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Approximating the SVP to within a factor (1 + diine)
is NP-hard under randomized reductions

(extended abstract)
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Abstract

Recently Ajtai showed that to approximate the shortest lattice vector in the lo-norm
within a factor (1+2’di‘“k), for a sufficiently large constant k, is NP-hard under randomized
reductions. We improve this result to show that to approximate a shortest lattice vector
within a factor (1 + dim™¢), for any € > 0, is NP-hard under randomized reductions. Our
proof also works for arbitrary [,-norms, 1 < p < oo.
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1 Introduction

This paper presents the latest advance in the determination of the complexity of the famous
Shortest Lattice Vector Problem.

A lattice L is a discrete additive subgroup of R". It is the set of all integral linear combi-
nations of an underlying generating set of linearly independent vectors from R™. The study
of lattice problems has a long history dating back to Lagrange, Gauss, Dirichlet and Hermite,
among others [Lag73, Gau0l, Dir50, Her50]. Many problems concerning lattices are both
fascinating and challenging. One of the most studied computational problems is the Short-
est Lattice Vector Problem (SVP): Given an n-dimensional lattice, find the shortest non-zero
lattice vector in the lattice.

Just over one hundred years ago, Minkowski proved his theorems on shortest lattice vectors
and successive minima, unifying much previous work, and established the subject Geometry
of Numbers as a bridge between geometry and Diophantine approximation and the theory of
quadratic forms [Gru93, GLS88, GL87]. Our interests in lattice problems mainly lie in its com-
putational complexity aspects, and its application to provably secure public key cryptography,
as recently demonstrated by Ajtai [Ajt96], and Ajtai and Dwork [AD96].

People working in the design of secure cryptography have realized for some time that the
security of a cryptographic protocol depends on the intractability of a certain computational
problem on the average. At the moment, we lack any mathematical proof of hardness, either
in an asymptotic sense or for specific values of parameters for any problem in NP. Thus NP-
hardness is taken to be a weak form of a proof of intractability. But, NP-hardness only refers to
the worst case complexity of the problem. It would be most desirable to prove that a problem
believed to be intractable is as hard on the average as in the worst case. This is exactly
what was accomplished by Ajtai [Ajt96], who established an equivalence, in some technical
sense, between the average case complexity of SVP and its worst case complexity. More
precisely, Ajtai [Ajt96] established a probabilistic polynomial time reduction from the problem
of approximating, within a certain polynomial factor n® a short lattice basis in the worst
case, to the problem of finding a short lattice vector for a uniformly chosen lattice in a certain
random class of lattices. The Ajtai connection from worst case to average case complexity
has been improved by Cai and Nerurkar [CN97]. The Ajtai connection is also the basis of the
Ajtai-Dwork public-key cryptosystem, which Ajtai and Dwork [AD96] proved is secure based
on only a worst case hardness assumption. The assumption is that a certain version of the
SVP is not solvable in P or in BPP, namely to find the shortest lattice vector in a lattice with
a nfunique shortest vector. (This means that every lattice vector not parallel to the unique
shortest vector is longer by at least a factor of n°.) The Ajtai-Dwork cryptosystem is the only
known public-key cryptosystem provably secure, assuming only the worst case intractability
of its underlying problem. Another public-key system based on lattice problems was proposed
by Goldreich, Goldwasser and Halevi [GGH96].

Thus the Ajtai-Dwork system continues the tradition of cryptographic protocols based on
sufficiently “famous” problems, such as factoring, for which the most able minds have labored
long and hard, and have found no polynomial time algorithms. Compared to other number
theoretic problems such as factoring or discrete log, the advantage for SVP at least in provable
terms, is twofold. First, there is the worst case to average case connection mentioned above.



Secondly, we know that some versions of this problem are NP-hard. In contrast, neither is
known to hold for factoring, and for discrete log the usual random self-reducibility is only valid
for a fixed modulus p.

Regarding NP-hardness, Lagarias [Lag82] showed that SVP is NP-hard for the [,-norm.
Van Emde Boas [vVEB81] showed that finding the nearest lattice vector is NP-hard under all
l,-norms, p > 1. Arora et al [ABSS93] showed that finding an approximate solution to within
any constant factor for the nearest vector problem for any /),-norm, is NP-hard. There are
no known polynomial-time algorithms to find approximate solutions to these problems within
any polynomial factor, even probabilistically. The celebrated Lovasz basis reduction algorithm
[LLL82] finds a short vector within a factor of 2*/2 in polynomial time. One major open
problem in this field has been whether SVP is NP-hard for the natural lo-norm. This was
conjectured e.g., by Lovész [Lov86].

In a tour de force, Ajtai settled this conjecture very recently [Ajt97]: SVP is NP-hard
for lo-norm under randomized reductions. Moreover Ajtai showed that to approximate the

shortest vector of an n-dimensional lattice within a factor of (1 + 2#) (for a sufficiently large

constant k) is also NP-hard. The main result of this paper is to improve this approximation
factor to (1 + #) for any € > 0.

The approximation factor for which NP-hardness can be shown is most important in terms
of cryptographic applications. A theorem of Lagarias, Lenstra and Schnorr [LLS90] showed
that the problem of approximating the length of the shortest lattice vector within a factor of
Cn, for an appropriate constant C, is not NP-hard, unless NP = coNP. Goldreich and Gold-
wasser showed that approximating the shortest lattice vector within a factor of O(y/n/logn)
is not NP-hard unless the polynomial time hierarchy collapses [GG97]. Cai showed that find-
ing the shortest lattice vector in a lattice with a n!/4-unique shortest vector is not NP-hard
unless the polynomial time hierarchy collapses [Cai]. The Ajtai-Dwork system is based on the
intractability of finding the shortest lattice vector in a lattice with a n®-unique shortest vector.
Currently the exponent c is still rather large in their proof. Thus at this moment we cannot say
that the Ajtai-Dwork system, as it stands, is NP-hard to break. To narrow the gap between
those cases where NP-hardness can be proved and those where it is probably not NP-hard is
most interesting and potentially very important for secure cryptography. The current gap is

(14 ) and O(y/n/logn).

2 Preliminaries

We denote by R the field of real numbers and by Z the ring of integers. The Euclidean
(I2-) norm is denoted by ||-||. For n linearly independent vectors vy, vs,... ,v, € R™, m >
n, P(vi,...,vn) = {di, Bivi | Vi 0 < B; < 1} denotes the parallelepiped defined by
V1,... ,Up. The (n-dimensional) volume vol (P(v1,... ,v,)) of the parallelepiped P(v1,... ,v,)
is |det (BT B)|'/2, where the mxn matrix B consists of v;’s as column vectors, B = (v1,. .. ,vp).
The n-dimensional lattice L = L(v1,... ,v,), with basis v1,... ,vy, is the set of all integral
linear combinations of the v;. The determinant of the lattice L, det L, is the volume of
P(v1,...,v,) . It is invariant under a change of basis. The length of the shortest non-zero
vector of L is denoted by A1 (L).



The shortest vector problem (SVP) Given by,... ,b,, find a shortest non-zero vector (in
some fixed norm) in the lattice L(b1,... ,bp).

We will reduce an NP-complete problem to the problem of finding an approximate shortest
vector in a lattice. Following Ajtai [Ajt97], the NP-complete problem we use is the restricted
subset sum problem which is a variation of the subset sum problem. This problem can be
shown to be NP-hard under polynomial time many-one reductions. (A polynomial time Turing
reduction was given in [Ajt97].)

The restrlcted subset sum problem Given integers ai,... ,a;, A, such that max{log2(|A|+
1), maxt_; logy(|a;| + 1)} < 13, find a 0-1 solution to the system Z - a;x; =A ZZ Lz = [L].

3 A lattice with wonderful properties

We first define the values of some parameters. Let ¢ > 0 be any constant. Let x = 2, u = 10.
Choose o > % and sufficiently larger than y. Let 22:1 a;x; = A be an instance of the restricted
subset sum problem. Let n = [ll/ ‘51'|, where 01 is the constant whose existence is guaranteed
by Theorem 1 (stated on page 8, due to Ajtai) for a; = 2a,ay = 1. We can assume that [,
and consequently n as well, are sufficiently large with respect to a. Let J be an integer such

that n = [al—é‘)ggl‘o]?] . Clearly, e" < J < enlog’n et p1 < ... < p;, be all the primes less than

(log J)*. By the Prime Number Theorem, n® < m < n®t!. Let T' denote the set of integers
formed by taking all the products of n distinct elements of the set {p1,...,pm}. Note that
any element of I' is at most (logJ)*" < J. Pick an integer b uniformly from I'. Let w be an
integer such that w < b < (2w)*. Clearly, 2" < b < J. Thus, both b and w are exponential in
n. Let B = whtl.

Using the values of the parameters, , u, m, B,w, and b defined above, we now review the
lattice construction of Ajtai [Ajt97]. Note that the only randomness in this construction is the
random choice of b €, I’

Let L; be the lattice spanned by the rows v; of the following matrix,

Viegpy - 0 0 Blogp1
0 <o Vdogp, 0 Blog pm,
0 0 0 Bloghb
0 - 0 w™* Blog (1+%)

The following lemma proves certain properties of this lattice. Specifically, it proves that
if a lattice vector is short enough, its coefficients in terms of the v; have a special form. The
hypothesis on the length of the vector used here is stronger than the one in Lemma 3.2 in
[Ajt97]. This enables us to prove NP-hardness for a larger approximation factor.

Lemma 1 Let ¢ be any constant strictly smaller than 2log2. Let w = (wq,... ,Wpt2) €
Ly, w#0, w= 222'2 0iViy, Omy1 > 0. If ||w||2 <logb+ c, then

1. ‘5m+2| < wn-i—l;



5m+1 = 1,‘
Fori=1,...,m, ¢ € {0,—1};

;.le;‘si =b (mod w);

v o

Ifg=1I"p; " =b+tw, t€Z, v€{0,—1} fori=1,...,m, and |b—g| < w12,
then w' = YT 2 v, where i1 = 1,Ymy2 = t, satisfies |w'||* < logb + 2

6. For allv € L, v # 0, we have |[v||> > logb.

Ji _ *52'
Useful Facts Define go = [[5,50 1<i<m P’ 20d 91 = [I5,<0 1<i<m P; - Then,

loggo = > Gilogp
8;>0, 1<i<m
logg1 = > —bilogp;
8;<0, 1<i<m
m
loggo—loggi = > d&logpi ()
=1
m m m
loggo +loggr = > |6illogpi < 67 logp; =Y wi < |lw]? (%%)
=1 =1 =1

Note that w can’t be a scalar multiple of vy,42 because w # 0 and

w w 1 w
|2l > W log (1 + 3) > w“+12—b > w““iw > /logb+c > |lw|.

Proof (of Lemma 1)
1. |G| < Wi L
1
dmyolw™ ™ = lwmi1| < [Jw]| < (logb + ¢)>.

Therefore, |6,12| < w*(logb + c)% < Wt

2. (5m+1 =1:

First assume d,,+1 = 0. Since w is not parallel to vy, 19, 30 € {1,... ,m}, §; # 0. This means
at least one of gy and g1 is not equal to 1 and so gg # g1, since they are products of distinct
primes. Then, one of gy and g; satisfies log g; < %(logb + ¢), and so g; < yVb, where 7 is a
constant. This implies,

1 1 1
log go — log g1| > |log(vVb + 1) — log(yVb)| > > > ,
|log go —log g1| = | log(y ) —log(vVb)| = Ao+l b = Yl

where 7/ denotes the constant . We also have,

_ 1
2R/ 1

m
w
B3 8ilogpi + bmialog(l+ )| = wmsa| < [lw] < (logh+ )7
=1



From this we get,

|5m+2 |

v

A%

Y

>

log b+ ¢)'/?
log 1 + % ( " (log 9
b

~ (lloggo —loggi| — — (10gb+6)1/2>
w

b 1 1 12

" (Wi’w“ﬂ sy (log b+ c) )

1 1

p—1 _
w (fy’w”/Q w[t—|—1/2>
wh/2-2
wn—|—1

for sufficiently large w. This contradicts part 1. (In the sequel, inequalities are always meant
to be asymptotic statements.)

Now assume 6,,+1 > 2. By part 1,

(log b+ )2 > [[ul| > |wmso| = B

Therefore,

But, using (*) and

3
5 logb > logh +c > |w||* > log go + log g1 > |log go — log g1| =

3. Fori=1,...

m
> ilog p;
i=1

(%

i=1

1
> 2logb—— —
w

);

, M, 51 € {0’ _1}:

We have (logb+ ¢)'/2 > ||w|| > |wm2| = B|
part 1, ‘(5m+2 log (1

)| < 1 . Therefore,

|log go — log g1 + log b|

wh+T

(logh+¢)'/2 >

2im1

INIA

IN

1=

B~ '(logb+¢)'/? +

> |5m+1 log b‘ — ‘5m+2 log (1 +

m
Z 0;log p; + Om+110gb + dpy2 log

g log b.

m
Z d; log p;l -

=1

‘5m+2 log (1 + %)‘ < wrtle < L We have,

05}

WAl -1 1/2
b)‘ B (logb + ¢)

0; log p; + log b+ dpyp2 log (1 +%

1

w#H—l

1

W

m
Z d; log p; + log b

(logb + ¢)Y/2 +

)‘,and by



Ifthereisani € {1,... ,m} such that §; > 0, then log go > log 2. Thus, log g; > log 2+log b—%,
and

1
logbh + ¢ > ||w||* > log go + log g1 > log b+ 2log 2 — =

which is a contradiction, since ¢ is a constant strictly smaller than 2log2. Therefore, Vi €
{1,...,m} é; <0, which implies log go = 0. This means, |logb — log gi| < % and so, log g; >
logb — %

Now we will show that Vi € {1,... ,m}, é; € {0,—1}. Suppose thereis a j € {1,...,m}
such that |0;] > 2. Then, (512- > 2|;| and 67 > |§;| for all other 5. Therefore, ||w]®> >
S 62 logp; > |65 logp; + i |6i| log pi > 2log2+1log g1 > logb+2log2— 1 >logb+c, a
contradiction.

The proofs of 4, 5, 6 are given in the appendix. They are essentially the same as the ones
in Lemma 3.2 in [Ajt97]. O

4 Normalizing the lattice

We now normalize the lattice so that every non-zero lattice vector has length at least 1. As
described earlier, b is chosen randomly from the set I'. In [Ajt97] it has been proven that, with
high probability, b satisfies the following,

(i) b> J' oz

(ii) In the interval (b — w32 b+ w3/?), there are at least 2"'°8" elements of T’ that are
congruent to b (mod w).

If b satisfies (i) and (ii) above, then the following lemma holds (for all sufficiently large n).

_ 1 _ 1 . -_ 3
Lemma 2 Let Ly = \/le, Ui = JogpVirP = 7logh- Then,

l.veLyv#0 = |v]| > 1;

2. If Z is the set of all w € Ly, w = Y.741% iy, with v € {0,—1} fori € {1,... ,m} and
2 =1
S il =n and ||w||* < 1+ p, then |Z| > 2nlogn;

3. If ui,ug € Z,u1 # ug and u; = 2722 'yi(j)ﬂi, then 3i € {1,... ,m} such that 'yfl) # 'yz@);

4. Forallwe Lyw#0, if |w]|> <1+ ﬁ, w= ZZ’QQ Yiliy Ym+1 > 0, then y1,... ,Ym €
{0,—-1} and vpmy1 = 1;

5. size(p) <n?,0<p< 2V,

n
6. |det(ws,... , wmt2)| > (%) , where ¢y 15 a universal constant.



Proof We prove only parts 4, 5, and 6 here. The proofs of the other parts are given in the
appendix. They are similar to the ones in Lemma 3.1 in [Ajt97].

4. Let v =+/logbw € L;. Then,

9 9 2 _ 2loghb
Ilv||” = (logb) ||w||” < (log b) (1 + el logb + T

Now, logh < logJ < nlog?n and m3/* > n3e¢/4 > p3. Therefore, ||v||> < logh+ c¢. The
conclusion follows from Lemma 1.

5. p= —o—, and log(w?logh) = 2logw + loglogh. We have, b < J < enlog’n and w <

w?logh’
2
bl/k < enlog’n/u This implies, logw < "—105—" Therefore, size(p) < n?, say.

2n(q_ _1_ -

By (i), b > J'~1/(@=2) > ¢n(1-1/(2=2)) " Therefore, w? > % > M > 3%, say.
Thus, ﬁ = (/.)2+Ogb S 27\/ﬁ

6.  This follows by Minkowski’s First Theorem, since A1(Lg) > 1. O

Note that Lo is a real lattice. For computational purposes, we need to construct a rational
approximation to Ls. In probabilistic polynomial time, we can produce a lattice that is a good
approximation to Lg. Formally,

Ve > 0 d¢ > 0 and a probabilistic polynomial-time Turing machine C that, given
an input n in binary, returns in time (logn)¢, an integer m, a rational 5 > 0

and linearly independent vectors @y, ... ,Omie € Q™12 such that 37y,... , Ty €
R™2 ||5; — 5] < 27 for i = 1,...,m + 2, and with a probability > %, Ly =
L(v1,... ,Um42) satisfies parts I — 6 of Lemma 2.

Lemma 3 Let v; = (1 + p)v;. Let L = L(v1,... ,vm+2) and p = 8p. Then, for all sufficiently
large n,
1. v € L, v # 0 implies ||v|| > 1;

2. If Y is the set of all v € L, v = Y™y with 7% || = n, v € {0,—1} for
i€{l,...,m}, and ||v|*> < 1+ p, then [Y| > 2"l8n;
3. If uy,ug €Y, uy # ug and u; = Z{’jﬁ 'yi(j)vi, j=1,2, then 3i € {1,... ,m} such that
(1) 2).
’YZ # '72 )

4. Forallve Liv#0, if |[v]* < 1+#, v= Z:’;*f Yivi With Ym+1 > 0, then y1,... ,Ym €
{0,-1} and ymy1 = 1.

Proof Parts 1, 2 and 3 easily follow from Lemma 2 and the proofs for them can be found in
the appendix. We only prove 4 here.



Let T be the linear transformation Tv; = v;, fori = 1,... ,m+ 2. Applying Lemma 5 from
the appendix with @; = 7; and b; = ©;,7 = 1,... ,m+2, we get that 1—2"""" < |7 < 142 7%
and 1—-27"" < ||T7!|| < 1+27™" for some constant ¢; that can be made as large as we want
by making the ©; approximate the 7; better.

4. v= (14 p)Tw for some w € Ly, w # 0, and so

9 N —1112 2 — TN — —ne 2 2
lw|> < @+ ) 2T vl < @+ 27V 24+ 27 ) ol < ol < 14+ — -
m3¢e/

Therefore, by Lemma 2, v1,... ,7m € {0,—1} and vp41 = 1. O

5 The reduction

First, we state a combinatorial theorem of Ajtai [Ajt97].

Theorem 1 (Ajtai) Va1 > 2,a9 > 0, 361,092,03,0 < & < 1, i = 1,2,3, such that, for
all sufficiently large n, the following holds. Assume that (S, X) is an n-uniform hypergraph,
n? < |S] < n™,|X| > 292nlogn k= |n%] and C = C4y,...Cy is a random sequence of
pairwise disjoint subsets each with ezxactly |S |n*1*‘52 elements, uniformly chosen from all such
sequences. Then, with a probability > 1 — n=%, for each 0,1-valued function f defined on
{1,...,k}, 3T € X, such that,Vj € {1,... ,k}, f(j) =|C;NT]|.

Using the n defined earlier, apply Theorem 1 with a; = 20,09 = 1,8 = {1,...m},k = [n% | >
[, and

m+2

X:{Tg{la ’m}|E|UEK U:Zfﬁvia T:{’LE{]_, ,m}\%:—l}}
i=1

We know that |Y| > 271087 and any two distinct vi,vs € Y produce different 77s. Thus
|X| > 222m1%8n (since ay = 1), as required by the hypothesis of Theorem 1. In what follows,
we focus only on Ci,...,C) (and disregard Cj41,... ,Cy, if £ > ). With high probability, a
random choice of the Cj satisfies the following :

For each 0,1-valued function f defined on {1,...1}, 3T € X such that, Vj €
{L,...,1}, ) =GN

Let C = C4,...C; be such a good choice, and 25:1 a;x; = A be a given instance of the

restricted subset sum problem. Let gcw(i) = — 3 ;c¢, 7Vj, where v = S A2 yiv;. Define a
(I 4+2) x (m + 1) matrix D as follows,

1. dij = a;l for all j € C;, dim41 = Al and d; ; = 0 otherwise,

2. dg; =1forall j € J\_, O}, domy1 =[]l and da; = 0 otherwise,

3. Foralli e {1,...,l}, dito; =1if j € C; and dj;2; = 0 otherwise.
If C1,...,C) are consecutive intervals of {1,... ,m}, then D is the following matrix,



all - agl - ail o oail oo oal e ol -e- O --- Al

l l l l l 0 (5]
1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0O - 0 -+ 0 -+ 0 -+ 1 +-+ 1 -0 --- 0

For z € L, z = Y7 v, let A(z) = (y1v/Ty--- s Ymi1/T) where 7 = 2/m¢. Let L(P) C
R+ be the lattice generated by the vectors (v, A(v;)DT). It is of dimension m +2. Clearly
L) = {(v,A(v)DT) | v € L}. Let L))* = {(v,A(v)DT) | v € L, v = 37" yivi, yms1 > 0}

Main Theorem

(i) With high probability, a random choice of C = Cy,... ,Cj is good, in the sense of Theorem
1.

(i) For such a good choice of C, let D be the matrixz as defined above. Then, if the restricted
subset sum problem 2221 a;z; = A has a solution, and w = (w A(w)DT) € LD+ is a
(1+ %)—approximatz’on to the shortest non-zero vector of L(P) | i.e. A\ (LP)2 < ||lw|? <
(1+ L) M (LP))2, then y; = g (i) is a solution to the Testrzcted subset sum problem.

Remark It can also be shown that the SVP under any /,-norm, 1 < p < oo, is NP-hard
to approximate to within (1 + dl—inf) under randomized reductions, by using (log pi)l/p in the
construction of L.

We first state a lemma. The proof can be found in the appendix.

Lemma 4 Let y1,... ,y; be l integers such that Zi’:l Y = [%] Then, 22:1 y? is minimized
when all y; are either 0 or 1, and this minimum value is [%] If Ji y; & {0,1}, then 2221 y? >
[L]+ 2.

Proof (of Main Theorem) Part (i) is really a restatement of Theorem 1.

(ii) Suppose 22:1 a;z; = A has a solution. Let f be the function f(i) = s; where Zi 1 GiS; =
A. Then 3T € X, or equivalently, v =v; €Y, v = Zm+2 Bjv;, such that Vi € {1,...,1},

gou(i) ==Y B =|CinT| = f(i) = s;.

JEC;

That is, Jv € Y, such that gc,(i) = s; is a solution to the given instance of the restricted
subset sum problem.

Let © = (v,A(v)DT). Since v € Y, 0 < |[v|| < 1+ p. So, ¥ is a non-zero vector, which
implies A1 (L(P)) < ||9||. Since v gives rise to a solution to the restricted subset sum instance,
A (LN < ol = |l” + [|A(v DTH (1+p)+7[5]. Since 7 = 2 and | < n <



mo/e < e/t < et 10))2 < 14 p + ﬁ By assumption, w = (w,A(w)D7T) is a

(1 + %)—approximation to the shortest non-zero vector of L(P). Therefore,
2 12
[w|® < o

< <1+ : )Al(L(D))Q

e
LY 2

< (142 el
2

< 14—

Let w = Z:ff ~;v;. Then, by part 4 of Lemma 3, and because w € L)+ Ym+1 = 1. Let
u = (ut,...,uy2) = AMw)DT. Let y; = gow(i). It is easy to see that since ypmi1 = 1,

up = /Tl(A — Zézl aiyi), uz = /TI([4] - Zé:l yi), and for 1 < j <1, uj49 = —/1y;. We
show that the y; form a solution to the restricted subset sum problem. That is, we show that

(i) Yo, aiyi = A, and

(ii) 3i_y % = [5], and

(iii) Vi y; € {0,1}.
If (i) fails, then u? > 712, Since ||@|| > A (L)) , @ # 0, which implies w # 0, and so |Jw|| > 1.
Thus, ||@|*> > ||w||® +u? > 1+ 7I2. This is a contradiction because,

ol < (1+ )12 < (1+2)a+p+-L)
- me - me P 2
T
(1+3)a+m

<
< 1472
<

Similarly, if (ii) fails, then u2 > 712, and so ||@||* > 1 + 712.
Now assume (i) and (ii) hold but (iii) fails. Therefore,

+2 l
l
112
o> > 14> uwi=1+7) jy§21+T<H +2),

1=3 =1

where the last inequality uses Lemma 4. Thus,

9 —112
12— I > 27— p 2 7 = 2 > 1L
me me
This implies |[w|* > (1 + 1) o[> > (1 + :X) M (Z(P))2, a contradiction. 0

10
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6 Appendix

Proof of Lemma 1 (continued).
R | i pi_‘si =b (mod w):

In fact, [T~ p; % = b4 Gpppow. Let t = dpppo. It suffices to prove the two claims below.

Claim 1 b+ tw is the closest integer to b (1 + %)t.

Proof

where

t t\ w2
b<1+%) =b+tw+b<2)°g—2+---=b+tw+R
2, .2 2k+4 1
R<tC v o L
b wh w

This proves the claim.

Claim 2 g =[[", pi_‘si is the closest integer to b (1 + %)t.
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Proof

log (b (1 + %)t) — logg‘

‘logb+tlog (1 + %) — logg‘

= Billwm+2|
< B7'(logb+ ¢)'/?
< w2

We have, log g < ||w||> < logb+ ¢, and so g < eb. So we get,

Similarly, |log (g — %) —log g‘ =Q (w%) This proves the claim.

5. Ug=I]"yp;"=b+tw, t€Z, v€{0,-1}fori=1,...,m, and |b— g < wh1/2)

then w' = :’;*12 vivi, where Y11 = 1, Ymyo = t, satisfies ||w'||2 <logb+ % :

m m
/|| = D" +?10g ps + 2w + BY_ 7 logpi + log b+ tlog (1+ = 1%

We have
> }logpi =Y |villogpi =log g = log(b + tw) = logb + log (1 + 7) :
i=1 1=1
and
m
w tw
nyilogpi +log b+ tlog (1 + 3) = —logg+logb+tlog (1 + ?)
=1
= —log(b+ tw) + logh + tlog (1 + %)
t
= —log|1+ d +tlog <1+£)
b b
_ tw n t?w? n tw  1tw?
- b 2p? b 2 b2
t2w?
< —52 .
Therefore,

2, 2\ 2
||w/H2 <logb + log (14_%‘)) Lg2, 2 g (tb_(;;> B

Since |g — b| < w® /2, || < w* 3/2. Substituting this above, we get the required result.
6. TForallve L, v#0, we have ||[v]|> > logh :

13



Let v = .72 6,15 # 0 and assume ||v||* < logh. Then 8,11 € {—1,1}. Wlog, let 041 = 1.
Then, for i = 1,...,m, 6 € {0,—1}. Let t = dpq2, and g = [[]~ 1p1 % If g > b, then
loll> > 57, |6:| log p; = logg > logh. So, g < b. Now, t>w=2* < |[v]|* < logb. Therefore,
|t| < w*y/logb. By part 4 above, g = b+ tw. So,

1
logb—logg < ;(b—g)
1
= ¢
bt iw )

< 2
b w

= 2w THTE| < 2w

So,
m
W2 > S5 log py + w2
i=1
_ logg + t2w72n
= logb— (logb—1logg) + 122k
> logb— 2w Pt + 2w
> logb,
a contradiction. 0

Proof of Lemma 2 (continued).
1. v€Lyv#0 = |v|>1:

This follows from part 6 of Lemma 1.

2. |z > 2nlosn .

From (ii), the set Z' = {g € T | g = b (mod w), |b— g| < w*?} satisfies |Z'| > 2nlen, By
Lemma, 1, for every g € Z', where g = b + tw, we have v = ZZ 1 YiVi + Vm41 + tVp4o satisfies
Iv|? < u—f’; + logb. Let w = \/%gbz/ € Ly. Then, w = szl iV, where ymi1 = 1, Ymio = t.
We have,

3
:— logh)=1+p
ol = o 1P < oy 5 +1ogd) =145

and for i € {1,... ,m} v; € {0,—1} and > 7", |vi| = n, because g € T

3. Ifwui,us € Z,us # ug and u; = Z;”’;Q 'yz( )I/Z, then 3i € {1,... ,m} such that 'yl 7é 7(2)
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Assume Vi € {1,... ,m},'yi(l) = %(2). Let y; = Iogh uj = Y7142 () y;. Then

2

lyillI* = (log?) [|u;|*
< (logb)(1+p)

3
= (I 1+ ———
(ogb)( +w210gb)
3
logb+ﬁglogb+c

By definition of Z, fyZ € {0,—1}, for i € {1,...,m} and j € {1,2}. If 7(]21—1 < 0 for
Jj = 1 or 2, then —y; satlsﬁes the assumptions of Lemma 1 and so — Z-j € {0,—1}, for
i€{1,... ,m}. This 1mphes fy ) e {0,1} for i € {1,... ,m}, contrary to the definition of Z. (
And Fi € {1,... ,m} 'yZ = 1, since by the definition of Z, Y 7", |'yzj)| =n > 0.) Therefore,

%%rl >0,j¢€ {1 2} and so by Lemma 1, yfnll = 77(731 = 1. Thus, y = y1 — yo is parallel to

Vm+2 and
lyl* = (g1 = 92) - (51 = 92) < 20wl + llyall*) < 4(logd + ).
But, ||[Um-2|> > B?log (1 + %)2 > 4(log b+ c). O
Proof of Lemma 3 (continued).
1. veLwv#0 = |v||>1:

Let T be the linear transformation T%; = w;, for i = 1,... ,m + 2. Then, 1 — 27" < ||T|| <
142 and1—-2"" < ||T*1H <1+ 2 ™" for some constant ¢; that is sufficiently large.
By construction, v = (1 + p)Tw, for some w € Ly, w # 0. This implies [|w| > 1. So,
loll > 1 +p) |77 =1+ 277%)(1 = 2771) > 1, because size(p) < n2 and ¢; is large enough

2. |Y|>2nloen .
Let v = (1+ p)Tw, w € Z. Then,
[l* < A+ 27 ITIP lw]® < A+ p)*(1+2 ™)1 +p)° <(1+p)° <1+8p=1+p.
3. Ifuj,ug € Y,ur # up and u; = Zm+2’y§])vi, j = 1,2, then 3i € {1,... ,m} such that
1 2
) #£4?
Similar to 2. O
Lemma 4 Let yi,... ,y; be l integers such that 22:1 Y = [ . Then, Zi L Y2 is minimized

when all y; are either 0 or 1, and this minimum value is [5]. If 3i y; & {0,1}, then Zz LyE>
[§]+2.

Proof Consider,
l l l
S=> =Y vi=> vilu
i=1 i=1 i=1
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For all y € Z, y(y —1) > 0 and is 0 iff y € {0,1}. Therefore, S = 0 iff Vi y; € {0,1}, else
S > 0. This means that the minimum of 25:1 y? subject to the condition that 22:1 = [%]
occurs when exactly [%] of the y; are 1 and the rest are 0. For y > 2 or y < —1, y(y — 1)
increases with |y|. and y(y —1) =2 when y = 2 or —1. If 3i y; & {0,1}, then S > 2 and so

!
Syl > L]+ 2 0

Lemma 5 Let m = poly(n). Let @1,...,amy2 and by,... ,bnyo be two sets of linearly in-
dependent vectors in R™2, such that 1 < ||a|, HE ” < o’ for some constant ﬂ > 0 and

fori=1,...,m+2. Let the matrix W = (a1,... ,am+2) satisfy |det W| > 27 """ for some
constant ,6’ >0 and §; = b; — @; satzsfy |6:]] <277, where v > 3’ +ﬂ+2. Let T be the linear
transformation T(a@;) = b;, fori =1,... ,m+2. Then, 1 =27V < ||T|| <142 and
1—27" < Tt <1427

Proof We have, % = Hﬁi” >1-— % >1-2" >1-— 2_"7_2, since ||a;|| > 1 and
so the lower bound follows. For the upper bound, let @ = (a1,... ,m12) and Wa = x =
(x1,... ,Tmy2) be a unit vector in R™*2, Let W (i) = the matrix obtained by replacing the

ith column of W by x, and W(j,i) = matrix obtained by deleting the 5" row and the ith
column of W. Let P; denote the parallelepiped defined by a;, j # ¢ and proj(F;, j) denote the
orthogonal projection of P; on the space spanned by eq,...,e;_1,€j41,... ,€n, Where e;’s are
the standard unit vectors. Note that, vol(proj(FP;, j)) = |det W (34,4)|. By Cramer’s Rule,

o] e
Y |det W
We have,
m+2
|det W;| = Z zj(det W(j,1))
j=1
m+2
< Z || vol(proj(F;, j))
j=1
m+2
< Y |agl vol(P)
j=1
Therefore,
VOl m—|—2
A<
|| [det W| Z |5
Vol m+2
< et W|\/_Z ; by Cauchy-Schwarz
vol(F)
<
~  |det W|\/7_l
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Since |det W| > 27" and vol(B;) < [T, gl < @) = 27"

7
g < 270 < P
Now, let y =Tz = ZZ’SJ a;b;. Then,
m+2 ~
lyll = Z ;b
i=1

m+2
= | ailai + &)
=1
m+2

m+2
) ai > aid;
i=1 i=1
m—+2

C< el ) faal 6l
=1

IN

_l’_

m+2 'y
< 1+ 3 277 6.

=1
Since ||6;]| <27 and v > B+ (' + 2,

m—+2

—1 -2

Iyl <14 ) 27 2™ <142,
=1

A similar proof works for T7!.
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