGACT
News, 5:15-16, 1973.

[33] R. Rubinfeld. Robust functional equations and their applications to program testing. In
Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994. To
appear in SIAM Journal on Compuling.

[34] R. Rubinfeld and M. Sudan. Robust characterization of polynomials with applications to
program testing. SIAM Journal on Computing, 25(2):252-271, 1996.

[35] R. L. Rivest and J. Vuillemin. On recognizing graph properties from adjacency matrices.
Theoretical Computer Science, 3:371-384, 1976.

[36] L. Trevisan. Recycling queries in PCPs and in linearity tests. Manuscript, 1997.

14

[37] L. G. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134-1142,
November 1984.

[38] A. C. C. Yao. Lower bounds to randomized algorithms for graph properties. In Proceedings of

the Twenly-Fighth Annual Symposium on Foundalions of Computer Science, pages 393-400,
1987.

15

