Electronic Colloquium on Computational Complexity - Reports Series 1997 - available via:
E(:(:(: FTP: ftp.eccc.uni-trier.de:/pub/eccc/
WWW: http://www.eccc.uni-trier.de/eccc/

T R97- 061 Email: ftpmail @ftp.eccc.uni-trier.de with subject " help eccc’

Generalized Diffie-Hellman Modulo a Composite is not
Weaker than Factoring

Preliminary Version

Eli Biham* Dan Boneh' Omer Reingold?

Abstract

The Diffie-Hellman key-exchange protocol may naturally be extended to & > 2 parties.
This gives rise to the generalized Diffie-Hellman assumption (GDH-Assumption). Naor and
Reingold have recently shown an efficient construction of pseudo-random functions and
reduced the security of their construction to the GDH-Assumption. In this note, we prove
that breaking this assumption modulo a composite would imply an efficient algorithm for
factorization. Therefore, the security of both the key-exchange protocol and the pseudo-
random functions can be reduced to factoring.

*Computer Science Department, Technion, Haifa 32000, Israel. E-mail: biham@cs.technion.ac.il

"Dept. of Computer Science, Stanford University, Staford, CA, 94305-9045. E-mail:
dabo@cs.stanford.edu

{Dept. of Applied Mathematics and Computer Science, Weizmann Institute of Science, Rehovot 76100,
Israel. Research supported by a Clore Scholars award and by a grant from the Israel Science Foundation
administered by the Israeli Academy of Sciences. E-mail: reingold@wisdom.weizmann.ac.il.

1 Introduction

The Generalized Diffie-Hellman (GDH) Assumption was originally considered in the context
of a key-exchange protocol for k > 2 parties (see e.g., [6, 8]). This protocol is an extension

of the (extremely influential) Diffie-Hellman key-exchange protocol [2]. Given a group G

and an element g € G, the high-level structure of the protocol is as follows: Party i € [k] def

{1,2,...,k} chooses a secret value, a;. The parties exchange messages of the form gHiGI ai
for several proper subsets, I C [k]. Given these messages, each of the parties can compute

gHiG[’“] “ and this value defines their common key (in some publicly known way). Since the
parties use an insecure (though authenticated) channel, it is essential that the messages

they exchange do not reveal gHiG[k] “. The GDH-Assumption is even stronger: informally,

it states that it is hard to compute gHiG[k] “ from an algorithm that can query gHieI “ for
any proper subset, I C [k] of its choice. The precise statement of the assumption is given
in Section 2.1.

Recently, another application to the GDH-Assumption was proposed by Naor and Rein-
gold [4]. They showed an attractive construction of pseudo-random functions such that its
security can be reduced to the GDH-Assumption. Motivated by this application, we provide
in this note a proof that the GDH-Assumption modulo a Blum-integer is not stronger than
the assumption that factoring Blum-integers is hard. Similar reductions were previously
described in the context of the standard Diffie-Hellman assumption by McCurley [3] and
Shmuely [6]. In fact, Shmuely [6] also provided a related proof that the GDH-Assumption
(modulo a composite) itself can be reduced to factoring. Her reduction works when the algo-

rithm that breaks the GDH-Assumption succeeds in computing ngG["ﬂ] “ for every choice of
values (ay,as,...,ar) (which is not sufficient for the applications of the GDH-Assumption).
In contrast, our reduction works even when the algorithm breaking the GDH-Assumption
only succeeds for some non-negligible fraction of the (a4, ..., ax).

2 The Assumptions

In this section we define the GDH-Assumption in Z% (the multiplicative group modulo N),
where N is a Blum-integer. We also define the assumption that factoring Blum-integers is
hard. The restriction to Blum-integers is quite standard and it makes the reduction of the
GDH-Assumption to factoring much simpler. In order to keep our result general, we let N
(in both assumptions) be generated by some polynomial-time algorithm FIG (where FIG
stands for factoring-instance-generator):

Definition 2.1 (FIG) The factoring-instance-generator, FIG, is a probabilistic polynomial-
time algorithm such that on input 1™ its output, N = P -, is distributed over 2n — bit
integers, where P and @) are two n — bit primes and P = Q = 3 mod 4 (such N is known
as a Blum-integer).

A natural way to define FIG is to let FIG(1™) be uniformly distributed over 2n — bit
Blum-integers but other choices were previously considered (e.g., letting P and @) obey
some “safety” conditions).

2.1 The GDH-Assumption

To formalize the GDH-Assumption (which is described in the introduction) we use the
following two definitions:

Definition 2.2 Let N be any possible output of FIG(1"), let g be any quadratic-residue in
Zy and let @ = (ay,aq,...,a;) be any sequence of k elements of [N]. Define the function
hy 4.z with domain {0, 1}* such that for any input, * = x1z9 - -2},

hn g,2() def gHzi:l “mod N

Define h?V,g,z_f Lo be the restriclion of hy 47 to the sel of all k-bil strings excepl 1% (i.e., the
restriction of hyy 4.z to {0, 1}%\ {1*}).

Definition 2.3 (e-solving the GDH;-Problem) Let A be a probabilistic oracle machine,
k = Ek(n) an integer-valued function and € = €(n) a real-valued function. A e-solves the
G DHy-Problem if for infinitely many n’s

Pr[A"V0a(N, g) = hy 42(17)] > €(n)

where the probability is taken over the random bits of A, the choice of N according to the
distribution FIG(1"), the choice of g uniformly at random in the set of quadratic-residues
in Z and the choice of each of the values in @ = (ay,as, .. .,ak(n)> uniformly at random in

[N].

Informally, the GDH-Assumption is that there is no “efficient” oracle machine A that
e-solves the GDHy-Problem for “non-negligible” €. We formalize this in the standard way of
interpreting “efficient” as “probabilistic polynomial-time” and “non-negligible” as “larger
than 1/poly”. However, our reduction (Theorem 3.1) is more quantitative.

Assumption 2.1 (The GDH-Assumption Modulo a Blum-Integer) Let A be any
probabilistic polynomial-time oracle machine and k = k(n) any integer-valued function that

is bounded by a polynomial (and is efficiently-constructible). There is no positive constant
a such that A n%-solves the GDHp-Problem.

2.2 The Factoring-Assumption
We formalize the assumption that factoring Blum-integers is hard in an analogous way:

Definition 2.4 (e-factoring) Let A be a probabilistic Turing-machine and ¢ = €(n) a
real-valued function. A e-factors if for infinitely many n’s

PrlA(P-Q) € {P,Q}] > €(n)
where, the distribution of N = P-Q is FIG(1").

Assumption 2.2 (Factoring Blum-Integers) Let A be any probabilistic polynomial-time
oracle machine. There is no positive constant a such that A n%-factors.

3 Reducing the GDH-Assumption to Factoring

Theorem 3.1 Assumption 2.1 (the GDH-Assumption) is implied by Assumption 2.2 (Fac-
toring). Furthermore, assume that A is a probabilistic oracle machine with running-time
t = t(n) such that A e-solves the GDHy-Problem (where k = k(n), is an integer-valued
function that is efficiently-constructible and € = €(n) a real-valued function). Then, there
exists a probabilistic Turing-machine A" with running time t'(n) = poly(n,k(n))-t(n) that
¢ -factors, where €'(n) = e(n)/2 — O(k(n)-27").

As an intuition to the proof, assume that A computes hN,g,a(lk) for any sequence
a = (ay,as,.. .,ak(n)>. The algorithm A’ can use A to extract square-roots in Z% and
consequently A can factor N (as shown in [5]). This is done as follows: A’ first samples v
uniformly at random in Z% and computes g = v2" mod N. For every 0 < ¢ < k, we have
that g2~ = 02" mod N. Let @ = (ay,...,ar) be the vector where for all ¢, a; = % mod /£
(here £ is the order of g in Z};). It follows that algorithm A’ can easily compute b}y ()
for any = # 1*. Hence, A’ can invoke A with input (N,g) and answer every query, g,
of A with Ajy :(¢q). Eventually, A outputs the value u = hy,z(1") = g2 mod N.
We now have that u? = v? mod N and that Prf[u = 4v] = 1/2. This implies that
Prlged(u — v, N) € {P,Q}] = 1/2 which enables A’ to factor N. The complete proof fol-
lows the same lines along with additional “randomization” of the a;’s (achieved by taking
a; = 271 + r;) which eliminates the assumption that A always succeeds.

Proof: Assume that A is as in Theorem 3.1, we define the algorithm A’ that is guaranteed
to exist by the theorem. Let N = P - (@ be any 2n-bit Blum-integer. Given N as its input,
A’ performs the following basic steps (we later describe how these steps can be carried out
in the required running time):

1. Sample v uniformly at random in Z},. Compute k = k(n) and g = v2" mod N. Denote
by ¢ the order of g in Z%; (note that ¢ is not known to A’).

Since N is a Blum-integer and ¢ is a quadratic-residue we have that £ is odd. This
implies that 2 € Z; and therefore 27! mod ¢ exists.

2. Sample each one of the values in (ry,rs,...,7;) uniformly at random in [N]. For
1 < i < k, denote by a; the value r; + 27! mod ¢ (again, note that a; is not known to
A"). Denote by @ the sequence (ay,az, ..., ax).

3. Invoke A with input (N, g) and answer each query, ¢, of A with the value Py, 2(q).

4. Given that A outputs the correct value — hy ,z(1"), compute u = gQ_k mod N. As
will be noted below, > = v mod N. If u # £v mod N, output ged(u — v, N) which
is indeed in {P,Q}. Otherwise, output ‘failed’.

The Running-Time of A’:
Steps (1) and (2) can easily be carried out in time poly(n, k(n)). For steps (3) and (4) to
be carried out in time t'(n) = poly(n, k(n)) - t(n) it is enough to have that:

a. For every query ¢ € {0,1}*\ {1*} the value Ay, z(q) can be computed in time
poly(n, k(n)).

b. Given hy 4 z(1"), the value 92" mod N can be computed in time poly(n,k(n)).

The key-observation for showing the above is that for all 0 < ¢ < k, we have that g2~ =
v2* " mod N. For i = 1, this is implied by the fact that both g2 ' and v2"~" are square
roots of g and they are both quadratic-residues. Since squaring is a permutation over the
set of quadratic-residues in Z} (for any Blum-integer, N) we must have that ‘(]2_1 and v2*
2k—

are equal. By induction on 0 < ¢ < k, we get that g2_i = »2"" mod N in the same way.

Therefore, for every ¢ = qiqa . .. qx # 1F:

) . — k—1 _ k—1 _
hN,g,a’((]) — qui=l ai _ qui=1(7'z+2 1) _ ngo ;277 _ UEFO o2k mod N

where the values {aj};?;é can easily be computed in time poly(n, k(n)). Therefore, we get
that (a) holds. Similarly:
k— _ k— _
hng,a (1 k) = gH’ 1% = QH 1 (ri27h) - 92_k 'QEFOJ A gQ_k "UEJ=01 B2t mod N

where the values {3;}%Z} can easily be computed in time poly(n,k(n)). We now get that

(b) holds since:

a— k=1 4 ok— -1
92 = hN,g,a‘(lk) : <’UZJ=0 B;2 J) mod N

The Success-Probability of A’:

It remains to show that A’ €-factors, where € (n) = €(n)/2 — O(k(n)-27"). Recall that u

denotes the value g2~" mod N. As shown above v2 = g2 (k- (= u*) mod N. Therefore, it

is not hard to verify that:
Pr[A(N) e {P,Q}] = Pr [(u # tvmod N) and (Ahrf‘ﬂgﬁ(‘ g) =hy,a(1))]

Note that Ahy‘fvgﬁ(N,g) does not depend on v itself but rather on v? (i.e., Ahy"vgﬁ(N,g) is
equally distributed for any two assignments, u and v, of v as long as u* = v? mod N). We
therefore get that:

PrlA(N) € {P,Q}] = 1/2- PrA™ (N, g) = hn 5(1")]
Let N be chosen from FIG(1"). We need to show that for infinitely many n’s
PriA(N) € {P,Q}] > €(n)
Which is equivalent to showing that for infinitely many n’s
PH{A (N, g) = hx g 1(1)] > e(n) — O(k(n) -2°7)

To do so, let us first review a couple of simple facts on the distribution of g and of each
a; mod £:
Factl g is a uniformly distributed quadratic-residue in Z3%;.

Reason: v is a uniformly distributed quadratic-residue in Z} and squaring is a
permutation over the set of quadratic-residues in Z% (since N is a Blum-integer).

Fact2 Let r and o’ be uniformly distributed in [N] and denote by a the value r 4271 mod £.
Then a and ¢’ mod ¢ are of statistical distance O(27™).

Reason: (divides (¢ — 1)(P — 1). Therefore the distribution of a conditioned on
the event that » € [(Q — 1)(P — 1)] is the same as the distribution of ¢’ mod ¢ con-
ditioned on the event that @’ € [(@ — 1)(P — 1)] (and in both cases it is simply the
uniform distribution over Z;). It remains to notice that Pr[r € [(Q — 1)(P —1)]] =
Pr[' € [(Q - 1)(P - 1)) = B = 0(27).

Let each value in o’ = (a}, d,.. ., a}) be uniformly distributed in [N]. Since A e-solves
the GDHg-Problem and given Factl, we have that:

-
PrA" s (N, g) = by, (1] > e(n)
Given Fact2, it is easy to verify that the two random variables hy ;7 and hNg o are of

statistical distance O(k(n)-27"). Therefore, we can conclude that:
Pr[A"™03(N,g) = hygz(1")] > €(n) — O(k(n) - 27")

which completes the proof of the theorem. O

4 Conclusions

In this note it was proven that breaking the generalized Diffie-Hellman assumption modulo
a Blum-integer is at least as hard as factoring Blum-integers. This implies that the security
of the generalized Diffie-Hellman key-exchange protocol (which is mentioned in the intro-
duction) can be reduced to the assumption that factoring is hard. In addition, as shown in
[4], it implies the existence of efficient pseudo-random functions which are at least as secure
as factoring.

A possible line for further research is the study of the generalized Diflie-Hellman assump-
tion in other groups and the relation between the generalized Diffie-Hellman assumption
and the standard Diffie-Hellman assumption. It is interesting to note that the decisional
version of the generalized Diffie-Hellman assumption is equivalent to the decisional version
of the standard Diffie-Hellman assumption (as shown in [8]). Two examples of results that
support the validity of the decisional version of the standard Diffie-Hellman can be found in
the work of Boneh and Venkatesan [1] and in the work of Shoup [7]. Boneh and Venkatesan
showed that computing the k (~ /log P) most significant bits of g** (given (g, g%, ¢")) is
as hard as computing g*? itself. Shoup showed that the DDH-Problem is hard for what he
calls a “generic” algorithm.

References
[1] D. Boneh and R. Venkatesan, Hardness of computing most significant bits in secret keys in

Diffie-Hellman and related schemes, Advances in Cryptology - CRYPTO 96, LNCS, vol. 1109,
Springer, 1996, pp. 129-142.

2]

(3]

(4]

[5]

[6]

[7]

(8]

W. Diffie and M. Hellman, New directions in cryptography, IEEE Trans. Inform. Theory,
vol. 22(6), 1976, pp. 644-654.

K. McCurley, A key distribution system equivalent to factoring, J. of Cryptology, vol 1, 1988,
pp- 95-105.

M. Naor and O. Reingold, Number-Theoretic constructions of efficient pseudo-random functions,
Proc. 38th IEEE Symp. on Foundations of Computer Science, 1997.

M. O. Rabin, Digitalized signatures and public-key functions as intractable as factorization,
Technical Report, TR-212, MIT Laboratory for Computer Science, 1979.

7. Shmuely, Composite Diffie-Hellman public-key generating systems are hard to break, Techni-
cal Report No. 356, Computer Science Department, Technion, Israel, 1985.

V. Shoup, Lower bounds for discrete logarithms and related problems, Proc. Advances in Cryp-

tology - FEUROCRYPT 97, LNCS, Springer-Verlag, 1997, pp. 256-266.

M. Steiner, G. Tsudik and M. Waidner, Diffie-Hellman key distribution extended to group
communication, Proceedings 3rd ACM Conference on Computer and Communications Security,

1996, pp. 31-37.

