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Abstract

We show that the satisfiability problem for bounded error probabilistic ordered branching
programs is NP-complete. If the error is very small however (more precisely, if the er-
ror is bounded by the reciprocal of the width of the branching program), then we have a
polynomial-time algorithm for the satisfiability problem.

1 Introduction

Branching programs are an interesting computational model to investigate. One reason for this
is the tight relationship of the size of a branching program to the space needed by (nonuniform)
Turing machines [Mas76] (see [BS90]). Another reason is the use of restricted kinds of branching
program in applications as for example circuit verification (see Bryant [Bry92] for a broad
overview).

Definition 1.1 A (deterministic) branching program B in n variables z1,..., %, is a directed
acyclic graph with the following type of nodes. There is a single node of indegree zero, the initial
node of B. All nodes have outdegree two or zero. A node with ouldegree two is an internal node
of B and is labelled with a variable z;, for some i € {1,...,n}. One of its oulgoing edges is
labelled with 0, the other with 1. A node with outdegree zero is a final node of B. The final
nodes are labelled either with accept or reject. The size of a branching program is the number
of its nodes.

A branching program B in n variables defines an n-ary Boolean function from {0,1}" to
{0,1} in the obvious way: for an assignment @ = (ay,...,a,) € {0,1}", we walk through B,
starting at the initial node, always following the (unique) edge labelled a; when the node has
label x;, until we reach a final node. If the final node is an accepting node, we define B(a) =1,
and B(a) = 0 otherwise.

The restrictions on branching programs usually considered bound the number of times a
variable can be tested.

Definition 1.2 A branching program is called read-k-times, if, on each path from the initial
node to a final node, every variable occurs at most k times as a node label.
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Of particular interest are read-once branching program where the variables are read in a
certain fixed order.

Definition 1.3 A ordered branching program (also called ordered binary decision diagram,
OBDD for short) is a read-once branching program such that there is a permutalion ® on
{1,...,n} such that if an edge leads from a node labelled x; to a node labelled v ;, then w(i) < 7(j).

Ordered branching programs have the advantage that one can efficiently manipulate them.
For example, given two ordered branching programs, one can easily construct a new one com-
puting the conjunction of the given ones. Also, there are fast, in fact, linear time algorithms to
check the equivalence of two ordered branching programs.

The main drawback of ordered branching programs is their limited computational power.
For example, multiplication requires exponential size ordered branching programs [Bry91]. (For
more lower bounds see for example [BRS93, BHR95, Juk89, KMWO91, Pon95, Weg88].) It is
therefore of great interest whether one can find some less restrictive model in order to be able
to compute more functions within small size, but, at the same time, to maintain all the nice
properties ordered branching programs have.

A bad choice, for example, seems to be read-once branching programs. Not only many of the
lower bound proofs for ordered branching programs work as well in the read-once model, also in
general one cannot combine them according to Boolean operations: there are examples of func-
tions that have small read-once branching programs, but their conjunction requires exponential
size.

Gergov and Meinel [GM96] proposed parity ordered branching programs, &-OBDDs for short.
This model is based on nondeterministic branching programs.

Definition 1.4 Nondeterministic branching programs are defined as deterministic ones but that
can have additional unlabelled nodes with unbounded fan-out.

On some input, when the evaluation reaches such a nondeterministic node, one can choose
an arbitrary edge to proceed. A nondeterministic branching program accepts an input, if there
exists a path that leads to the accepting node. Otherwise the inpul is rejected.

Parity ordered branching programs, &-OBDDs, are nondeterministic branching programs
that accept a given input iff there is an odd number of accepting paths.

Some of the functions where ordinary ordered branching programs need exponential size have
small $-OBDDs. Gergov and Meinel [GM96] show that they have Boolean closure properties
and give an efficient probabilistic equivalence test. Very recently, Waack [Waa97] exhibited even
a polynomial-time equivalence test for &-OBDDs.

In this paper we consider probabilistic branching programs introduced by Ablayev and Kar-

pinski [AK96].

Definition 1.5 Probabilistic branching programs are defined as nondeterministic ones but the
nondeterministic nodes are now called probabilistic nodes.

On some inpul, when we reach a probabilistic node, the edge lo proceed is chosen under
untform distribution out of all outgoing edges. A probabilistic branching program accepls its
input if the probability of reaching the accepling node is at least 1/2. Otherwise the input is
rejected.

A probabilistic branching program has bounded error, if there is an ¢ > 0 such thal the
acceptance probability is either at most 1/2 — € or at least 1/2 + € on all inpuls.

We use BP-OBDD as a short hand for bounded error probabilistic ordered branching pro-
grams.



Ablayev and Karpinski [AK96] exhibit a function f that requires exponential-size read-once
branching programs, whereas f can be computed by polynomial-size BP-OBDDs. Later on,
Ablayev [Abl97] extended the gap to nondeterministic read-once branching programs.

Another example is PERMUTATION-MATRIX, the problem to decide whether a given n x n
0-1-matrix is a permutation matrix. That is, whether there is precisely one 1 in every row
and every column. PERMUTATION-MATRIX requires exponential-size nondeterministic read-
once branching programs [Juk89, KMW91], whereas it can be computed by polynomial-size
BP-OBDDs [Sau97].

We add a further example to this list: the CLIQUE-ONLY function. Given a graph G with n
nodes and a k£ < n. One has to determine whether GG has a k-clique and the clique edges are the
only edges of G. CLIQUE-ONLY requires exponential-size nondeterministic read-once branching
programs [BRS93]. We show that it can be computed by polynomial-size BP-OBDDs.

On the other hand, the INDIRECT-STORAGE-AcCESS and the HIDDEN-WEIGHTED-BIT func-
tion require exponential-size BP-OBDDs [Sau97] (see [Abl97, Sau97] for more lower bounds).

It is easy to see that bounded error probabilistic ordered branching program are closed under
Boolean combinations. So the most interesting open question with respect to this model is to
ask for efficient satisfiability- or equivalence tests. In this paper, we solve this open problem.
However, we give a negative answer with respect to the most interesting cases in Section 4:
the satisfiability problem for bounded error probabilistic ordered branching programs is NP-
complete. Only if the error of the branching program is bounded by the reciprocal of its width
we have a polynomial-time algorithm for the satisfiability problem. This is shown in Section 5.
Because the equivalence problem is reducible to the satisfiability problem, this also provides an
efficient equivalence test for probabilistic ordered branching program with small error.

We start by providing some basic facts about probabilistic branching programs in the next
section.

2 Basic Properties

Ordered branching programs, OBDDs, are somehow similar to finite automata, with the diffe-
rence that branching programs are a nonuniform model and that the input might be read in a
different order than just from left to right. However, many of the construction done with finite
automata can be adapted to ordered branching programs. For example they have a canonical
form [Bry86]: for any ordered branching program there is a uniquely determined minimal equiva-
lent one with respect to this order. Since the minimization process can be carried out efficiently,
this also provides a polynomial-time equivalence test. Another example is the construction of
the cross product of two such programs that obey the same order. This essentially allows to
combine ordered branching programs according to Boolean operations [Bry86, Bry92].

We sketch the construction for two BP-OBDDs By and B; that obey the same order. Assume
that By and By are layered such that there are alternating probabilistic and deterministic nodes,
that furthermore all variables appear on every path, so that the same variable is tested in every
deterministic layer. Edges go only from one level to the next. This can easily be achieved by
introducing redundant nodes. These are nodes which, in case of a deterministic node, have both
its edges going to the same node. In case of a probabilistic node there is only one edge that
goes to some node with probability 1. Now we define program B. B has the same layers as
By and By, the nodes of each layer are the cross product of the nodes of By and By at the
corresponding layer. Edges are defined such that B simulates By and By in parallel. That is,
there is an edge from node (u,v) to (u/,v') in succeeding levels of B, if there is an edge from u to
u' in By and from v to v’ in By. The size of B is bounded by |Bg||Bi| and the number of paths



that reach a node multiply: if some input z is accepted by By with probability pg and by By
with probability p;, then B on input z reaches the (accept,accept)-node with probability popi,
the (accept,reject)-node with probability po(1 — p1), the (reject,accept)-node with probability
(1 — po)p1, and the (reject,reject)-node with probability (1 — pg)(1 — p1).

Using the cross product, one can achieve probability amplification of BP-OBDDs. Let B be
such a program in n variables that computes some function f with error 1/2 — e. That is,

ProblB(z) = ()] > 3 te

We apply the above cross product construction ¢ times with B = By = By. This yields program
B! that consists of ¢ factors B. The acceptance of B! is defined according to a majority vote on
its ¢ factors. The size of B! is bounded by |B|. Since ¢ is in the exponent, we have to choose ¢
constant in order to keep B! within size polynomial in |B|. Therefore, by standard arguments
(for example using Chernoff-bounds), we can amplify the correctness of B from % +etol -6,
for any constant 0 < § < 1/2.

Lemma 2.1 Let B be a BP-OBDD that computes some function [ with error 1/2 — € and lel
0 <6 < 1/2. Then there is BP-OBDD of size polynomial in |B| thalt computes f with error .

As a first application we show that BP-OBDDs can be combined according to Boolean
operations.

Lemma 2.2 BP-OBDDs (with the same order) can be combined in polynomial time according
to any Boolean operation.

Proof. BP-OBDDs can be complemented by exchanging accepting and rejecting states. The-
refore it remains to show how to construct the conjunction of two BP-OBDDs By and B; with
n variables. Let the error of both be at most 1/4 (applying Lemma 2.1).

The idea to get a BP-OBDD that computes By A By is the same as for deterministic OBDDs:
assume that By and B; are layered such that deterministic and probabilistic node alternate and
that all variables occur on every path. Then we can build the cross product B = By X By and
define the (accept,accept) node as the accepting node of B and the other leafs as rejecting nodes.

Let @ € X, If a is accepted by both, By and By, then B accepts a with probability at least
(3/4) (3/4) = 9/16. On the other hand, If a is rejected by either By or By, then B accepts a
with probability at most 1/4. a

3 The Computational Power

As already mentioned, there are some functions that can be computed by small BP-OBDDs but
require exponential size ordered (in fact, read-once) branching programs. In this section we give
some examples to demonstrate how branching programs can use randomization.

Although polynomial size BP-OBDDs cannot multiply [AK97] they can nevertheless verify
multiplication. That is, given z, y, and z they can check if zy = z.

Theorem 3.1 BP-OBDDs can verify multiplication with one-sided error and within polynomial-
size.



Proof. Given n-bit numbers z and y and 2n-bit number z. Small branching programs cannot
handle such numbers. Instead, we do computations modulo some small prime p.

For example it is easy to construct an ordered branching program that computes (# mod p)
in the sense that there are p final nodes numbered 0,...,p — 1 such that the program ends up
in node (2 mod p). Based on this, we construct an ordered branching program B,(z,y, z) that
checks whether

zy =z (mod p).

B, starts by computing (2 mod p). Then we read the bits of y = y,,_1 - - - yo. Since

n—1

(zmod p) y =Y (2 mod p) 2'y; (mod p),
1=0

we can also compute (zy mod p). Now it remains to compute (z mod p) and to compare it with
(zy mod p). The size of B, is O(p*n). Note that B, is ordered.

If indeed zy = z, then B, will accept independently of p. On the other hand, if 2y # z then
B can accept anyway for some prime p, because we could still have that zy = 2 (mod p) in
this case. However, since these numbers are bounded by 22", there are at most 2n primes where
our test can fail.

Our final program B therefore probabilistically branches to programs By, , ..., Bp,, , where
P1,- ., Pan are the first 4n prime numbers. Each of those checks whether zy = z  (mod p;). If
zy = z, then Prob[B(X) accepts] = 1. Otherwise Prob[B(X) accepts] < 1/2.

By the Prime Number Theorem py,, is polynomially bounded in n. Therefore B has polyno-
mial size. m|

Another example is provided by the CLIQUE-ONLY function. Recall that on input of a
graph G and a k, we have to decide whether G has a k-clique and no other edges outside the
clique.

Theorem 3.2 CLIQUE-ONLY has polynomial-size BP-OBDDs with one-sided error,

Proof. Let A be an adjacency matrix of a graph G with n nodes, and k£ < n. G has only a
k-clique iff

(i) there exist k rows such that each contains precisely k¥ — 1 ones and the remaining rows are
all zero, and

(ii) any two nonzero rows must be identical except for the positions where they intersect the
main diagonal.

Condition (i) is easy to check, even for deterministic OBDDs. The variable order is row-wise,
ie, z11 < 12 < - < Tpp-1 < Tpny. LTherefore it remains to check condition (i) with an
BP-OBDD that has the same order, and then apply Lemma 2.2.

Suppose we add a 1 at the diagonal positions of the nonzero rows of A. Then condition (ii)
says that the resulting nonzero rows must be identical. Let ry,...,r, denote the rows of A and
interpret them as binary numbers. Introducing a one at the diagonal position of nonzero row r;
corresponds to adding 277 to r;. Therefore it suffices to check that for any two consecutive
nonzero rows r; and 7, we have

rp 427 = 2R (1)



We construct a deterministic OBDD B, that verifies equation (1) modulo some small prime p.
B, looks for the first nonzero row, say j and computes s = (z; + 2”77 mod p) by doing a binary
count modulo p as in the previous theorem. Then B, checks for each forthcoming nonzero row k
that x), + 2"~% = 5. (again by counting modulo p to determine the value (z; + 2°~* mod p)).
The size of B, is O(n?p?).

Now we can again use the same technique as in Theorem 3.1 to obtain a polynomial-size

BP-OBDD that checks condition (ii). ]

4 NP-Complete Satisfiability Problems

In this paper we are mainly interested in satisfiability and equivalence problems. Note that the
satisfiability problem is at most as hard as the equivalence problem, since satisfiability asks for
(not) being equivalent with the all-zero function.

Consider a read-once branching program. Here, the satisfiability problem is trivial since
it is enough to check that there is a path from the initial to the accepting node. It is well
known that already for the extension to read-twice branching programs, the satisfiability problem
is NP-complete. Only in the restricted case that there are a constant number of layers of
ordered branching programs, all respecting the same order (so called £&-OBDDs), the satisfiability
problem stays in P [BSSW94].

The above argument still works for nondeterministic read-once branching programs. (Also
the argument in [BSSW94] for k&-OBDDs goes through.) However, this is not clear for proba-
bilistic read-once branching programs, not even for ordered ones. The task here is to find an
input that is accepted with high probability by a such a program B. What we can do is the
following: for every given input @ € {0,1}" we can determine how many paths in B lead to
the accepting, respectively rejecting node. That is, we can compute Prob[B(a) accepts] in po-
lynomial time. The satisfiability problem for probabilistic read-once branching programs (with
unbounded error) can be stated as

Ja : Prob[B(a) accepts] >

N | —

Therefore it is in NP. It is also NP-complete:

Proposition 4.1 The satisfiability problem for probabilistic ordered branching programs (with
unbounded error) is NP-complete.

Proof. We reduce CNF-SAT. Let F = A/~ C; be a CNF-formula with m clauses C1y,...,C),.
We construct a probabilistic ordered branching program Br such that

F €SAT <= da: Prob[Br(a) accepts] >

N | —

Let B; be a deterministic ordered branching program that accepts if clause C; is satisfied on
a given input. Bp is constructed as follows. The initial node of Bp is a probabilistic node
that branches 2m times. For m of these edges, each leads to the initial node of exactly one
program B;. The remaining m edges go directly to the rejecting node.

It follows that Br accepts input a if and only if all the programs B; accept (recall that these
are deterministic), which is only possible when a satisfies F. a

When considering the case of bounded error, there is a subtlety on how to define the satis-
fiability problem precisely: let B be a probabilistic ordered branching program and lets fix the



error bound € = 1/4. Then B accepts an input a, if Prob[Br(a) accepts] > 3/4. Additionally
we also would have to check that B has in fact bounded error on all inputs. However, already
this latter problem is coNP-complete.

Proposition 4.2 Given a probabilistic ordered branching program B and an € > 0. The problem
to decide whether B is of bounded error ¢ is coNP-complete.

Proof. The argument is essentially the same as for Proposition 4.1. Consider the case ¢ = 1/4.
Construct Br as above but with 4m — 4 edges leaving the initial node and 3m — 4 of them going
directly to the rejecting node. Then we have

I

1
FeSAT <+~ da: 1< Prob[Br(a) accepts] <

a

Hence, efficient satisfiability algorithms can only exist for the promise version of the
problem: given B and ¢ > 0, we take as a promise that B is in fact a probabilistic or-
dered branching program with error ¢. With this assumption we want to decide whether
Ja : Prob[Br(a) accepts] > 1/2 + e. If the promise is not true, then we can give an arbi-
trary answer.

However, (unfortnately, from a practical point of view) even the promise version of the
satisfiability problem for BP-OBDDs is NP-complete.

Theorem 4.3 The satisfiability problem for BP-OBDDs is NP-complete.

Proof. Manders and Adleman [MA78] have shown that some specific Diophantine equations
so called binary quadratics, are NP-complete. More precisely, the following set ¢ defined over
the natural numbers is NP-complete:

Q ={(a,b,¢)|3a,y: ac® +by=c).

As a slight generalization of Theorem 3.1, BP-OBDDs can verify such binary quadratics.
That is, the set

Q' ={(a,b,c,z,y)| az® + by = ¢}

can be accepted by a polynomial-size BP-OBDD, call it B.

For fixed a,b, c, we can construct a BP-OBDD By, from B that computes the subfunction
of B with «a, b, and ¢ plugged in as constants. Recall that B is deterministic except for the root
node. Therefore we can obtain B,p. by reducing B appropriately. For example, to fix variable
x1 to ap in B, we construct By —,, as follows: eliminate all nodes labelled z; in B and redirect
edges to such a node w to the node that follows the ai-edge of w.

For all natural numbers a, b, ¢, we have that

(a,b,c) € Q) <= By is satisfiable.

This proves the theorem. a

Corollary 4.4 The equivalence problem for BP-OBDDs is coNP-complete.



5 An Efficient Satisfiability Test for BP-OBDDs with Small
Error

Ordered branching programs can be layered: by introducing redundant nodes we can achieve
that every variable occurs on every path of the program. Then all nodes that test the same
variable have the same distance to the root, they form a layer of the program. The maximum
number of nodes in a layer is called the width of the program.

We can extend these notions to BP-OBDDs: here we also have probabilistic layers that
contain probabilistic nodes only. Then we require that deterministic and probabilistic layers
alternate. The width is again the maximum size of a layer.

The main result in this section is an efficient satisfiability test for BP-OBDDs that have
small error, namely error bounded by 1/(width+2). That is, we consider the following problem:

BounDED-WIDTH-BP-OBDD-SAT
Given a BP-OBDD B with error € and width W such that e < 1/(W + 2).
Decide whether B is satisfiable.

Theorem 5.1 BouNDED-WIDTH-BP-OBDD-SAT € P.

Proof. Let B be some BP-OBDD with n variables @1,...,z,, width W and error e < 1/(W+2).
W.l.o.g. we can assume that B is layered, so that probabilistic and deterministic layers alternate.
We number the layers according to their distance to the root. The root layer (which is a single
node) has number 0.

We want to find out whether B is satisfiable, i.e., whether there exists an input such that
B accepts with high probability. We traverse B layer by layer, starting at the initial node, i.e.
with layer £ = 0 and By = B. In each level we transform the branching program. Also the
probabilities that a probabilistic node branches to its successors will change. In the beginning,
all probabilities have the form 1/p if a node has p successors. Since we will also get other rational
numbers as probabilities, we generalize the BP-OBDD model and write the probabilities on the
edges, maybe as pairs of integers in binary representation.

Suppose we have reached layer £ > 0 and let By denote the branching program constructed
so far. By has the following properties:

1) By is deterministic up to layer £ — 1, and identical to B from layer £ 4+ 1 downwards,

2) the error of By is bounded by e,

4

)
)
3) the width of By is at most W + 1, and
) By is satisfiable iff B is satisfiable.

In general, B, accepts only a subset of the strings accepted by B. Nevertheless, we en-
sure property (4) which is enough to check the satisfiability of B. In particular, the resulting
branching program after we have processed the last level is a deterministic ordered branching
program. Hence this will solve our problem since the satisfiability problem for ordered branching
programs is trivial: it is a graph reachability problem.

We now describe how to process layer £ > 0. Let £ be the smallest probabilistic layer of By.
(If layer € is deterministic then define Byyq = B; and proceed to the next layer.) We consider
three consecutive layers:



layer { consists of k& probabilistic nodes wuy, ug, ..., ur. We can inductively assume that the
part of By from the initial node to the u-nodes is deterministic and that &k < W + 1.

layer £ + 1 consists of [ < W deterministic nodes vy, vg, ..., v; which all query the variable z,.

layer ¢ + 2 consists of m < W probabilistic nodes w1y, ws, ..., wy,.

These nodes are connected as follows.

u-nodes with v-nodes: each node w; is connected to all the nodes v; with the edge between
them having probability p;; (in case u; is not connected to some node v;, we take the
probability p;; to be zero). We have 3~.p;; = 1 for each 1 <@ < k.

v-nodes with w-nodes: node v; is connected to nodes we(j0) and we(; 1) via edges labelled 0
and 1 respectively.

Our first step is to make the k u-nodes deterministic. For this we introduce 2k new nodes
at layer £+ 1, call them o9, v, 0§, 03, ..., v?, v} (these nodes will be probabilistic) that replace
the old v-nodes. The w-nodes get label z,, the variable queried by the old v-nodes, and we put
the b-edge of u; to node v?, for b € {0,1}.

Next, we introduce an edge from node 'vf? to the node w; and assign probability ¢ ;. to it
such that ¢y ;; is precisely the probability to reach w; from w; in By if z, has value b. This is
achieved by defining

Qbit = E : Pij-
J
e(s,b)=t

Finally, delete all the old v-nodes v; and edges adjacent to them. Let Bj be the branching
program constructed so far. Clearly B) is equivalent to By. In fact, the probability to reach a
node w; has not changed. So in particular, the error probability of Bj is the same as in By, i.e.,
at most €.

Now we have two consecutive layers of probabilistic nodes. We can merge the layer of
w-nodes into the v-nodes and change the probabilities on the edges going out from wv-nodes
appropriately such that the previous probabilities to reach a node in the layer below the w-
nodes is not altered. However, the number of v-nodes we obtain that way is 2k (recall that k is
the number of probabilistic u-nodes in By). Therefore, if we just use this process to eliminate
all the probabilistic nodes from B;, we might end up with an exponential number of nodes in
the final branching program. So we have to reduce the number of v-nodes in B} before merging
them with the w-nodes.

Now we use the fact that we only want to know whether By is satisfiable. Therefore we
can throw out some v-nodes from Bj as long as we can guarantee that the reduced branching
program is still satisfiable if B} is satisfiable.

Below we give a method to reduce the number of v-nodes to at most m + 1 (recall that m
is the number of w-nodes). Then we obtain program B,y; by merging the remaining v-nodes
with the w-nodes, as described above, so that Byyq has at most m + 1 probabilistic v-nodes at
layer £+ 1 and no w-nodes. Since m < W, the width of B,y is bounded by W + 1. Hence this
will suffice to complete the algorithm.

A v-node UZI? in Bé is connected to a w-node w; via an edge with probability gs;;. Notice
that there are no probabilistic nodes above the layer of v-nodes. Therefore, Bj is satisfiable iff
there is a v-node ’UZI-) such that the acceptance probability of that node on some input, i.e., the



probability of reaching the accepting node from vf-’ on the input, is at least 1 — €. Since the

error of By is bounded by ¢, each v-node has acceptance probability of either at least 1 — € or at
most € on any input.

With each v-node v} we associate a point qp; € Q™, where the {-th coordinate is given by
b,it- Let @ be some input to B} that reaches node v* and let yg = (y1,...,¥m) € Q™ be the
acceptance probabilities of @ when starting at nodes w1, ..., w,,. Then a is accepted by B, with
probability q;; - yq -

We are seeking for an a that is accepted by B) with probability at least 1 —e. The trick now
is to relax the condition a bit: instead of @, we try to find y € [0, 1]™ such that g, ; -y > 1 —¢,
even though y might not occur as a probability vector y, at the w-nodes for any input a that
reaches node vfi’. More precisely, we take y as an unknown and try to find out whether

there exists a y such that vf-’ is the only v-node that has acceptance probabilily 1 — e.

If this is not the case, then
e either no v-node has acceptance probability 1 — € (including va) on any input,
e or there is an input on which both v? and some other v-node have acceptance probability
1—ce

In both cases we can safely delete the node v? from Bj and still maintain the property that the
resulting branching program is satisfiable if and only if By is.

v? is the only v-node that has acceptance probability 1 — € if the following system of linear
inequalities has a solution y € Q™:

Gy 2 1—¢
90;°Y < ¢ for (avj) 7é (b7 Z)v and
0 < gy < 1, for1<t<m.

After deleting a v-node for which this set of inequalities has no solution, we repeat the
above process again for other v-nodes until the above set of inequalities has a solution for every
remaining v-node. In the ideal case we are left with just one v-node (if B is satisfiable). But
since y can take values other than the actually occuring probabilities, there might be more
v-nodes left. We now show that the number of v-nodes can be at most m + 1.

Let vy, v2, ..., v, be the remaining v-nodes and let g; € @™ be the point associated with
v;j and Q = {qy,9y,...,q,}. Let furthermore y; be a vector that satisfies the above set of
inequalities for v;.

We claim that @ is affinely independent in Q™, that is, the points in ¢ span a r — 1
dimensional subspace of Q™ (see [Gri67] for a reference). Since there can be at most m + 1
affinely independent points in @™, it follows that »r < m + 1.

By Lemma 5.2 below, to prove that @) is affinely independent, it suffices to show that for any
S C @ there exists an affine plane that separates S from @ — 5 (i.e., the points in S lie on one
side of the plane whereas the points in ) — 5 lie on the other). We can assume that [S| < r/2
(otherwise replace S by @ — 9).

The affine plane can be defined as the set of points @ € @™ that fulfill the equation

hs-z = 1- Wi where
q; €S
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For any point g; € § we have:

h-q; > y,-q; > 1-— 1-— :
qz yZ qZ - € > I/V+2

For any point g; €  — S we have:

h-q, = Zyj'qZ'

(VAN VAN
o m
* *
=

INA A

A

This proves our claim.

To see that our algorithm runs in polynomial time, we note that the above system of linear
inequalities can be solved in polynomial-time using Khachian’s algorithm [Kha79], and the
probabilities on the edges at any stage can be represented using polynomially many bits. Now
Lemma 5.2 below completes the proof. O

Lemma 5.2 Let () C Q™ such that for every S C () there is an affine plane hs that separates
S from @ — S. Then Q) is affinely independent.

Proof. Let Q = {qy,...,q,}. @Q is affinely dependent if there exist Ay,..., A, that are not all
zero, such that >°/_; A\; kg, =0and >;_; A\; = 0.

We embed @ in Q™! by mapping q; to g = (g;,1). Let Q' denote the embedding of Q.
Then we have that @ is affinely dependent iff Q' linearly dependent.

Corresponding to each affine plane hg, we now have a hyperplane that separates points
in S’ from points in @' — S’. Namely, the affine plane hs - = d becomes the hyperplane
(R, —d) - = 0.

Now, suppose that @' is linearly dependent. This implies that there are Aq,..., . € Q such
that not all of them are zero and

Z )\i * q;- = 0. (2)
=1
Let S’ be the set of those g such that A; > 0. By equation (2) we have
0 = hl (Y Aixq)) (3)
=1
= D Aix(hls q) (4)
=1

Now observe that each term in equation (4) is non-negative and at least one term is non-zero.
To see this note that if A; > 0 then g} € S” and hence h's - g% > 0. On the other hand, if A\; < 0
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then g% € Q' — S" and hence h's - g% < 0. Therefore this latter sum cannot be zero and we have
a contradiction. We conclude that ¢) must be affinely independent. a

Note that we cannot push a BP-OBDD with too large error into the range of Theorem 5.1 by
the standard amplification technique. This is because there we use the cross-product construc-
tion which increases the width of the resulting BP-OBDD. In the specific BP-OBDDs presented
in Section 3 and Theorem 4.3 there is an alternative way of amplification: we could choose
more primes. But again this increases the width of the resulting BP-OBDD. More precisely,
consider the BP-OBDDs that verify multiplication or binary quadratics. For each prime p, the
sub-OBDD that verifies the equation modulo p has width p?. So if we verify equations modulo
the first k primes pq, ..., pr, then the width of the resulting BP-OBDD is

The error is ©(n/k). This is somewhat larger than 1/W'/3. This shows that neither the above
polynomial-time algorithm can be generalized to significantly larger error bounds, nor can the
NP-completeness proof be generalized to significantly smaller errors, unless P = NP. It remains
an open question to settle the satisfiability problem for errors in the range O(ﬁ) N w(%)
The equivalence problem for BP-OBDDs can be reduce to the satisfiability problem: let Bg
and By be two BP-OBDDs, then By # B, iff B = By & By is satisfiable. B can be constructed
by Lemma 2.2. Therefore we also get an efficient algorithin for (the promise version of) the
equivalence problem for BP-OBDDs of small error. Note that the width of B is bounded by the

product of the widths of By and B; and the errors sum up.

Corollary 5.3 The equivalence problem for BP-OBDDs of width W with error € is in P, pro-
vided that 2¢ < 1/(W?* + 2).
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