Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:

E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW:

http://www.eccc.uni-trier.de/eccc/
T R97- 058 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Notes on Levin’s Theory of Average-Case Complexity

Oded Goldreich*
Department of Computer Science and Applied Mathematics
Weizmann Institute of Science, Rehovot, ISRAEL.
E-mail: oded@wisdom.weizmann.ac.il

November 1997

Abstract

In 1984, Leonid Levin has initiated a theory of average-case complexity. We provide an
exposition of the basic definitions suggested by Levin, and discuss some of the considerations
underlying these definitions.

Acknowledgement and Warning: Much of the text was reproduced from expositionary mate-
rial contained in [1], which in turn was based on [4]. Thus, much of the technical exposition is 10
years old; I would have written some things differently today.

*Written while visting LCS, MIT.

1 Introduction

The average complexity of a problem is, in many cases, a more significant measure than its worst
case complexity. This has motivated the development of a rich area in algorithmic research — the
probabilistic analysis of algorithms [11, 13]. However, this line of research has so far been applicable
only to specific algorithms and with respect to specific, typically uniform, probability distributions.

The general question of average case complexity was addressed for the first time by Levin [15].
Levin’s work can be viewed as the basis for a theory of average NP-completeness, much the same way
as Cook’s [2] (and Levin’s [14]) works are the basis for the theory of NP-completeness. Subsequent
works [7, 18, 8] have provided few additional complete problems. Other basic complexity problems,
such as decision versus search, were studied in [1].

Levin’s average-case complexity theory in a nutshell. An average case complexity class

consists of pairs, called distributional problems. Each such pair consists of a decision (resp., search)

problem and a probability distribution on problem instances. We focus on the class Dis‘cNf’(1§f<Nl)7

P-computable), defined by Levin [15], which is a distributional analogue of NP: It consists of NP
decision problems coupled with distributions for which the accumulative measure is polynomail-
time computable. That is, P-computable is the class of distributions for which there exists a
polynomial time algorithm that on input z computes the total probability of all strings y < =.
The easy distributional problems are those solvable in “average polynomial-time” (a notion which
surprisingly require careful formulation). Reductions between distributional problems are defined
in a way guaranteeing that if II; is reducible to Il and II, is in average polynomial-time, then so
is II;. Finally, it is shown that the class DistNP contains a complete problem.

Levin’s average-case theory, revisited. Levin’s laconic presentation [15] hides the fact that
choices has been done in the development of the average-case complexity theory. We discuss
some of this choices here. Firstly, one better think of the motivation as to provide a theory of
efficient computation (as suggested above), rather than a theory of infeasible ones (e.g., as in
Cryptography). We note that a theory of useful-for-cryptography infeasible computations does
exist (cf., [5, 6]). A key difference is that in Cryptography we needs problems for which one may
generate instance-solution pairs so that solving the problem given only the instance is hard. In the
theory of average-case complexity considered below, we consider problems which are hard to solve,
but do not require an efficient procedure for generating hard (on the average) instances coupled
with solutions.

Secondly, one has to admit that the class DistNP (i.e., specifically, the choice of distributions)
is somewhat problematic. Indeed P-computable distributions seem “simple”, but it is not clear
if they exhaust all natural “simple” distributions. A much wider class, which is easier to defend,
is the class of all distributions having an efficient algorithm for generting instances (according to
the distribution). One may argue that the instances of any problem we may need to solve are
generated efficiently by some process, and so the latter class of P-samplable distribution suffices
for our theory [1]. Fortunately, it was show [10] that any distributional problem which is complete
for DistNP=(NP, P-computable), is also complete with respect to the class (NP, P-samplable).
Thus, in retrospect, Levin’s choice only makes the theory stronger: It requires to select complete
distributional problems from the restricted class (NP, P-computable), whereas hardness holds with
respect to the wider class (NP, P-samplable).

As hinted above, the definition of average polynomial-time is less straightforward than one may
expect. The obvious attempt at formulation this notion leads to fundamental problems which, in

our opinion, deem it inadequate. (For a detailed discussion of this point, the reader is referred
to the Appendix.) We believe that once the failure of the obvious attempt is understood, Levin’s
definition (presented below) does look a natural one.

2 Definitions and Notations

In this section we present the basic definitions underlying the theory of average-case complexity.
Most definitions originate from [Levin 84], but the reader is advised to look for further explanations
and motivating discussions elsewhere (e.g., [11, 9, 4]).

For sake of simplicity, we consider the standard lexicographic ordering of binary strings. Any
fixed efficient enumeration will do. (An efficient enumeration is a 1-1 and onto mapping of strings
to integers which can be computed and inverted in polynomial-time.) By writing z < y we mean
that the string z precedes y in lexicographic order, and y — 1 denotes the immediate predecessor of
y. Also, we associate pairs, triples etc. of binary strings with single binary strings in some standard
manner (i.e. encoding).

Definition 1 (Probability Distribution Function): A distribution function g : {0,1}* — [0,1] is a
non-decreasing function from strings to the unit interval [0,1] which converges to one (i.e., u(0) > 0,
w(z) < p(y) for each © < y, and lim, .., p(z) = 1). The density function associated with the
distribution function p is denoted p' and defined by p/(0) = u(0) and p'(z) = p(z) — p(z — 1) for
every x > 0.

Clearly, u(z) = 3°,, #'(y). For notational convenience, we often describe distribution functions
converging to some ¢ # 1. In all the cases where we use this convention it is easy to normalize the
distribution, so that it converges to one. An important example is the uniform distribution function

po defined as pp(z) = # -271*1. (A minor modification which does converge to 1 is obtained by

letting up(z) -27lel)y

_ 1
sl (Izl+1)
Definition 2 (A Distributional Problem): A distributional decision problem (resp., distributional
search problem) is a pair (D,p) (resp. (S,u)), where D : {0,1}* — {0,1} (resp., S C {0,1}* x
{0,1}*) and p : {0,1}* — [0, 1] is a distribution function.

In the sequel we consider mainly decision problems. Similar formulations for search problems can
be easily derived.

2.1 Distributional-NP

Simple distributions are identified with the P-computable ones. The importance of restricting at-
tention to simple distributions (rather than allowing arbitrary ones) is demonstrated in [1, Sec. 5.2].

Definition 3 (P-computable): A distribution p is in the class P-computable if there is a deter-
ministic polynomial time Turing machine that on input & outputs the binary expansion of p(z) (the
running time is polynomial in |z|).

It follows that the binary expansion of p(z) has length polynomial in |z|. An necessary condition
for distributions to be of interest is their putting noticeable probability weight on long strings (i.e.,
for some polynomail, p, and sufficiently big n the probability weight assigned to n-bit strings should

be at least 1/p(n)). Consider to the contrary the density function u'(z) L' 2-31sl An algorithm of

running time #(z) = 2/ will be considered to have constant on the average running-time w.r.t this
po(as g p'(z) - t(le]) = X, 27" = 1),

If the distribution function p is in P-computable then the density function, y', is computable
in time polynomial in |z|. The converse, however, is false, unless P = NP (see [9]). In spite of
this remark we usually present the density function, and leave it to the reader to verify that the
corresponding distribution function is in P-computable.

We now present the class of distributional problems which corresponds to (the traditional) NP.
Most of results in the literature refer to this class.

Definition 4 (The class DistNP): A distributional problem (D,) belongs to the class DistNP if
D is an NP-predicate and p is in P-computable. DistNP is also denoted (NP, P-computable).

A wider class of distributions, denoted P-samplable, gives rise to a wider class of distributional
NP problems which was discussed in the introduction: A distribution g is in the class P-samplable
if there exists a polynomial P and a probabilistic algorithm A that outputs the string z with
probability g'(z) within P(|z|) steps. That is, elements in a P-samplable distribution are generated
in time polynomial in their length. We comment that any P-computable distribution is P-samplable,
whereas the converse if false (provided one-way functions exist). For a detailed discussion see [1].

2.2 Average Polynomial-Time

The following definitions, regarding average polynomial-time, may seem obscure at first glance. It
is important to point out that the naive formalizations of these definitions suffer from serious prob-
lems such as not being closed under functional composition of algorithms, being model dependent,
encoding dependent etc. For a more detailed discussion, see Appendix.

Definition 5 (Polynomial on the Average): A function f : {0,1}* — N is polynomial on the
average with respect to a distribution p if there exists a constant € > 0 such that

Z ,u'(a:) f('L)6 < 00

.’L‘E{O,l}* |x|

The function l(z) = f(x)® is linear on the average w.r.t. p.

Thus, a function is polynomial on the average if it is bounded by a polynomial in a function which
is linear on the average. In fact, the basic definition is that of a function which is linear on the
average; see [1, Def. 2].

Definition 6 (The class Average-P): A distributional problem (D, p) is in the class Average-P if
there exists an algorithm A solving D, so that the running time of A is polynomial on the average
with respect to the distribution p.

We view the classes Average-P and DistNP as the average-case analogue of P and NP (respectively).
We mention that if EXP # NEXP (i.e., DTime(2°")) # NTime(2°("))) then Average-P does not
contain all of DistNP (cf., [1]).

2.3 Reducibility between Distributional Problems

We now present definitions of (average polynomial time) reductions of one distributional problem
to another. Intuitively, such a reduction should be efficiently computable, yield a valid result and
“preserve” the probability distribution. The purpose of the last requirement is to ensure that
the reduction does not map very likely instances of the first problem to rare instances of the
second problem. Otherwise, having a polynomial time on the average algorithm for the second
distributional problem does not necessarily yield such an algorithm for the first distributional
problem. Following is a definition of randomized Turing reductions. Definitions of deterministic
and many-to-one reductions can be easily derived as special cases.

Definition 7 (Randomized Turing Reductions): We say that the probabilistic oracle Turing ma-
chine M randomly reduces the distributional problem (D1, 1) to the distributional problem (Da, pis)
if the following three conditions hold.

1) Efficiency: Machine M is polynomial time on the average taken over x with distribution u, and
the internal coin tosses of M with uniform probability distribution (i.e., let ty(x,r) be the
running time of M on input x and internal coin tosses r, then there exists € > 0 such that
> () po(r) - %%L < 00, where g is the uniform distribution).

2) Validity: For every = € {0, 1},
D 2
Prob(M“2(z) = Di(z)) > 3

where MP2(x) is the random variable (determined by M ’s internal coin tosses) which denotes
the output of the oracle machine M on input x and access to oracle for Ds.

3) Domination: There exists a constant ¢ > 0 such that for every y € {0,1}*,

1

© Y Asku(z,y) ()

oY) > —
|y| Z'E{OJ}*

where Asky(z,y) is the probability (taken over M ’s internal coin tosses) that “machine M
asks query y on input z”.

In the definition of deterministic Turing reductions MP2(z) is determined by z (rather than being
a random variable) and Asky(z,y) is either 0 or 1 (rather than being any arbitrary rational in
[0,1]). In case of a many-to-one deterministic reduction, for every z, we have Asky(z,y) =1 for a
unique y.

It can be proven that if (D, pt1) is deterministically (resp., randomly) reducible to (D,, o) and if
(D3, o) is solvable by a deterministic (resp., randomized) algorithm with running time polynomial
on the average then so is (Dy, ui1).

Reductions are transitive in the special case in which they are honest; that is, on input 2 they
ask queries of length at least |z, for some constant ¢ > 0. All known reductions have this property.

2.4 A Generic DistNP Complete Problem

The following distributional version of Bounded Halting, denoted gy = (BH, upn), is known to
be DistNP-complete (see Section 3).

Definition 8 (distributional Bounded Halting):

e Decision: BH(M,z,1%) = 1 iff there exists a computation of the non-deterministic machine
M on input x which halts within k steps.

e Distribution: The distribulion upy s defined in terms of its density function

/ ky def 1 . 1 i
Hpr(M,x,1%) = [MZ- 201 (g2 2ol k2

Note that ply, is very different from the uniform distribution on binary strings (e.g., consider
relatively large k). Yet, as noted by Levin, one can easily modify IIgy so that has a “uniform”
distribution and is DistNP-complete with respect to randomized reduction. (Hint: replace the
unary time bound by a string of equal length, assigning each such string the same probability.)

3 DistNP-completeness of IIzy

The proof, presented here, is due to Guretich [7] (an alternative proof is implied by Levin’s original
paper [15]).

In the traditional theory of ANP-completeness, the mere existence of complete problems is
almost immediate. For example, it is extremely simple to show that the Bounded Halting problem
is N'P-complete.

Bounded Halting (BH) is defined over triples (M, z,1%), where M is a non-deterministic machine, «
is a binary string and £ is an integer (given in unary). The problem is to determine whether there
exists a computation of M on input z which halts within &k steps. Clearly, Bounded Halting is in
NP (here its crucial that & is given in unary). Let D be an arbitrary NP problem, and let Mp be
the non-deterministic machine solving it in time Pp(n) on inputs of length n, where Pp is a fixed
polynomial. Then the reduction of D to BH consists of the transformation z — (Mp,z, 1720%D),

In the case of distributional-NP an analogous theorem is much harder to prove. The difficulty is
that we have to reduce all DistNP problems (i.e., pairs consisting of decision problems and simple
distributions) to one single distributional problem (i.e., Bounded Halting with a single simple
distribution). Applying reductions as above we will end up with many distributional versions of
Bounded Halting, and furthermore the corresponding distribution functions will be very different
and will not necessarily dominate one another. Instead, one should reduce a distributional problem,
(D,), with an arbitrary P-computable distribution to a distributional problem with a fixed (P-
computable) distribution (e.g. gy). The difficulty in doing so is that the reduction should have
the domination property. Consider for example an attempt to reduce each problem in DistNP to
Iy by using the standard transformation of D to BH, sketched above. This transformation fails
when applied to distributional problems in which the distribution of (infinitely many) strings is
much higher than the distribution assigned to them by the uniform distribution. In such cases,
the standard reduction maps an instance z having probability mass p/(z) > 271°l to a triple
(Mp,z, 172020} with much lighter probability mass (recall p'y, (Mp,z, 170Dy < 2=l=1) This
violates the domination condition, and thus an alternative reduction is required.

The key to the alternative reduction is an (efficiently computable) encoding of strings taken from
an arbitrary polynomial-time computable distribution by strings which have comparable probability
mass under a fixed distribution. This encoding will map x into a code of length bounded above by
the logarithm of 1/p/(z). Accordingly, the reduction will map « to a triple (Mp ,,2’, 1|T‘|O(1)), where
|2’| < O(1) + log, 1/p/(z), and Mp , is a non-deterministic Turing machine which first retrieves

from z’ and then applies the standard non-deterministic machine (i.e., Mp) of the problem D. Such
a reduction will be shown to satisfy all three conditions (i.e. efficiency, validity, and domination).
Thus, instead of forcing the structure of the original distribution g on the target distribution ugg,
the reduction will incorporate the structure of g into the the reduced instance.

The following technical lemma is the basis of the reduction.

Coding Lemma: Let u be a polynomial-time computable distribution function. Then there exist
a coding function C, satisfying the following three conditions.

1) Compression: Yz

1
< i —
|Cu(x)| — 1 —I_ mln{|x|,log2 M/(I)}

2) Efficient Encoding: The function C, is computable in polynomial-time.

3) Unique Decoding: The function C) is one-to-one (i.e. C,(z) = C,(2') implies z = z').

Proof: The function C, is defined as follows. If y/(z) < 212l then C,(z) = 0z (i.e. in this case z
serves as its own encoding). If y/(z) > 271#! then C,(z) = 12, where 2 is the longest common prefix
of the binary expansions of y(z —1) and p(z) (e.g. if £(1010) = 0.10000 and p(1011) = 0.10101111
then C,(1011) = 1z with z = 10). Consequently, 0.z1 is in the interval (p(z — 1), u(z)] (i.e.,
ple —1) < 0.21 < p(zx)).

We now verify that €, so defined satisfies the conditions of the Lemma. We start with the
compression condition. Clearly, if y/(z) < 271=l then |C ()] = 1 + |z| < 1 4+ log,(1/u/(z)). On the
other hand, suppose that u'(z) > 2-1°l and let z = 2 - - -z, be as above (i.e., the longest common
prefix of the binary expansions of u(z — 1) and p(z)). Then,

£ poly(|=|) L
pix) = ple) —ple-1) < (ZQ_iZi-l- > 2-2') ~ Y27z < 27H
i=1 i=f+1 i=1

and |z| < log,(1/p/(z)) follows. Thus, |Cy(z)| < 14+log,(1/4/(z)) in both cases. Clearly, C, can be
computed in polynomial-time by computing p(z — 1) and p(z). Finally, note that C), is one-to-one
by considering the two cases, Cy(z) = Oz and C,(z) = 1z. (In the second case, use the fact that
ple —1) < 0.21 < p(z)). O

Using the coding function presented in the above proof, we introduce a non-deterministic machine
My, so that the distributional problem (D,) is reducible to gy = (BH, ppy) in a way that
all instances (of D) are mapped to triples with first element Mp ,. On input y = C,(«), machine
Mp , computes D(z), by first retrieving z from C,(z) (e.g., guess and verify), and next running
the non-deterministic polynomial-time machine (i.e., M) which solves D.

The reduction maps an instance z (of D) to the triple (Mp ,,C,(z),170°D) where P(n) o

Pp(n)+ Po(n)+n, Pp(n) is a polynomial bounding the running time of Mp on acceptable inputs
of length n, and Pz(n) is a polynomial bounding the running time of an algorithm for encoding
inputs (of length n).

Proposition: The above mapping constitutes a reduction of (D, u) to (BH, gy).

Proof: We verify the three requirements.

o The transformation can be computed in polynomial-time. (Recall that C', is polynomial-time
computable.)

¢ By construction of Mp , it follows that D(z) = 1 if and only if there exists a computation

of machine Mp , that on input C,(z) halts outputting 1 within P(|z|) steps. (Recall, on
input C,(x), machine Mp , non-deterministically guesses z, verifies in Po(|x|) steps that
is encoded by C,(z), and non-deterministically “computes” D(z).)

To see that the distribution induced by the reduction is dominated by the distribution ugg, we
first note that the transformation # — C,(z) is one-to-one. It suffices to consider instances of
BH which have a preimage under the reduction (since instances with no preimage satisfy the
condition trivially). All these instances are triples with first element My, ,. By the definition

of ppm

1 1
/ Plzy — . .
MBH(A[DJL?CM(%)?l) =c P(|$|)2 |Cu(m)|2 . 91C, ()]
where ¢ = m is a constant depending only on (D, p).

By virtue of the coding Lemma
H’(m) S 2 . 2—|C”(£L‘)|

It thus follows that

) 1 1 ()
s (Mo Cu@) 17E0) 2 e s 1
U
S C /(33)
2 [Mp.,,C,(x), P02 ¥

The Proposition follows. O

4 Conclusions

In general, a theory of average case complexity should provide

1.

2.

3.

4.

a specification of a broad class of interesting distributional problems;
a definition capturing the subclass of (distributional) problems which are easy on the average;

notions of reducibility which allow to infer the easiness of one (distributional) problem from
the easiness of another;

and, of course, results...

It seems that the theory of average case complexity, initiated by Levin and further developed in
[7, 18, 1, 10], satisfies these expectations to some extent. Following is my evaluation regarding its

“performance” with respect to each of the above.

1.

The scope of the theory, originally restricted to P-computable distributions has been signifi-
cantly extended to cover all P-sampleable distributions (as suggested in [1]). The key result
here is by Impagliazzo and Levin [10] whow proved that every language which is (NP, P-
computable)-complete is also (NP, P-samplable)-complete. This important result makes the
theory of average case very robust: It allows to reduce distributional problems from an utmost
wide class to distributional problems with very restricted/simple type of distributions.

2. The definition of average polynomial-time does seem strange at first glance, but it seems that
it (or similar alternative) does captures the intuitive meaning of “easy on the average”.

3. The notions of reducibility are both natural and adequate.

4. Results did follow, but here indeed much more is expected. Currently, DistNP-complete
problems are known for the following areas: Computability (e.g., Bounded-Halting) [7], Com-
binatorics (e.g., Tiling [15] and a generalization of graph coloring [18]), Formal Languages
(cf., [7,4]), and Algebra (e.g., of matrix groups [8]). However the challenge of finding a really
natural distributional problem which is complete in DistNP (e.g., subset sum with uniform
distribution), has not been met so far. It seems that what is still lacking are techniques for
design of “distribution preserving” reductions.

In addition to their central role in the theory of average-case complexity, reductions which preserve
uniform (or very simple) instance distribution are of general interest. Such reductions, unlike most
known reductions used in the theory of NP-completeness, have a range which is a non-negligible
part of the set of all possible instances of the target problem (i.e. a part which cannot be claim to
be only a “pathological subcase”).

Levin views the results in his paper [15] as an indication that all “simple” (i.e., P-computable)
distributions are in fact related (or similar). Additional support to this statment is provided by his
latter work [17].

Acknowledgements

I’'m very grateful to Leonid Levin for many inspiring discussions.

Appendix: Failure of a naive formulation

When asked to motivate his definition of average polynomial-time, Leonid Levin replies, non-
deterministically, in one of the following three ways:

o “This is the natural definition”.

e “This definition is not important for the results in my paper; only the definitions of reduc-
tion and completeness matter (and also they can be modified in many ways preserving the
results)”.

e “Any definition which makes sense is either equivalent or weaker”.

For further elaboration on the first argument the reader is referred to Leonid Levin. The second
argument is, off course, technically correct but unsatisfactory. We will need a definition of “easy
on the average” when motivating the notion of a reduction and developing useful relaxations of it.
The third argument is a thesis which should be interpreted along Wittgenstein’s suggestion to the
teacher: “say nothing and restrict yourself to pointing out errors in the students’ attempts to say
something”. We will follow this line here by arguing that the definition which seems natural to an
average computer scientist suffers from serious problems and should be rejected.

Definition X (naive formulation of the notion of easy on the average): A distributional problem
(D, p) is polynomial-time on the average if there exists an algorithm A solving D (i.e. on input «
outputs D(z)) such that the running time of algorithm A, denoted t4, satisfies 3¢ > 0Yn:

S) tale) < n°

z€{0,1}™

where (!, () is the conditional probability that x occurs given that an n-bil string occurs (i.e.,
pn(z) = 1'(2)/ 201y W' (Y))-

The problem which we consider to be most upsetting is that Definition X is not robust under
functional composition of algorithms. Namely, if the distributional problem A can be solved in
average polynomial-time given access to an oracle for B, and problem B can be solved in polynomial-
time then it does not follow that the distributional problem A can be solved in average polynomial-
time. For example, consider uniform probability distribution on inputs of each length and an oracle
Turing machine M which given access to oracle B solves A. Suppose that MP runs 2% steps on
2% of the inputs of length n, and n? steps on all other inputs of length n; and furthermore that
M when making ¢ steps asks a single query of length /7. (Note that machine M, given access to
oracle for B, is polynomial-time on the average.) Finally, suppose that the algorithm for B has
cubic running-time. The reader can now verify that although M given access to the oracle B is
polynomial-time on the average, combining M with the cubic running-time algorithm for B does
not yield an algorithm which is polynomial-time on the average according to Definition X. It is easy
to see that this problem does not arise when using the definition presented in Section 2.

The source of the above problem with Definition X is the fact that the underlying definition of
polynomial-on-the-average is not closed under application of polynomials. Namely, if ¢ : {0,1}* — N
is polynomial on the average, with respect to some distribution, it does not follow that also ¢*(-)
is polynomial on the average (with respect to the same distribution). This technical problem is
also the source of the following problem, that Levin considers most upsetting: Definition X is not
machine independent. This is the case since some of the simulations of one computational model on

another square the running time (e.g., the simulation of two-tape Turing machines on a one-tape
Turing machine, or the simulation of a RAM (Random Access Machine) on a Turing machine).

Another two problems with Definition X have to do with the fact that it deals separately with
inputs of different length. The first problem is that Definition X is very dependent on the particular
encoding of the problem instance. Consider, for example, a problem on simple undirected graphs
for which there exist an algorithm A with running time t4(G) = f(n, m), where n is the number of
vertices in G' and m is the number of edges (in). Suppose that if m < n? then f(n,m) = 2" and
else f(n,m) = n? Consider the distributional problem which consists of the above graph problem
with the uniform probability distribution on all graphs with the same number of vertices. Now, if
the graph is given by its (incident) matrix representation then Definition X implies that A solves
the problem in average polynomial-time (the average is taken on all graphs with n nodes). On
the other hand, if the graphs are represented by their adjacency lists then the modified algorithm
A (which transforms the graphs to matrix representation and applies algorithm A) is judged by
Definition X to be non-polynomial on the average (here the average is taken over all graphs of m
edges). This of course will not happen when working with the definition presented in Section 2.
The second problem with dealing separately with different input lengths is that it does not allow
one to disregard inputs of a particular length. Consider for example a problem for which we are
only interested in the running-time on inputs of odd length.

After pointing out several weaknesses of Definition X, let us also doubt its “clear intuitive
advantage” over the definition presented in Section 2. Definition X is derived from the formulation
of worst case polynomial-time algorithms which requires that 3¢ > 0 Vn:

Ve € {0,1}" : ta(z) < n°

Definition X was derived by applying the expectation operator to the above inequality. But why
not make a very simple algebraic manipulation of the inequality before applying the expectation
operator? How about taking the ¢-th root of both sides and dividing by n; this yields d¢ > 0 Vn:

o=

ta(z)

Vo e {0,1}" : <1

Applying the expectation operator to the above inequality leads to the definition presented in
Section 2... We believe that this definition demonstrates a better understanding of the effect of the
expectation operator with respect to complexity measures!

Summary: Robustness under functional composition as well as machine independence seems to
be essential for a coherent theory. So is robustness under efficiently effected transformation of
problem encoding. These are one of the primary reasons for the acceptability of P as capturing
problems which can be solved efficiently. In going from worst case analysis to average case analysis
we should not and would not like to lose these properties.

10

References

[1] S. Ben-David, B. Chor, O. Goldreich, and M. Luby, “On the Theory of Average Case Com-
plexity”, Journal of Computer and system Sciences, Vol. 44, No. 2, April 1992, pp. 193-219.

[2] Cook, S.A., “The Complexity of Theorem Proving Procedures”, Proc. 3rd ACM Symp. on
Theory of Compuling, pp. 151-158, 1971.

[3] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, W.H. Freeman and Company, New York, 1979.

[4] Goldreich, O., “Towards a Theory of Average Case Complexity (a survey)”, TR-531, Computer
Science Department, Technion, Haifa, Israel, March 1988.

[5] O. Goldreich. Foundation of Cryptography — Fragments of a Book. February 1995. Available
from http://theory.lcs.mit.edu/~oded/frag.html.

[6] O. Goldreich. On the Foundations of Modern Cryptography (essay). Proceedings of Crypto97,
Springer LNCS, Vol. 1294, pp. 46-74.

[7] Gurevich, Y., “Complete and Incomplete Randomized NP Problems”, Proc. of the 28th IEEFE
Symp. on Foundation of Computer Science, 1987, pp. 111-117.

[8] Gurevich, Y., “Matrix Decomposition Problem is Complete for the Average Case”, Proc. of
the 31st IEEFE Symp. on Foundation of Computer Science, 1990, pp. 802-811.

[9] Gurevich, Y., and D. McCauley, “Average Case Complete Problems”, preprint, 1987.

[10] Impagliazzo, R., and L.A. Levin, “No Better Ways to Generate Hard NP Instances than
Picking Uniformly at Random”, Proc. of the 31st IEFE Symp. on Foundation of Computer
Science, 1990, pp. 812-821.

[11] Johnson, D.S., “The NP-Complete Column — an ongoing guide”, Jour. of Algorithms, 1984,
Vol. 4, pp. 284-299.

[12] Karp, R.M., “Reducibility among Combinatorial Problems”, Complezity of Computer Com-
putations, R.E. Miller and J.W. Thatcher (eds.), Plenum Press, pp. 85-103, 1972.

[13] Karp, R.M., “Probabilistic Analysis of Algorithms”, manuscript, 1986.

[14] Levin, L.A., “Universal Search Problems”, Problemy Peredaci Informacii 9, pp. 115-116, 1973.
Translated in problems of Information Transmission 9, pp. 265-266.

[15] Levin, L.A., “Average Case Complete Problems”, SIAM Jour. of Computing, 1986, Vol. 15,
pp- 285-286. Extended abstract appeared in Proc. 16th ACM Symp. on Theory of Compuling,
1984, p. 465.

[16] Levin, L.A., “One-Way Function and Pseudorandom Generators”, Proc. 17th ACM Symp. on
Theory of Computing, 1985, pp. 363-365.

[17] Levin, L.A., “Homogeneous Measures and Polynomial Time Invariants”, Proc. 29th IEEE
Symp. on Foundations of Computer Science, 1988, pp. 36-41.

[18] Venkatesan, R., and L.A. Levin, “Random Instances of a Graph Coloring Problem are Hard”,
Proc. 20th ACM Symp. on Theory of Compuling, 1988, pp. 217-222.

11

