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Abstract The size of Ordered Binary Decision Diagrams (OBDDs) is determined by the chosen
variable ordering. A poor choice may cause an OBDD to be too large to fit into the available memory.
The decision variant of the variable ordering problem is known to be

���
-complete. We strengthen

this result by showing that there in no polynomial time approximation scheme for the variable ordering
problem unless

�������
. We also prove a small lower bound on the performance ratio of a polynomial

time approximation algorithm under the assumption
��������

.

1 Introduction

Ordered Binary Decision Diagrams (OBDDs) are the state-of-the-art data structure for Boolean func-
tions in programs for problems like logic synthesis, model checking or circuit verification. The reason
is that many functions occurring in such applications can be represented by OBDDs of reasonable size
and that for operations on Boolean functions like equivalence test or synthesis with binary operators
efficient algorithms on OBDDs are known. Already in the seminal paper of Bryant (1986) asymptotic
optimal algorithms for many operations are presented. The most important exception is the variable
ordering problem for OBDDs, i.e. the task to compute for a given function a variable ordering min-
imizing the size of the OBDD for this function. The lack of an efficient algorithm for the variable
ordering problem affects the applicability of OBDDs because there are important functions for which
OBDDs are of reasonable size only for few variable orderings.

We distinguish two different versions of the variable ordering problem. For the first one the function
to represented is given by a circuit. In this case it is

���
-hard to compute the size of an OBDD for

an optimal variable ordering since the satisfiability problem for OBDDs can be solved in polynomial
time while the satisfiability problem for circuits is

���
-hard. Heuristics for this version of the variable

ordering problem extract information on the connections between the variables from the circuit de-
scription. Such heuristics are given, e.g., in the papers of Fujita, Fujisawa and Kawato (1988), Malik,
Wang, Brayton and Sangiovanni-Vincentelli (1988) and Butler, Ross, Kapur and Mercer (1991).

In this paper we focus on the second variant of the variable ordering problem, which is defined in the
following way:
	
An extended abstract of this paper has been accepted for STACS’98. The author was supported in part by DFG grant

We 1066/8.

1

Electronic Colloquium on Computational Complexity, Report No. 1 (1998)

ISSN 1433-8092




MinOBDD

Instance: An OBDD � for some function � .
Problem: Compute a variable ordering � minimizing the OBDD size for � and � .

We remark that from � and each variable ordering � an OBDD for � with the variable ordering �
can be computed in polynomial time (Savický and Wegener (1997), Meinel and Slobodová (1994)).
Hence, it suffices to define MinOBDD as the problem to compute an optimal variable ordering instead
of a minimum size OBDD.

MinOBDD is the problem that occurs when applying dynamic variable ordering techniques intro-
duced by Rudell (1993): When performing computations on OBDDs, e.g. the computation of an
OBDD for a function represented by a circuit, the set of functions that are represented changes during
this computation. Hence, also the variable orderings admitting small size OBDDs for the represented
functions may change. Therefore, it is reasonable to change the variable ordering during the compu-
tation. Bryant (1995) reports that this reordering slows down the computation, but that it is sometimes
the only possibility to complete computations without exceeding the available memory.

The argument for the hardness of the first version of the variable ordering problem does not apply
to MinOBDD since the function � is already given as an OBDD, for which the satisfiability test can
be done in polynomial time. The first step for proving the hardness of MinOBDD was done by Tani,
Hamaguchi and Yajima (1993). They proved that the decision variant of the problem MinSBDD
is
���

-complete. SBDDs (shared binary decision diagrams) are the generalization of OBDDs for
the representation of more than one function and MinSBDD is the problem to compute an optimal
variable ordering for a set of functions given by an SBDD. Bollig and Wegener (1996) proved that
also the decision variant of MinOBDD is

���
-complete.

Algorithms for solving the problem MinOBDD exactly are presented in the papers of Ishiura, Sawada
and Yajima (1991) and Jeong, Kim and Somenzi (1993). As expected by the

���
-completeness results

these algorithms have an exponential worst-case run time. Both algorithms are improvements of the
algorithm of Friedman and Supowit (1990) for computing minimum size OBDDs. This algorithm
obviously has exponential run time since it works on truth tables.

The
���

-completeness results justify, also from a theoretical point of view, to apply algorithms that
do not necessarily compute optimal solutions. The known heuristics for MinOBDD are based on
local search and simulated annealing approaches (see, e.g., Ishiura, Sawada and Yajima (1991),
Rudell (1993), Bollig, Löbbing and Wegener (1995, 1996) and Panda and Somenzi (1995)).

Nevertheless, the
���

-completeness does not exclude the existence of good approximation algorithms
like polynomial time approximation schemes for the variable ordering problem (even if

� �� ���
).

The
���

-completeness results for MinOBDD and MinSBDD are proved by reductions from the prob-
lem Optimal Linear Arrangement. The reductions seem not to be approximation preserving and we
do not know of any nonapproximability result for Optimal Linear Arrangement. The only indication
that good approximation algorithms for the variable ordering problem do not exist is the unsuccessful
search for such algorithms. The known heuristics do not provide any guarantee for the quality of their
results. Usually the heuristics are only tested on some set of benchmark circuits.

In this paper we characterize the complexity of the variable ordering problem more precisely by prov-
ing that the existence of polynomial time approximation schemes for the variable ordering problem for
OBDDs (or SBDDs) implies

�������
. Hence, the best we can hope for are approximation algorithms

for this problem. We also prove a (small) lower bound on the performance ratio of a polynomial time
approximation algorithm for the variable ordering problem (under the assumption

� �� ���
).
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2 Preliminaries

2.1 OBDDs and SBDDs

In this section we shortly repeat some definitions and facts concerning OBDDs and SBDDs. For a
more detailed introduction into OBDDs see, e.g., Bryant (1992) or Wegener (1994).

An OBDD representing some Boolean function ���������	�
�
�����
��� is a directed acyclic graph, in which we
distinguish sinks and non-sink nodes, also called interior nodes. Sinks are labeled by some Boolean
constant � or � . Each interior node � is labeled by some variable ��� and has two outgoing edges, one
labeled by � and the other one labeled by � . We say that ��� is tested at � . The ordering condition of
OBDDs requires the variables to be tested on each path in the OBDD at most once and according to
a prescribed ordering.

With each node � of an OBDD we associate a function ��� , which can be computed in the following
way. Let �������
�
�
�
������� be some assignment of the variables. We start the computation at � . If � is
labeled by ��� , then we follow that edge leaving � that is labeled by �
� . This is iterated until a sink is
reached. The value �������
���
�
�
��������� is equal to the label of this sink.

Each OBDD has exactly one source node  and the function represented by the OBDD is the function
associated with  . SBDDs are the straightforward generalization of OBDDs for the representation of
an arbitrary number of functions (Minato, Ishiura and Yajima (1990)). An SBDD for the functions

�����	�
�
��� �"! has # distinguished nodes  ����	�
�
���� �! and �$� is equal to the function associated with  �� .
The size of an OBDD or SBDD, resp., is the number of its interior nodes. For the computation of the
minimum size of an OBDD for some function � and some fixed variable ordering or the minimum
size of an SBDD for some functions �%���
�	�
�
� ��! and some fixed variable ordering we shall apply the
following lemma. This lemma was proved by Sieling and Wegener (1993) for the case of OBDDs.
The generalization to SBDDs is straightforward.

Lemma 1 A minimum size SBDD for the functions � � �
�
�
�	� � ! and the variable ordering � � �
�	�
�
��� �
contains exactly &(')�*& interior nodes labeled by ��� , where

'�� �,+ �.-�/ 0
132
4517698989896 0�:<;"132
4=:<;"1>&�?A@ + ���
�
�
�	��#CB%��D.���
�
�
����D��FE
�G@ + �H�
��B%�
� -�/ 0
132
4517698989896 0�:<;"132I4=:J;�1 essentially depends on ���3B%�

Furthermore, exactly the functions in '�� are the functions associated with the nodes labeled by ��� .
It is well-known that the minimum size SBDD for functions � � �	�
�
��� � ! and some fixed variable or-
dering can be obtained from each SBDD for these functions and this variable ordering by applying
two reduction rules bottom-up. By the deletion rule each node whose successors are equal can be
eliminated. By the merging rule nodes � and K with the same label, the same � -successor and the
same � -successor can be merged. Altogether, the effect of the reduction rules is that nodes associated
with the same function are replaced by a single node. Hence, nodes cannot be merged if they are
associated with different functions.
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2.2 The OBDD Size for Partially Symmetric Functions

Lemma 1 only shows how to compute the OBDD size for a fixed variable ordering. Also techniques
for proving exponential lower bounds on the OBDD size (for all variable orderings) are well-known
(see, e.g., Bryant (1991) or Krause (1991)). In our proof we have a different problem. We determine
for a given function the minimum OBDD size for this function and variable orderings leading to this
minimum size. Only few such results are known. In order to prove such results we consider properties
of a special class of functions, namely partially symmetric functions.

A function � over some set � of variables is called partially symmetric with respect to the partition
�A���
�
�	�
��� ! of � if the variables in each set � � can be permuted arbitrarily without changing the
function. Then also the OBDD size does not change when permuting the variables in each set � � .
The sets � � �
�
�
�
��� ! are called symmetry sets. (Totally) symmetric functions are the special case of
functions with only one symmetry set. Sieling (1996) describes a method for the exact computation
of the OBDD size for partially symmetric functions.

We shortly repeat this method only for the case of partially symmetric functions with two symmetry
sets �A� and ��� . Such a function � can be represented by its value matrix ��� . This is an ��& � ��&�� ���
	
� & ���"&�� ��� -matrix where the rows and columns are numbered beginning with � . The entry ��
 ��?
� is
equal to the value that � takes on all inputs with 
 variables of � � equal to one and ? variables of ���
equal to one.

Subfunctions of � correspond to submatrices of ��� , which consist of contiguous entries of ��� . Such
submatrices are called blocks. If we obtain a subfunction � of � by replacing � variables of � � and #
variables of � � by constants, then the value matrix ��� of � is a block of � � of size ��& � � &�� �������
	
� & � � &�� ��� #�� . Each block of this size corresponds to such a subfunction and vice versa. It is easy to
see whether a subfunction described by a block essentially depends on some variable � � . If � � @�� � ,
then the subfunction essentially depends on � � iff the block contains at least two different rows. If
� � @�� � , then the subfunction essentially depends on � � iff the block contains at least two different
columns.

We apply these facts in order to determine the number of � � -nodes in a minimum size OBDD for
some partially symmetric function � with symmetry sets � � and ��� . Let the variable ordering be
�����
�	�
�
���
� . Let the value matrix ��� of � be given. Let ������
*��?�� denote the number of different blocks
of size 
�	 ? with at least two different rows and let � �
�!
*��?
� denote the number of different blocks of
size 
"	 ? with at least two different columns. Let � � & � �$# + �����	�
�
�
���
�FEI�*B�& be the number of � � -
variables arranged before ��� and # � & ���"# + �����
�	�
� ����� E
��B�& be the number of ��� -variables arranged
before ��� . Let �
� @�� - , ? @ + ���&%�B . By Lemma 1 the number of ��� -nodes of a minimum size OBDD
for � is ��-	� & �A��&�� ��������& ���"&�� ��� #�� .
In order to obtain the total size of a minimum size OBDD for � we have to sum up certain values
� - ��'F��' � . We determine these values by means of a grid graph. The node set of the grid graph is( � + ��
*��?�� &I�*)+
�) & � � &,� ���
�*) ?-) & � � &,� �$B . The edge set is the union of . � � + � ��
*��?
���
��
/�
�"��?�� � &�%*)0
1) & �A��&2� ���
�3) ?4) & ���"&2� �$B and ."� �,+ �*��
 ��?
���
�!
*��?�� ���*�G&%�3)0
1) & �A��&5� �"�6%�) ?4)
& ���"&7� �$B . Each edge � ��
*��?
���
��
&� �"��?�� � @8. � is labeled by �����!
*��?
� and each edge �*��
 ��?
���
�!
*��?/� ���*� @�.9�
is labeled by �:� �!
*��?
� . Now let some variable ordering � for � be given. We start the computation
of the minimum OBDD size for � and � at the source � � � & � ��&;� ���"& ���"&;� �$� of the grid graph.
If the first variable ��� of the variable ordering is contained in � � , we follow the .>� -edge leaving � ,
otherwise we follow the .9� -edge leaving � , and we reach some node �=< . The label of the edge ���)���><<� is
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equal to the number ��� -nodes. This process is iterated for the second variable of the variable ordering
starting at �>< and so on. After processing all variables we reach the sink � �"�
��� of the grid graph. We
obtain a path from the source to the sink of the grid graph. The length of this path (with respect to
the edge labels) is equal to the minimum OBDD size for � and � . For each variable ordering there is
such a path and vice versa. We may obtain an optimal variable ordering by computing a shortest path
in the grid graph. We can prove for a given variable ordering that it leads to minimum OBDD size by
proving that it corresponds to some shortest path from the source to the sink of the grid graph.

2.3 The Nonapproximability of MaxCut and L-Reductions

For the definitions of notions concerning approximation algorithms we follow the textbook of Garey
and Johnson (1979). Let � be some optimization problem, let ��� be the set of instances of � and let �
be some algorithm computing legal solutions of � . For � @���� let � ���%� be the value of the output of
� on instance � and let 	 � � ���%� be the value of an optimal solution for � . The performance ratio of �
is defined as 
��
��������� + � ���H����	 � � ���H� B if � is a minimization problem, or 
��
��������� + 	 � � ���%����� ���%�*B
if � is a maximization problem. Hence, the performance ratio is always at least � . A polynomial
time approximation algorithm is a polynomial time algorithm whose performance ratio is bounded by
some constant. A polynomial time approximation scheme is a polynomial time algorithm that gets an
extra input � . For each ���,� a polynomial time approximation scheme achieves a performance ratio
of at most ����� .
We prove the nonapproximability result for MinOBDD by an approximation preserving reduction
from MaxCut.

MaxCut

Instance: An undirected graph � � � ( � . � .
Problem: Compute a partition � ( �	� ( � � of

(
maximizing the number of edges in . with one endpoint

in
( � and the other one in

( � . (The number of such edges is called the size of the cut.)

The following nonapproximability result for MaxCut is due to Håstad (1997).

Theorem 2 For each  !� � the existence of a polynomial time approximation algorithm for
MaxCut with a performance ratio of at most ��� � � �#" �� implies

��� ���
.

Our approximation preserving reductions are L-reductions, which were introduced by Papadimitriou
and Yannakakis (1991). Let � and $ be optimization problems. Then � reduces to $ ( � )&%'$ ) if
there are functions ( and ) that are computable in polynomial time and constants * and + so that for
each instance � of � the following holds:

1. � < � ( ���H� is an instance for $ and 	 � � ���%�-,.*/	 � � ��� < � .
2. If  is a solution of � < with cost D < then ) ���I�� "� is a solution of � with cost D such that

& D��0	 � � ���%�
& )1+ &9D < �0	 � � ��� < �	& .
It is known that � )2%3$ and the existence of a polynomial time approximation scheme for $ imply
the existence of a polynomial time approximation scheme for � . However, if � is a maximization
problem, then it is not clear whether � )4%3$ and the existence of a polynomial time approximation
algorithm with a constant performance ratio for $ imply the existence of a polynomial time approxi-
mation algorithm with a constant performance ratio for � . The following lemma shows the conditions
under which L-reductions are approximation preserving.
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Lemma 3 Let � be a maximization problem and $ be minimization problem. Let �+)&% $ , where
* and + are the parameters of the reductions. If there is a polynomial time approximation algorithm
for $ with a performance ratio � ��� , where + � � * , then there is a polynomial time approximation
algorithm for � with a performance ratio ����+ � ��� *3��+ ��� .
Proof A polynomial time approximation algorithm for � can be constructed in the usual way: For
an instance � of � we compute ( ���%� and apply the approximation algorithm for $ on ( ���H� . From
the result  with cost D < we compute the solution ) ���
�� �� of � with cost D where 	 � � ���H�"� D�)
+ ��D&<;�0	 � � ��� < �*� . Obviously, all computations can be done in polynomial time.

Since the assumed approximation algorithm for $ has a performance ratio of � � � , it holds that
D&</) � � �3����	 � � ��� <F� . Together with the second condition of the definition of the reduction we obtain
	 � � ���H�:� D ).+ � 	 � � ����<<� . This implies D , 	 � � ���%� ��+ � 	 � � ����< � , 	 � � ���%� ��+ � 	 � � ���%� � * .
For the last inequality we applied the first condition of the definition of the reduction. Finally, the
performance ratio of the constructed algorithm for � is bounded by

	 � � ���H�
D ) �

����+ � � *
� �9� + �

* ��+ � �

3 The Result and an Overview over the Proof

Our main result is given by the following theorem.

Theorem 4 For each
� � � the existence of a polynomial time approximation algorithm for

MinOBDD with a performance ratio of �3� � � ��������� � �
implies

� � ���
. In particular, the exis-

tence of a polynomial time approximation scheme for MinOBDD implies
�������

.

For MinSBDD a slightly larger lower bound on the performance ratio can be proved.

Theorem 5 For each
� � � the existence of a polynomial time approximation algorithm for

MinSBDD with a performance ratio of �
� � � �	��� � � �
implies

�������
. In particular, the existence of

a polynomial time approximation scheme for MinSBDD implies
� �����

.

The proofs of both theorems are based on L-reductions from MaxCut. Let � � � ( � . � be an instance
for MaxCut. W.l.o.g. we assume that all nodes in � have a degree of at least two, that & . & , %"��� and
that � is not bipartite. (For bipartite graphs MaxCut is trivial.)

Let 
 � & ( & and let � � & .A& . Sometimes we identify
(

with the set
+ �"�
�
�	�
��
 B and . with the set+ �"�	�
�
�
��� B . Let . ���
� be the set of edges incident to � and let 

���
� � & . �����	& be the degree of � .

By the mapping ( we obtain from � an OBDD � � ( ��� � , which computes some function � . We
divide the description of � into two steps. In the first step we only consider some subfunctions of
� and represent these subfunctions by an SBDD. The variable ordering of this SBDD encodes a cut
of � in such a way that the SBDD size corresponds to the size of the cut. In other words, there is a
mapping ) that describes how to obtain a cut from the variable ordering. However, there are some
variable orderings not encoding any cut of � . By enforcing components we will make sure that in
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such cases the SBDD size is so large that the second condition of the definition of L-reductions is
fulfilled by a cut of size � .

In the second step we combine the subfunctions into a single function so that it can be represented by
an OBDD. Again there is a correspondence between the variable ordering of the OBDD and the cut
as well as a correspondence between the OBDD size and the cut size.

We shall introduce the following functions in the first step:

� Functions �����
�
�	�
� ��� . These functions connect the given graph � and the OBDD � in the
following way: If the 
 -th edge of � is contained in the cut corresponding to the variable
ordering of � , then the function �"� has the OBDD size

�
. If the 
 -th edge is not contained in the

cut, then the OBDD size is � . The functions �I���
�	�
�
� ��� are combined into a single function � .

� Functions � �������
�
�
�
���
	 . The functions �%���
�
�
�
� ��� have the desired property only under further
assumptions on the variable ordering. These assumptions include that the variable ordering
encodes a cut of � . The functions � ��� ���
�
�
�	����	 enforce properties of the variable ordering.
This means that the size of an SBDD for �I���	�
�
�
� ��� � � �������
�	�
�
����	 for variable orderings that do
not encode any cut for � is so large that the second condition of the definition of the L-reduction
is fulfilled for a cut of size � . Finally, the functions �����
�
�
������	 are combined and we obtain only
two functions �
� and �
�
� .

� Functions � <=��� < < . These functions enforce certain properties of the variable ordering that are
helpful when combining all these functions into a single function that is represented by an
OBDD.

In the second step, which we describe in Section 5, we combine � , � , ��� , ���
� , � < and � < < into a single
function � .

By the first step we may also obtain a nonapproximability result for MinSBDD, where the lower
bound on the performance ratio is slightly weaker than stated in Theorem 5. The reason is that we
introduce components in the first step that are not needed for the case of SBDDs. At the end of
Section 5 we shortly discuss, how to obtain the stronger result for SBDDs.

4 Construction of an SBDD

4.1 The Functions �����������������
First we introduce the variables on which the functions �
���
�
�
��� ��� are defined. There are the variables
��� and ��� for � @ + ���
�
�
���&% � B and the variables � �� for � @ (

and � @+. ���
� . This means that for
each edge � � +�� ���
B @ . there are four variables, namely � � , ��� , ��!� and � �� . The variables �
� and
��� , where � @ + � �,�"�	�
�
���&% � B , are not associated with any edge. They are used later on in order to
define enforcing components.
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For all � � +�� ���
B @8. we define the function � � � + �%�
�$B ��� + �H�
��B by

��� ���
����������� !� ��� �� � �
��� �� � if � � � � !� � � �� � � or � � � � !� � � �� � % ,
� if � � � � !� � � �� � � ,
� � if � � � � !� � � �� �	�

.

Note that the functions � � and ����
 for � �� � < are defined on disjoint sets of variables. Hence, there are
no mergings between OBDDs for � � and ����
 . The function � � is partially symmetric with respect to
the sets

+ �
������!� ��� �� B and
+ ���*B . Hence, the OBDD size for � � is determined only by the position of � �

among
+ � � ��� !� ��� �� ��� � B , but not by the relative ordering of � � , � !� and � �� . It is easy to check that the

OBDD size is � , if � � is the first variable among
+ � � ��� !� ��� �� ��� � B , that the OBDD size is � , if � � is the

second or fourth variable, and that the OBDD size is
�
, if � � is the third variable.

Now we explain the relationship between a cut � ( ��� ( � � of � and the ordering of the variables. If the
variable � !� is arranged before � � in the variable ordering, then the node

�
is contained in

( � . If ��!�
is arranged after � � , then the node

�
is contained in

( � . By introducing the functions � � , � � and � �
we shall make sure that �
� is always arranged before � � . Then ��� cannot be the first variable among+ ��������!� ��� �� �����*B and, hence, it does not occur that the OBDD for � � has size � . Now consider the case
that � � +�� ����B is contained in the cut. This means that

� @ ( � and � @ ( � or vice versa. In both cases
��� is at the third position among

+ ��������!� ��� �� �����*B and, hence, the OBDD size is
�
. If � � +�� ���
B is not

contained in the cut, then either
� @ ( � and � @ ( � or

� @ ( � and � @ ( � . In the former case � � is
at the fourth position among

+ ��������!� ��� �� �����*B , in the latter case � � is at the second position. Hence, the
OBDD size for ��� is � .
This construction only works if the classification of

�
belonging to

( � or
( � is consistent for all

variables � !� , � @ . � � � . If there are edges � � +�� ����B and � < � +�� ��K B , it must not happen that � !� is
arranged before � � in the variable ordering and � !� 
 after ��� 
 . Altogether, we shall represent functions
in the SBDD enforcing the following two properties of the variable ordering.

(P1) All � -variables are arranged before all � -variables.

(P2) For each node
� @ (

the following holds. Either for all � @ . � � � the variable � !� is arranged
before � � or for all � @8. � � � the variable � !� is arranged after � � .

These properties are enforced by the functions � and �����
�
�	� ����	 , which we introduce in the following
sections.

Finally, we combine all the functions �I���
�
�
��� ��� into a single function � . For that purpose we intro-
duce � � � new variables 
 ���
�
�
����
�� EI� and define

� ���
 � ����� ��
 � �
 � � ����� ��
 ��
 � �
 �
� � ��� �
�
��� ��
 ���	�
��
�� E>� �
�� E
��� ��� E
��� ��
 � �
�
��
 � E
��� ��� �
This construction was already used by Bollig and Wegener (1996). We prove that it is optimal to
arrange the 
 -variables before the � -, � - and � -variables. Then the top of an OBDD for � consists of
a switch of � � � nodes labeled by 
 -variables. Below this switch we have � disjoint OBDDs for
the functions � � �
�
�	� � � � .

Lemma 6 Let � be an OBDD for � and some variable ordering � . Let � < be the variable ordering
that we obtain from � by moving the variables 
 ���
�
�	� ��
�� E
� in this order to the beginning without
changing the relative ordering of the other variables. Let � < be the OBDD for � and �:< . Then the size
of � < is not larger than the size of � .
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Proof We start with the variable ordering � and show that the OBDD size does not increase when
moving the variable 
 � to the beginning of the variable ordering. Afterwards, it can be shown in the
same way that the OBDD size does not increase when moving the variable 

� to the second position
and so on. The OBDD � and the OBDD � < < that we obtain by moving 
 � at the first position are shown
in Fig. 1. For the sake of simplicity let K ���
�
�	�
��KG! denote all variables except 
 � and let K>���
�	�
�
��KG! be
the ordering of those variables in � and � < < . We observe that the functions �"� essentially depend on
disjoint sets of variables. This implies that the parts of the OBDD �3< < that are reached for 
 � � � and
 � � � do not share interior nodes.

(Insert Figure 1 here)

By Lemma 1 the part of � and � < < below the 
 � -layer of � are isomorphic and, therefore, of the same
size. Now consider some variable KG� that is arranged before 
 � in � . Let � be the number of KG� -nodes
of � < < . Either all these nodes are reached for 
 � � � or all these nodes are reached for 
 � � � . W.l.o.g.
assume that all these nodes are reached if 
 � � � . We obtain the subfunctions of � computed at these
nodes if we replace 
 � by � and K � �
�
�
�	��K �FE
� by constants in all possible ways. We obtain at least
the same number of subfunctions essentially depending on K � if we drop the replacement of 
 � by � .
Hence, by Lemma 1 the number of K � -nodes in � is not smaller than the number of K � -nodes in � < < .

Now we can describe the relation between the OBDD size for � and the size of the cut in � corre-
sponding to the variable ordering of the OBDD. Here we still need the assumption that (P1) and (P2)
hold. Later on we shall make sure by enforcing components that (P1) and (P2) hold.

Lemma 7 The graph � has a cut of size at least D iff � has an OBDD of size � � �,� � D with a
variable ordering fulfilling (P1) and (P2).

4.2 The Function �

The function � will make sure that (P2) is fulfilled. For the definition of � we introduce new variables
�
���
�
�	�
���>� � , 
H���
�	�
� � 
;� � and  
���
�
�	� �� 
��� � E>� . First we define some components from which � is built
up. For each �A@ (

let �I� ��� � ���	� ��
 � �� and let � �
� ��� � E>�� 2)�  �� . Let

� � ���
� ��� �%�"�

Furthermore, let

� � �
� ��
�J2)� �
���
�
�����FE
�

���� �$� 
"�H�	�
� 
;� �>�

Then the function � is defined by
� � � ��� � ��� ���

First, we describe informally how � enforces property (P2). In optimal variable orderings for � � the
� -variables are arranged blockwise, i.e. for each � @ (

the variables � �� for all � @8. ���
� are arranged
in adjacent levels. Then an OBDD for �
� ��� �H� is a concatenation of OBDDs for the functions ��� .
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Now consider an OBDD for � � � � � . First note that � � and � � are defined on disjoint sets of variables.
In order to obtain an OBDD for ��� � � � we may concatenate OBDDs for � � and � � or we may insert
an OBDD for � � in the concatenation of OBDDs for ��� . If we insert the OBDD for ��� between two
blocks of � -variables, then we obtain an OBDD for �
� � � � whose size is the sum of the sizes of the
OBDDs for � � and � � . But if we arrange the OBDD for � � in such a way that some variable � �� is
tested before the variables that ��� depends on and some other variable � �� 
 after the variables that ���
depends on, then we need two copies of the OBDD for �
� . In Lemma 11 we show that we obtain
a similar increase of the OBDD size of � also for other variable orderings violating (P2). Here it is
important that the OBDD for ��� is of large width. In order to make sure that an OBDD for �
� is of
large width we require the following properties of the variable ordering.

(P3) All � -variables are arranged before all � -variables.

(P4) All � -variables are arranged before all 
 -variables.

If these properties are fulfilled, then an OBDD for ��� has width % � (see Fig. 2). This OBDD has size� � which is optimal since ��� essentially depends on
� � variables.

(Insert Figure 2 here)

The function � makes it possible to count the number of mergings between the nodes in the OBDD for
� and the SBDD for the functions � < and � < < , which we introduce later on. These mergings will effect
the  -variables to be arranged after the � -, � -, � -, � - and 
 -variables in optimal variable orderings.
At the moment one may imagine the function � as a function ��� for a pseudo-node � with degree
��� � ��% .
In the following lemmas we give estimates on the size of the OBDDs for � and different variable
orderings. Already here we take into account that the functions � and � are represented in the same
SBDD so that we have to consider mergings between the representations of � and � .

Lemma 8 Consider a variable ordering where the � �� -variables are arranged blockwise, where the
� -, � - and 
 -variables are arranged in the order � ���
�
�
�����>� � �������	�
�
�
��� � �G��
H���
�
�	� ��
;� � between two
blocks of the � �� -variables and where the  -variables are the last variables. Then the OBDD size for �
is ��� � � 
4��� . No interior node of this OBDD can be merged with a node of an OBDD for � .

Proof It is easy to see that we need
� � nodes for the representation of � � , that we need � � � � ��% 

�����6�

�$� � � � � 
 nodes for � � and
� � � ��� nodes for � . All functions computed at these nodes essentially

depend on at least one  -variable. Hence, there are no mergings with nodes of any representation of
� .

Lemma 9 Each OBDD for ��� � � has at least
� � � � 
-��� interior nodes that cannot be merged

with nodes from an OBDD for � . If the last variable in the variable ordering is a  -variable, then each
OBDD for � � � � has at least

� � � � 
4��� interior nodes that cannot be merged with nodes from an
OBDD for � .
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Proof Obviously, each OBDD for ��� � � contains at least
� � � � � nodes labeled by  -variables.

Since � does not essentially depend on any  -variable, no mergings are possible between those nodes
and nodes in the representation of � .

Now we count the nodes labeled by variables � �� . First we note that ��� has the following property:
there is an input � for ��� with � �
� � � � � and � �
� � <F� � � for all inputs � < that we obtain from � by
negating one � �� -variable. (In other words, the critical complexity of � � is maximal. For more details
on the critical complexity see Bublitz, Schürfeld, Voigt and Wegener (1986).) We call the computation
path for such inputs � critical paths. In each OBDD for � � on each critical path all variables � �� are
tested. In particular, all nodes on a critical path are associated with functions essentially depending
on all remaining variables in the variable ordering.

Let � @ (
be fixed. Let � ���� be the first variable among the variables � �� in the variable ordering.

Then in each OBDD for ��� � � there is at least one node labeled by � �� � lying on some critical path.
If � �� � is not the first variable among � �� in the variable ordering, then in each OBDD for �
� � �
there are at least two nodes labeled by � �� � lying on critical paths. Altogether, there are at least
� � � � ��% 

����� � ��� � � � � 
 nodes labeled by � �� -variables and lying on critical paths.

If a  -variable is the last variable in the variable ordering, the functions associated with the nodes
that we counted essentially depend on this  -variable and, hence, no mergings with nodes in the
representation of � are possible. This implies the second claim of the lemma.

In order to prove the first claim we consider all levels of � �� -nodes except the last two levels. Then
the number of nodes on critical paths is at least � � � 
���� . The functions associated with those
nodes essentially depend on all remaining � �� -variables, i.e. on at least three � �� -variables. Since ��� � �
does not essentially depend on any 
 -variable, also the functions associated with those nodes do not
essentially depend on any 
 -variable. The claim that no mergings between those nodes and nodes
of each OBDD for � are possible follows from the observation that � does not have any subfunction
essentially depending on at least three � �� -variables but not essentially depending on any 
 -variable.

Lemma 10 Each SBDD for � and � has at least � � � � 
4� �	� interior nodes.

Proof By Lemma 9 there are at least
� � � � 
8� � nodes in each OBDD for � � � � that cannot

be merged with nodes from an OBDD for � . Each OBDD for � contains at least % � nodes labeled
by � -variables and % � -nodes labeled by 
 -variables since � essentially depends on all � - and 
 -
variables. For the representation of � we need at least � � � � nodes. The sum of these lower bounds
is � � � � 
4� �
� , which implies the lemma.

Lemma 11 Each SBDD for � and � with a variable ordering fulfilling (P3) and (P4) but not fulfilling
(P2) has at least � � � � 
4� � � nodes.

Proof Since (P2) is not fulfilled, for some �A@ (
and some � � � @�. ���
� it holds that � �� is arranged

before � � and � �� is arranged after � � . We already know the following lower bounds: There are at least
� ��� � nodes in the OBDD for � . In the OBDD for � there are at least % � nodes labeled by � -variables
and % � nodes labeled by 
 -variables. By the proof of Lemma 9 there are at least � � � � � 
4�����1� �
nodes labeled by  -variables or � �� -variables except � �� and � �� . In the following we prove new lower
bounds on the number of � �� -, � �� - and � -nodes under the assumption that (P3) and (P4) hold but not
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(P2). We prove the lower bound on the number of such nodes for the subfunction � < of � that we
obtain in the following way. For all K @ (

, K �� � , we replace the variable ���� by constants in such a
way that � �

� � . We replace the variables � �� except � �� and � �� by � . Then � < only depends on the � -,
� - and 
 -variables and on � �� and � �� .

Furthermore, we assume that � �� is arranged before � �� . For the other case the same proof works after
exchanging � and � .

Because of (P3) and (P4) the � -variables are arranged before the � -variables and the � -variables are
arranged before the 
 -variables. Furthermore, we know that � �� is arranged before all 
 -variables.
Otherwise, � �� and � �� are arranged after all � -variables and, hence, they do not lead to a violation of
(P2). Similarly it follows that � �� is arranged after all � -variables.

Let � @ + �"�	�
�
���&% � B . Let �>< <� be the subfunction of �=< that we obtain by replacing � � by � and all other
� -variables by � . Then

� < <� � � � 
 � �
�
� 
;� � � � ���� � �� ���
We distinguish the following three cases.

Case 1 � � is arranged before � �� .
We know that � �� is arranged after � �� and that � �� is arranged before all 
 -variables. Hence, in each
OBDD for � < <� there is a � � -node associated with �=< <� and a � �� -node associated with �=< <� / ����2�� . Since � < <�
is a subfunction of � , also in each OBDD for � there is at least one node labeled by � � and one node
labeled by � �� .

Case 2 � � is arranged after � �� and before � �� .
We count the number of � � -nodes associated with �=< <� / ��	
 2�� and �>< <� / ��	
 2�� . Obviously, there are two nodes.

Case 3 � � is arranged after � �� .
We know that � �� is arranged before � �� and � �� is arranged after all � -variables. We count the number
of � �� -nodes. With these nodes the functions � < <� / � 	
 2�� and �>< <� / � 	
 2)� are associated. Hence, there are two
� �� -nodes.

For different � all such subfunctions are different because they contain the conjunction 
 � �	�
� 
;� � .
For each � @ + �"�
�	�
�
�&% � B there are at least two nodes labeled by � �� , � �� or � � . Altogether, there � �
such nodes.

There are no mergings between these nodes and nodes in OBDDs for � since the functions associated
with these nodes essentially depend on 
 � � which does not hold for � nor any subfunction of � . The
derived lower bound � � together with the lower bounds given at the beginning of the proof implies
the lemma.

4.3 The Functions 
 ������������
��
Our aim is to include functions in the OBDD that ensure (P1), (P3) and (P4). Let us consider e.g.
(P3). A function enforcing (P3) has its optimal variable ordering if all � -variables are arranged
before all � -variables. The problem is that an OBDD for this function and the variable ordering
�
���
�
�	�
���>� � E
�����������>� �G��� � �
�
�	�
����� � is not substantially larger. (Here we have the problem that we
only meet the first condition of the definition of the L-reductions if the size of the constructed OBDD
is linear in � . Hence, also the function enforcing (P3) must have an OBDD of linear size.) This is
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the reason why we introduce new variables �����
�
�	� ��� � � in order to increase the distance between the
� -variables and the � -variables. Similarly we introduce variables D����
�	�
� ��D � � in order to increase the
distance between the � -variables and the 
 -variables. The function � � + �%�
�$B � � � + �H�	�$B is defined
by

� � �)�	�
�
�
��� �=� � � � ���
�
�	�
� � � � � �
�������� �������

� if � � � � �
�
��� � � � ���,�����	� � ,
� � � �
�	� � � � � if � � � � �
�
��� � � � ��� �
���	� � ,
� if � � � � �
�
��� � � � ���0%����	� � ,
� � � �
�	� � � � � � � if � � � � �
�
��� � � � ��� � ���	� � ,
� if � �)� � �
�
��� � � �G��� �����	� � .

We introduce the following five functions �����	�
�
������	 in order to ensure (P1), (P3) and (P4) to be
fulfilled.

��� � � �������
�
�	� ��� � � ���
���
�
�	� ���>� �G���
� � � � ���
���
�
�
�����>� �G���
���
�
�
����� � �G���
� � � � ��� � �
�
�
����� � � ��� � �	�
�
����� � � ���
� � � � � �����
�
�
������� � ��D
���
�	�
�
��D � � ���
� 	 � � ��D � �
�
�
����D � � � 
 � �
�
�
�
� 
 � � ���

Note that � � �)���
�
�
�
��� � � � � ���	�
�
�
� � � � � is partially symmetric with respect to
+ �����
�
�	� � �=� � B and+ � ���
�
�
�
� � � � B . This implies that the functions � ���
�
�
������	 do not influence the relative ordering of

the � -variables (or � -, � -, � -, D - and 
 -variables, resp.). The value matrix of � is periodic with the
periods � in the rows and % in the columns. Its upper left part is

� �
� �
� �
� �
� �

In the following lemmas we state the properties that we use to prove that the � -functions enforce (P1),
(P3) and (P4).

Lemma 12 The OBDD size for � � � ���
�
�
��� �=� �>� � ���
�
�
��� � � �G� and the variable orderings where all
� -variables are arranged before all � -variables is � � � � �
� . Only such variable orderings are optimal.

Lemma 13 The OBDD size for � � � � �
�	�
� ��� � � � � � �
�
�	� � � � � � and each variable ordering where after
the first � -variable at least � of the � -variables are arranged is at least � � � � �	� .

Lemma 14 The OBDD size for � � � �	�
�
�
��� � � � � � ���
�
�
�	� � � � � and each variable ordering where be-
fore the last � -variable at least � of the � -variables are arranged is at least � � � � �	� .

If, e.g., (P3) is not fulfilled, then there is some � -variable that is tested after at least � of the � -
variables or there is some � -variable that is tested before at least � of the � -variables. In the former
case the OBDD size for � � is at least � � � � �	� rather than � � � � �	� , in the latter case the OBDD size
for � � is at least � � � � �
� rather than � � � � �
� . In this way it is made sure that (P1), (P3) and (P4)
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are fulfilled. Here we can see why we introduced % � rather than only � of the � - and � -variables.
The aim is to make the difference between the OBDD size for � and the variable orderings described
in Lemma 13 and Lemma 14 and the OBDD size for � and an optimal variable ordering larger.

Before we prove the lemmas we describe how to replace the five functions �����
�
�	� ����	 by only two
functions � � and � �
� . We note that ��� , � � and ��	 are defined on disjoint sets of variables. Hence, we
may introduce two new variables 
�� and 
����)� and define �
� � �
�� ��� � 
 � �
 ���)� � � � 
�� 
 ���)����	 .
Similarly we can combine � � and � � by introducing a new variable 
���� � and defining �
�
� ���
 ��� � � � �
���� ��� � . In the same way as in Lemma 6 it can be proved that for each variable ordering the OBDD
size does not increase when moving the 
 -variables before the other variables.

Proof of Lemma 12, Lemma 13 and Lemma 14 We apply the technique of Sieling (1996) de-
scribed in Section 2.2 for the computation of the OBDD size of � . First we compute the grid graph
for � . Let � � % � . Then the grid graph has the node set

+ ��
*��?
�	&<� )0
*��?�)0� � ��B . The labels ��! �!
*��?
�
of the edges of the grid graph can be obtained by counting the number of different 
 	 ? -blocks of ���
with at least two different rows, if # � � , or with at least two different columns, if # � % . The result of
this tedious but nevertheless simple task is shown in Fig. 3.

(Insert Figure 3 here)

The next step is to compute for each node �!
*��?
� the length
� �!
*��?
� of a shortest path from ��
*��?
� to the

sink � �"�
��� of the grid graph. This can be done by running through the grid graph in some reversed
topological order. For the sink we have

� � �"�
��� � � . Now let ��
*��?
� be some non-sink node. Then
��
 ��?
� may have one or two successors. If �!
*��?
� has one successor, then

� ��
*��?�� is the sum of the label
of the edge from �!
*��?
� to its successor and the value

� ��'F��' � of the successor. In this case we color the
edge from ��
*��?�� to its successor green. If �!
*��?
� has two successors ��
1� ����?
� and �!
*��?�� �$� , we set� ��
*��?�� � ���	� +
� �!
 �,�"��?�� � � � ��
*��?���� � ��
*��? �,�$� � � � �!
*��?
�*B . If

� �!
*��?
� ��� �!
 �,�"��?
� � � � �!
*��?
� , we
color the edge from ��
*��?
� to ��
 � ����?
� green and otherwise red. The color of the other edge leaving
��
 ��?
� is determined similarly. The result is that for each node ��
 ��?
� we know the length of a shortest
path to the sink. We may obtain this path by starting at ��
*��?
� and by always running through green
edges.

We do not give the intermediate results of this tedious computation. The results that we need are
listed in the tables below. Furthermore,

� ����� �"�6� � �$� � � �4� �	� � � � � � �	� and the only path
from the source to the sink only consisting of green edges is the path ��� � �"�&�*� �$���
��� �&� �,�$���	���*�
�"�6� � �$���
�
�
�
�	�*�"�6� � �$���
�*���&�)���	�
�
�
�
� �"�
��� , i.e. the path corresponding to all variable orderings where
all � -variables are arranged before all � -variables. This implies Lemma 12.

Similar to the computation of
� �!
*��?
� we may compute for each node �!
*��?
� the length � ��
 ��?
� of a

shortest path from the source ���4� �"�&�4� ��� to �!
*��?
� . Now we start at the source and run through
the graph in some topological order. Unfortunately, this approach leads to a more complicated case
distinction, which we can avoid because we do not need � ��
*��?�� for all nodes �!
*��?
� . We simplify the
computation of � ��
 ��?
� in the following way (see also Fig. 4). First we compute � �!
*��?
� only for
those nodes ��
 ��?
� where 
 ,0� � �

(upper part of the grid graph) or ? ,0� (left part of the grid graph).
For the nodes �!%H��?
� , where ?�) �4� � we compute the length � �
��%H��?�� of a shortest path from the
source through �!%H�&��� to ��%%��?
� . Then we prove that this is the length of a shortest path from the source,
i.e. that � ��%%��?
� � � �
��%%��?
� .

(Insert Figure 4 here)
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It is easy to check in Fig. 3 that for nodes ��
 < ��?;<F� , where 
!< ) � � �
, it holds that the length of the path

from ��
5< ��?;<F� to ��
5<&� ����?;<&� �$� via ��
5<&� ����?;< � is not larger than the length of the path from �!
 < ��?;< � to ��
5<&�
�"��? < � ��� via ��
5<F��? < � ��� . This implies the following. If a shortest path from the source to ��%%��?
� does not
go through �!%H�&��� , then there is no shortest path going through any of the nodes ��� � � �6�)���
�	�
� �	� � �6�)� .
Then the shortest path goes through at least one of the nodes �!� � � �&��� �����
�
�	�
�
���*� � ��?
� . The path
leaves one these nodes through the edge � ��� � � ��?�� ���	��� ���
��? ���*� , where ?4) ? �9)0� � � . By the same
argument as above the cost does not increase if we instead run from ���4� � ��?�� � through the edges
directed downwards to the node ��%H��? � � . The cost of this path from the source to ��%H��?�� is sum of the
path length from the source to ����� � ��? � � , which is � ���4� � ��? � � � % �4� %�? �
� %H� , the path length
from ���*� � ��? � � to ��%%��? � � , which is �
�%��������� , and the cost from �!%H��? � � to ��%H��?�� , which is

� �F? �
� ?
� .
This sum is ��% � � �	? ��� � ?�� %�� . This is minimal for ? � � ? . Hence, the cost is ��% � �0% ?��0%�� .
Since � �
��%%��?
� � �"� � � � ?�� �"� , it follows (together with ��, ���"� because of � , %"�"� ) that the
path through ��%%�&�)� is cheaper. In this way we obtain � ��%H��?�� � � �
��%%��?
� .
If we know the values

� �!
*��?
� and � ��
 ��?
� , we can compute the length of a shortest path from the
source ��� � �"�6� � ��� to the sink � �"�
��� through the node ��
*��?�� as

� ��
*��?�� ��� ��
*��?�� . Now consider the
variable orderings described in Lemma 13. The paths corresponding to such variable orderings run
through at least one of the nodes �!� � �"�6�)���
�!���&�)���
�
�
���
� � � � � �"�&��� . In the following table we give the�

- and � -values for these nodes.

�!
*��?
� � �!
*��?
� � ��
*��?�� � ��
*��?�� � � �!
*��?
�
�!� � �"�6�)� ��%���� � � � ��% ��� � �
�!���&�)� ��%�����% � � ��% ����% �
�!�*� �"�&�)� ��%���� � � � ��% ����%��
�!�*��%H�&�)� ��%���� � � �
� ��% ����% �
�!�*� � �&�)� ��%���� � � � � ��% ��� � �
...

...
...

...
�!
*�&�)� , where 
�) �*� � %��*� �	��
 � � � ���*��� 
 � � ����
 � � �

The term �,�*��� 
 � � � takes its minimum value for 
 � � � � �,� . The minimum value is ��� � � ',��� �	� .
This implies Lemma 13.

Now consider the variable orderings described in Lemma 14. The paths corresponding to such vari-
able orderings run through at least one of the nodes �!%H�
�����
�!%H�&%����
�	�
���
��%%� � � � �,�$� . Again we give the�

- and � -values for these nodes.

��
*��?�� � ��
*��?
� � �!
*��?
� � �!
*��?
�/� � ��
 ��?
�
��%%�
�$� % ������� ��� �"����� � �
��%%�&%�� � ��������% � �"����� � �
��%%� � � �"� ��������%�� �"����� � �
...

...
...

...
��%%��?
� , where ?4) � %�? ��� �"����� � ?*� �"� �"� ��� �
?*� �

The term �"� � � �
? � �
takes its minimum value for ? � � � � � � . The minimum value is � � � �	� . This

implies Lemma 14.
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4.4 The Functions 

�

and 

���

Up to now we have the following
� % � variables: �)� , �$� , ��� , � � , D � and 
"� for 
 @ + �"�
�	�
�
�&% � B , the

variables 
 ���
�
�
�	��
 ��� �
�� 
���	�
�
���� 
��� � E>� and % � variables � �� . In order to simplify the presentation in
Section 5 we rename all these variables to  %���
�
�
�
�� ��� � . The exact correspondence between the old
names and the new names is not important. We define

� < �  "� � �	�
� �  ��� � and � < < � � < �
Since � < and � < < are parity functions, the following lemma holds.

Lemma 15 For all variable orderings a minimum size SBDD for � < and � < < consists of exactly
� � �

interior nodes.

If  � �
�	�
� �� � � � E>� are the last variables in the variable ordering, exactly
� � � ��� nodes of the SBDD

for � < and � < < can be merged with nodes of the OBDD for � .

4.5 The Relationship Between the SBDD Size for � , � , 
 �
, 
 ���

, 

�
and 


���
and

the Cut Size for
�

First we show how to obtain a variable ordering for an SBDD if a cut is given. In Lemma 17 we show
that it is possible in polynomial time to construct a cut from an SBDD, i.e. to compute the function
) . For both constructions the relationship between the SBDD size and the cut size is the same.

Lemma 16 If � � � ( � . � has a cut of size D , then there is an SBDD for the functions � , � , � � , � �
� ,
� < and � < < with at most � � % � � 
4��� � � D nodes.

Proof Let � ( ��� ( � � be the partition corresponding to the cut of size D . Since � is not bipartite, there
is an edge � � not contained in the cut. W.l.o.g. we may assume that both endpoints of ��� are contained
in
( � . (Otherwise we exchange

( � and
( � .)

We choose the following variable ordering for the SBDD � .

1. 
 ���
�
�
����
����=� ,
2. all variables � �� for all �>@8. ����� blockwise for all �A@ ( � ,
3. all �
� -variables in an arbitrary order where ��� � is the last variable,

4. �
���
�	�
�
���>� �G���
���
�
�	�
��� � � ,

5. all � -variables in an arbitrary order where � � � is the last variable,

6. D
���
�
�
����D � � � 
H���
�
�
����
;� � ,

7. all variables � �� for all �>@8. ����� blockwise for all �A@ ( � ,

8.  � �
�	�
� �� � � � E>� .
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This variable ordering has the properties (P1)–(P4). Then � � � � � D nodes suffice to represent the
function � and ��� � � 
�� � nodes suffice for � . By Lemma 12 there is an SBDD with �H�*� � � � �	���,� �
nodes for �
� and ��� � . Here the term

�
is added for the nodes labeled by 
 � , 
 ���)� and 
���� � . Finally,

an SBDD for � < and � < < contains
� � � nodes. The sum of these upper bounds is � � � � � 
4��� � � D .

In the following we show that we save
� � � � � nodes by mergings. This implies the lemma.

Since the  -variables are the last variables in the variable ordering, there are
� � � � � nodes in the

OBDD for � and the SBDD for � < and � < < that can be merged.

Now we consider the OBDDs for � � and � � . The only variables that both functions depend on are
the � -variables. Hence, only � -nodes can be merged. Let us consider the � � � -nodes. In the OBDD
for ��� the subfunctions computed at � � � -nodes can be obtained by replacing all � -variables and all
� -variables except �=� � by constants. Hence, we have to consider � 	�% -blocks of � � 1 . There are only
two such blocks computing a function that essentially depends on � � � , namely �(� ��� and � �G��� , which
correspond to the subfunctions � � � and � � � . On the � � � -level of � � those subfunctions are computed
that can be obtained from �/� by replacing �����
�
�	�
���>� � E
� by constants. Hence, we have to look for
%�	 % � -blocks of � ��� . There are five such blocks, namely� � � � � �
�
�

� � � � �
�
��� �
� � � � � �
�
�
� � � � �
�
�	� �

� � � � � �
�	�
� � � � �
�	�	� �� � � � � �
�
�

� � � � �
�
�	� � � � � � � �
�	�
� � � � �
�	�	� �

The last one represents the function � � � . Hence, there is a merging of one node labeled by � � � . In
the same way it can be shown that there are no mergings between � � � E
� -nodes of ��� and � � . By the
same arguments there is one pair of ��� � -nodes of � � and � � , one pair of � � � -nodes of � � and � � and
one pair of D � � -nodes of � � and � 	 that may be merged.

The �
� -variables are the only variables on which both � and ��� essentially depend. The last ��� -
variable in the variable ordering is the variable ��� � . By the choice of � � it follows that both endpoints
� � and K � of � � are contained in

( � . Hence, � � �� � and � � ���� are arranged before �
��� . This implies that
on the third level of the OBDD for � � � there are three nodes labeled by ����� , which are associated with
the functions �
��� , ��
� � and �
� � � ����� . For the first of these subfunctions there is also a node in the
OBDD for ��� . Hence, there is one merging. Similarly it can be shown that the OBDDs for � � � and
� � contain nodes computing the function � � � . Hence, these nodes can be merged. We do not obtain
another merging between the nodes computing � � � in the OBDDs for � � � and � � because we already
merged those nodes for � � and � � . Altogether,

� � ��� nodes can be saved by mergings. We remark
that there are no more mergings for the given variable ordering.

Now we show how to construct a cut from an SBDD.

Lemma 17 If there is an SBDD � for the functions � , � , � � , � �
� , � < and � < < of size  � � � % � �

4��� � � D , then there is a cut of � of size at least D . This cut can be computed in polynomial time.

Proof Let an SBDD � for � , � , � � , ���
� , � < and � < < with  � � ��% � � 
-� � � � D nodes be given.
First we prove that this OBDD has the properties (P1)–(P4).

Lemma 18 Each SBDD for the functions � , � , ��� , �
�
� , � < and � < < whose variable ordering does not
fulfill at least one of the properties (P1)–(P4) has at least � � � � � 
 � � � nodes.
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Proof of Lemma 18 Let us assume that (P3) is not fulfilled. Then there is some variable �
- that is
tested after some variable ��� . Thus at least one of the following statements is true:

1. Before � - at least half of the � -variables are tested.

2. After � � at least half of the � -variables are tested.

If the first statement is true, by Lemma 14 the OBDD for �:� has at least � � � � �
� nodes. If the second
statement is true, by Lemma 13 the OBDD for � � has at least � � � � �
� nodes. For the representation
of the other four � -functions we need �
�*� � � � �	��� nodes and, hence, for the functions ��� and �
�
� at
least � � � � � � nodes. By Lemma 10 an SBDD for � and � has at least � � � � 
-� �
� nodes. For � <
and � < < at least

� � � nodes are necessary. From the sum of all these lower bounds we have to subtract
the number of mergings. In Lemma 19 we show that there are at most

� � � � % � mergings. Hence,
the SBDD for � , � , �
� , ���
� , � < and � < < has at least � � � � � 
4� � � nodes. Similarly we can prove the
same lower bound if (P1) or (P4) are not fulfilled.

Now we assume that (P2) does not hold. Furthermore, we assume that (P3) and (P4) hold because we
already proved the lower bound if this is not true. By Lemma 11 we need for the representation of �
and � at least � � � � 
4� � � nodes. By Lemma 12 we need for � � and � �
� at least �H�*� � � �,�
��� � �
nodes. For � < and � < < we need

� � � nodes. From the sum � � � � � 
-� � � of these lower bounds we
again subtract the upper bound

� � � �0% � on the number of mergings and obtain the lower bound
� � � �+� 
 � � � on the SBDD size for � , � , � � , ��� � , � < and � < < . This completes the proof of Lemma 18.

Hence, if at least one of the properties (P1)–(P4) is not fulfilled, we get a contradiction because then
the SBDD is larger than presumed. If we assume that the last variable in the variable ordering is not a
 -variable, then

� � � ��� mergings are no longer possible and again we obtain a contradiction to the
SBDD size given in the lemma. By Lemma 6 we may move the 
 -variables to the beginning of the
variable ordering without increasing the size of OBDDs for � , ��� and �
�
� . Also the SBDD size for � ,
� , �
� , �
�
� , � < and � < < does not become larger since the number of possible mergings does not become
smaller when moving the 
 -variables to the beginning. The reason is that the functions associated
with nodes, from which some 
 � -node is reachable, essentially depend on 
 � and, hence, cannot be
merged with nodes of some other OBDD/SBDD.

Now we define the partition � ( � � ( � � that describes the cut. Let
( � be the set of nodes � of � for which

there is some � @8. ���
� so that � �� is tested before � � . Let
( � be the set of nodes � of � for which there

is some � @ . ����� so that � �� is tested after � � . From (P2) it follows that � ( ��� ( � � is a partition of
(

.
Similar to the proof of Lemma 16 there are at most

� � �+� � nodes that can be saved by mergings. By
Lemma 9 we need for the representation of �
� � � at least

� � � � 
*� � nodes. For the representation
of � � at least

� � nodes are necessary. For ��� and ��� � at least �.� � ��� � nodes are needed and for � <
and � < < at least

� � � nodes. Hence, there are at most �*� ��% � � 
-��� � � D
� � � � � � � 
 ��� � � � �
��� � � � ��� � � � � � � � � � � � � � � � � D nodes for the representation of � . By Lemma 7 the cut
has a size of at least D .

Lemma 19 Let an SBDD for � and � , an SBDD for � < and � < < and OBDDs for ��� and ��� � with the
same variable ordering be given. If we combine these SBDDs/OBDDs into a single SBDD for � , � ,
��� , ��� � , � < and � < < , at most

� � � ��% � nodes may be saved by mergings.
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Proof Obviously, there are no mergings of nodes labeled by any 
 -variable. Hence, we obtain an
upper bound on the number of mergings by considering all pairs of OBDDs for � ���
�	�
� ���
	 , the SBDD
for � and � and the SBDD for � < and � < < separately. We do not consider the pair of � and � or the pair
of � < and � < < because we assume that SBDDs for these pairs are given and all possible mergings were
taken into account when computing the SBDD size. This was really done in Lemma 8, Lemma 9,
Lemma 10, Lemma 11 and Lemma 15.

We start with the pair of � � and � � . Since ��� only depends on � - and � -variables and �/� only depends
on � - and � -variables, there may be only mergings of nodes labeled by � -variables and associated with
functions that do not essentially depend on any other variable. From the value matrix for � � we can see
that each block consisting of at least two rows and two columns contains at least two different rows.
This means that the subfunction of � � corresponding to such a block essentially depends on some
� -variable. Hence, we have to consider only those subfunctions of � � that correspond to � 	 ��# � ��� -
blocks with at least two different columns and where # @ + �"�
�
�	� �&% � B . It is easy to see that such
blocks describe parity functions of # of the � -variables. Hence, mergings with � -nodes of the OBDD
for � � are only possible if these nodes are associated with parity functions of � -variables.

In the same way it follows that the subfunctions of � � essentially depending only on � -variables
correspond to ��# �,��� 	 � -blocks of the value matrix of � � . Hence, it suffices to count the number of
parity functions corresponding to such blocks. For # � � we have the %�	 � -blocks � � ��� and � ���� of
the value matrix of � � . Both blocks describe projections on a single � -variable, which are also parity
functions. Hence, at most two mergings are possible for nodes labeled by the last � -variable in the
variable ordering. For # � % we have the following

� 	 � -blocks.��� �
�
�

�	�
 �
��� �
�
�

�	�
 �
��� �
�
�

�	�
 �
��� �
�
�

�	�
 �
��� �
�
�

�	�
 �
��� �
�
�

�	�
 �

The third and the fourth block describe parity functions. Hence, at most two mergings of nodes
labeled by the second last � -variable are possible. In the same way it can be shown that at most two
mergings are possible for # � �

, one merging for # � � and no merging for # , � . Altogether, there are
at most � mergings between the OBDDs for � � and � � . The same upper bound holds for the number
of mergings between the OBDDs for � � and � � , � � and � � , and � � and � 	 , resp. There are no mergings
between other pairs of OBDDs for � � -functions because for all other pairs the functions essentially
depend on disjoint sets of variables. Hence, we have the upper bound % � for the number of mergings
between the OBDDs for the � � -functions.

Now consider the pair of � and � � . There may be mergings only of nodes labeled by � -variables. Let
����� be the last � -variable in the variable ordering. The OBDD for � ��� and, hence, the OBDD for �
contains at most two � ��� -variables for which both successors are sinks. Therefore, there are at most
two mergings of �
� � -nodes. If �
� is not the last � -variable, then there are no mergings of ��� -nodes
because in the OBDD for ��� there are only � � -nodes associated with functions that essentially depend
on at least two � -variables and on no of the variables 
 ���
�
�	� ��
�� E
� . On the other hand, there is no
such subfunction of � .

For the pairs of OBDDs for � and � � there may be at most one merging, namely a merging of a
� -node. By the same arguments as in the last paragraph only mergings of nodes labeled by the last � -
variable ��� � in the variable ordering are possible. Furthermore, in each OBDD for � ��� there is at most
one ����� -node for which both successors are sinks. Similarly there is at most one merging between the
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OBDD for � and � � . There are no mergings between the OBDD for � and an OBDD for �:� or ��	
because these functions essentially depend on disjoint sets of variables.

Now we count the number of mergings between the SBDD for � < and � < < , the OBDD for � and any
other OBDD/SBDD. If the  -variables are the last variables in the variable ordering, then there may
be up to

� � � � � mergings between  -nodes of the SBDD for � < and � < < and the OBDD for � . In this
case all functions associated with the nodes of the SBDD for �/< and � < < and the OBDD for � essentially
depend on some  -variable. Since this does not hold for the other functions, there are no mergings
between the SBDD for � < and � < < or the OBDD for � and any other OBDD/SBDD. Altogether, if a
 -variable is the last variable in the variable ordering, then there are not more than

� � � � % � nodes
that can be saved by mergings.

It remains the case that the last variable in the variable ordering in not a  -variable. Then the merging
of  -nodes of the SBDD for � < and � < < and the OBDD for � is no longer possible. There are at most

 variables that are not  -variables and whose parity is a subfunction of � . Hence, at most % 
�)+% �
mergings between the OBDD for � and the SBDD for � < and � < < are possible. In the same way it
follows that there are at most � � mergings between the OBDD for any of the functions �����
�
�
������	
and the SBDD for � < and � < < . Then the statement of the lemma follows from the upper bound �
� on
the number of mergings between the OBDD for � and all the OBDDs for �����	�
�
������	 .
We start with � and � � . Mergings are only possible for nodes labeled by � -variables. We already
mentioned that the subfunctions of � � that do not essentially depend on any � -variable are parity
functions of � -variables. Let �H� be the last � -variable in the variable ordering. There may be at most
two such subfunctions of � � , namely ��� and ��� . Hence, there are at most two mergings. If �H� and
� - are the last two variables in the variable ordering, the subfunctions of � � that do not essentially
depend on any � -variable are � � � � - and � � � � - � � . By the definition of � all subfunctions of � that
essentially depend only on � -variables are disjunctions of monomials of the form � � �
�
��� � EI� � � . In
particular, the negated literal has the largest index. Parity functions like � � � � - cannot be represented
as disjunctions of such monomials. Hence, such functions are not subfunctions of � and there are no
mergings of ��- -nodes.

A bound on the number of mergings between OBDDs for � and �:� is obtained in a similar way. Again
mergings are only possible for nodes labeled by � -variables and associated with functions that do not
essentially depend on any � -variable. As mentioned above such subfunctions of � � are described by
��#;� ���1	 � -blocks of � ��� . For # � � there are two such blocks and, hence, at most two mergings. For
# � % , i.e. the second last � -variable, the

� 	 � -blocks are listed above. Let ��� and ��- be the last two
� -variables, where 
 � ? . The function corresponding to the first of the blocks listed above is ���=�"- ,
which is a subfunction of � . The second of the blocks listed above corresponds to ��� � �"- . We prove
that this function is not a subfunction of � . The implicants of this function are ��� , �"- , ��� �"- , ��� ��- and
��� �"- . The implicant ��- is a subfunction of � only after replacing �I� by � . But after this replacement
we cannot obtain the subfunction �H� � ��- . Also ��� ��- is not of the form of the monomials of � . Hence,
only the monomials �%� , ��� �"- and ��� ��- are subfunctions of � . The disjunction of these monomials is �
� .
Hence, ��� � ��- is not a subfunction of � and, hence, there are no mergings for the node of the OBDD
for � � associated with this function and any node of the OBDD of � . By these arguments it can be
shown that there are at most two mergings for # � % , one merging for # � �

and no merging for # , � .
Between the OBDDs for � and � � there is at most one merging. It suffices to consider nodes labeled
by � -variables. There are no subfunctions of � that essentially depend on more than one � -variable
and do not essentially depend on any � - or 
 -variable. Hence, mergings are only possible for nodes
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associated with subfunctions of � that essentially depend only on one � -variable. Since �H� is not a
subfunction of � , there is at most one merging.

By similar arguments we obtain that there is at most one merging between the OBDDs for � and � �
and at most one merging between the OBDDs for � and � 	 .

5 Construction of an OBDD

The function � that is represented in the OBDD is defined on the variables  I���	�
�
�
�� ��� � , which we
already introduced as renamings of the variables on which � , � , ��� , �
�
� , � < and � < < depend, and on� % � � � new variables � , �����
�
�
����� ��� � . The function is defined by

� �

����������������� ����������������

� if �
� � and ��� � � �
�
�,��� ��� � � � � ���	� �
�

� if �
� � and ��� � � �
�
�,��� ��� � � � � ���	� �
�

� � if �
� � and ��� � � �
�
�,��� ��� � � � % ���	� �
�

� � � if �
� � and ��� � � �
�
�,��� ��� � � � � ���	� �
�

� if �
� � and ���$� � �
�
�,��� ��� �G� � � ���	� �H�

� < if �
� � and ���$� � �
�
�,��� ��� �G� � � ���	� �H�

� if �
� � and ���$� � �
�
�,��� ��� �G� � % ���	� �H�

� < < if �
� � and ���$� � �
�
�,��� ��� �G� � � ���	� �H�

� if �
� � and ���$� � �
�
�,��� ��� �G� � � ���	� �H�

In order to illustrate this definition Fig. 5 shows an OBDD for � and the (nonoptimal) variable
ordering � , � -variables,  -variables. For �

� � the � -variables determine which of the functions � ,
� , ��� and ���
� is computed. For �

� � the function � / � 2)� � � ���$���
�	�
� ��� ��� � �� "���
�
�
���� ��� �G� is computed.
By Lemma 12 an OBDD for this function has its minimum size if the � -variables are arranged before
the  -variables. We are going to prove that also the OBDD for � takes its minimum size for such
variable orderings. We also see that the OBDD contains an SBDD for � , � , ��� , �
�
� , � < and � < < . The
connection between the OBDD size for � and the SBDD size for � , � , � � , � �
� , � < and � < < is given in
Lemma 20.

(Insert Figure 5 here)

Let � be a variable ordering of the  -variables and � be a variable ordering of � , the � -variables and
the  -variables. We call � consistent with � if the relative ordering of the  -variables is the same for
� and � . The variable ordering � is called � -optimal if � is consistent with � and leads to minimum
OBDD size for � among all variables orderings that are consistent with � .

Lemma 20 Let � be some ordering of the  -variables and let '	� be the minimum size of an SBDD
for � , � , ��� , ���
� , � < and � < < and the variable ordering � . Let � be the following � -consistent variable
ordering: seven � -variables, � , the remaining � -variables, the  -variables according to � .

1. If '
� � � � � � , then � is � -optimal and the OBDD size for � and � is % � � � ��% � � '�� .
2. If '
� , � � � � , then the OBDD size for � and each � -consistent variable ordering is at least
� �
� � ��% � .
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The lemma is proved in the following subsections. Here we give an outline of the proof. First
the OBDD size for � and the variable ordering � is computed. Then we consider those variable
orderings in which less than � � � of the � -variables are arranged before the first  -variable. Such
variable orderings lead to an OBDD size for � of at least � �
� � �0% � . In particular, such variable
orderings are not � -optimal. In the next step we search for an optimal position of � . If � is arranged
after the � � � of the � -variables in the top, then again the OBDD size for � is larger than ���
� � �8% � .
By applying the techniques for calculating the OBDD size for partially symmetric functions (Sieling
(1996)) outlined in Section 2.2 we can show that the optimal position of � is after seven (or eight)
of the � -variables. Finally, we show that it is optimal to arrange all  -variables after all � -variables.
Hence, we constructed a � -optimal variable ordering. The OBDD for this variable ordering consists
of an SBDD for � , � , �
� , �
�
� , � < and � < < and of % � � � ��% � nodes labeled by � and by � -variables. This
implies the bounds of both claims of the lemma.

We conclude this section by showing how the results of the last section and Lemma 20 imply Theo-
rem 4 and Theorem 5.

5.1 The OBDD Size of
�

and �

We assume that some variable ordering � on the  -variables is fixed and the � is defined as in
Lemma 20. Since the  -variables are the last variables in � , the nodes labeled by  -variables form an
SBDD for � , � , � � , � � � , � < and � < < . Hence, there are ' � such nodes.

Now we consider the part of the OBDD for � and � consisting of nodes labeled by � or by � -variables
as an OBDD with eight sinks, which are labeled by � , � , � � , ���
� , � < , � < < , � and � . This OBDD
computes a function that depends on ���������
�	�
� ��� ��� � and takes those eight values. This function is
partially symmetric with respect to the symmetry sets

+
��B and

+
�����
�
�
����� ��� � B . The value matrix is an

% 	 � � % � �,�$� -matrix with eight different entries instead of two different entries as in the case of a
Boolean function. The value matrix and the corresponding grid graph are shown in Fig. 6. The value
matrix is periodic with a period of � in the first row and a period of � in the second row. It is easy to
verify that there are two shortest paths from the source of the grid graph to its sink. These paths are
indicated in Fig. 6 by solid edges and one of them is the path corresponding to the variable ordering
described in Lemma 20. The length of both paths is % � � � � % � . Hence, for the variable ordering �
the OBDD size for � is exactly % � � � ��% ��� ' � . If '
� , � � � � , then the OBDD size for � and � is
at least ���I� � ��% � .

(Insert Figure 6 here)

5.2 The Relative Position of the � - and � -Variables

We are going to prove that in � -optimal variable orderings at least � � � of the � -variables are arranged
before the first  -variable. We remark that we do not assume anything about the position of � .

Let some variable ordering be given in which less than � � � of the � -variables are arranged before the
first  -variable  � . W.l.o.g. let � � �
�
�	� ��� ��� � be the relative ordering of the � -variables. We estimate the
number of � � -nodes only for 
 ,0%H� and 
�) � % � � � . We distinguish two cases.

Case 1 The variable �	� is arranged after  �� . Then there are at least � � nodes labeled by ��� .
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Case 2 The variable �	� is arranged before  �� . Then there are at least � nodes labeled by �.� .
Before we prove these claims, we compute the lower bound on the OBDD size for � and the given
variable ordering using these claims. Let # be the number of � -variables arranged before  � . Then
# � � � � . The number of nodes labeled by � -variables is at least

����� + #/��%"�H����B3' � � � � % � � � � ����� + #7�&%���B�� '�� � , � � � � ��% � � �
The terms ����� + ' B are used because # may be smaller than %�� . Furthermore, we know that there are
at least

� � � nodes labeled by  -variables because � < and � < < are subfunctions of � . The sum of the
lower bounds is ��� % �+� % � � . Hence, all variable orderings where less than � � � of the � -variables are
arranged before the first  -variable are not � -optimal since we assumed � , %"�"� . For such variable
orderings also the lower bound of the second claim of Lemma 20 holds.

Now we prove the lower bounds claimed in Case 1 and Case 2. We distinguish the following subcases.

Case 1a The variables  �� and � are arranged before �
� .
Let

� � and ' � be the sets of � -variables and  -variables, resp., that are arranged before ��� . Then
& � ��& ,+%�� , and &(' ��& , � because of  �� @ ' � . By Lemma 1 the lower bound can be proved by giving
� � assignments to the variables in

� � and ' � and to � leading to � � different subfunctions of � that
essentially depend on � � .
Let the set

� � consist of � � and all variables arranged after �
� in the variable ordering. We prove
that the subfunctions obtained by the � � assignments are different by replacing the variables from

� �
except five � -variables by constants. There are at least five � -variables in

� � because 
 ) � % � � � .
The subfunctions that we obtain are symmetric with respect to those five � -variables and, hence,
they can be represented by a value vector of length six. (The 
 -th entry of the value vector, where

 @ + �H�	�
�
��� ��B , gives the value that the function takes if exactly 
 variables of the input take the
value � .) The functions are different because the value vectors are different. The functions essentially
depend on the � -variables because the value vectors are not constant.

In order to simplify the proof we do no longer distinguish between the variables arranged before and
after �	� . Instead of this we give assignments to all variables except five � -variables. Since the obtained
subfunctions are symmetric, it is not important which � -variables are replaced by constants. The given
assignments only differ in the assignments to � , to  � and to five � -variables. It is clear that these five
� -variables can be chosen in such a way that they are arranged before � � . For  � and � it is presumed
that they are arranged before � � . Hence, all assignments to variables arranged after � � are equal and
we estimate the number of subfunctions correctly.

First we construct two assignments � � and � � of the  -variables that only differ in  �� , but not in any
other  -variable. It is not difficult to choose these assignments so that

��� � � � � �"� � � � ��� � �%� ��� � � ��� � �%� ���
� � � �*� � �%� � <=� � � � � �"� � < <=� � �*� � �H�
��� � ��� � �"� � � � � � � �%� ��� � � � � � �%� ���
� � � � � � �%� � <=� � ��� � �H� � < <=� � � � � �"�

In the following table we list the � � assignments and the corresponding value vectors. In the table�
�
�
� � ���	� � means that we choose an assignment to all but five of the � -variables so that the sum

of these
� % � ��� variables is congruent � ���	� � .
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Assignment Value vector
�
� � , � � , � � � �,� ���	� � 1 0 0 0 1 0

�
� � , � � , � � � � � ���	� � 0 0 0 1 0 0

�
� � , � � , � � � �0% ���	� � 0 0 1 0 0 0

�
� � , � � , � � � � � ���	� � 0 1 0 0 0 1

�
� � , � � , � � � �,� ���	� � 1 1 0 0 0 1

�
� � , � � , � � � � � ���	� � 1 0 0 0 1 1

�
� � , � � , � � � �0% ���	� � 0 0 0 1 1 0

�
� � , � � , � � � � � ���	� � 0 0 1 1 0 0

�
� � , � � , � � � � � ���	� � 0 1 1 0 0 0

�
� � , � � , � � � �,� ���	� � 1 0 0 1 0 1

�
� � , � � , � � � � � ���	� � 0 0 1 0 1 0

�
� � , � � , � � � �0% ���	� � 0 1 0 1 0 0

�
� � , � � , � � � � � ���	� � 1 0 1 0 0 1

�
� � , � � , � � � � � ���	� � 0 1 0 0 1 0

Case 1b The variable  � is arranged before � � , and � is arranged after � � .
As in Case 1a we choose an assignment � � to the  -variables so that

��� � ��� � �"� � � � ��� � �%� � � � � � � � �H� � �
� � � ��� � �%� � < � � � � � �"� � < < � � � � � �H�
Then even the OBDD for the subfunction � / ��1 contains %"� nodes labeled by �
� . This subfunction is
partially symmetric with respect to

+
��B and to the set of � -variables. The value matrix of � / ��1 is shown

in Fig. 7. The number of �
� -nodes is equal to �:� �!%H� � % � �-%1�-
 � , i.e. the number of % 	 � � % � � %
�-
7� -
blocks with at least two different columns. Because of 
 , %H� and 
3) � % � � � there are %�� such
blocks.

(Insert Figure 7 here)

Case 2a The variable �	� is arranged before  �� and after � .

Again we choose the assignment � � as described above and prove that the OBDD for � / ��1 contains �
nodes labeled by �
� . From the value matrix in Fig. 7 we see that there are � different �1	 � � % � � % ��
 � -
blocks that are not constant. Here we use again 
 ,0%H� and 
�) � % � � � .
Case 2b The variable �	� is arranged before  �� and before � .

By the same arguments as in Case 1b even the lower bound %�� on the number of �$� -nodes follows.

5.3 The Position of
�

Now we assume that before the first  -variable at least � � � of the � -variables are arranged. Otherwise
this variable ordering leads to an OBDD size for � of at least � �
� �+��% � and it is not � -optimal. First
we show the following: If � is arranged after the � � � � -variables at the beginning of the variable
ordering, then the OBDD size is at least � �;% � �0%�% � which is larger than ���
� � �0% � because of
�!, %"��� . Hence, for this case the second claim is proved and we know that such variable orderings
are not � -optimal.
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Let such a variable ordering be given. We estimate the number of �$� -nodes with 
�) � � � and 
 �,� � �
separately. Again we consider the subfunction � / ��1 with the assignment � � of the last subsection.
The value matrix and the grid graph of this subfunction are shown in Fig. 7. For 
1) � � � the number
of � � -nodes is equal to �:����%%� � % � �0%�� 
7� because � is arranged after �
� . The number of all such
� � -nodes is ���
��

�J2)� � � �!%H�
� % � ��% ��
7� � % ��� � � � �"�H�

A lower bound on the number of � � -nodes with � � � � �4) 
 ) � % � ��� is ��� � + � � � �"� � % � � % �

 ���&�/����%H� � % � � % � 
7�*B � � . This means that for each �
� we take the possibilities that � is arranged
before and after �	� into account and choose that possibility leading to a smaller number of ��� -nodes.
The total number of �	� -nodes with � � � � �3)0
1) � % � � � at least �*� � � � �H� ' � � � � % � � � �

. The
sum of both lower bounds is ��� % � ��% % � which is larger than � �
� � ��% � because of � , %"��� .

If we search for an optimal position for � it suffices to consider the first � � � � � levels of the OBDD.
In particular, the position of � does not affect the number of  -nodes nor the number of ��� -nodes with

 � � � � . Hence, it suffices to search in the grid graph of � in Fig. 6 for a shortest path from the
source � � % � � �"�6%�� to the node � � � � � %%�
�$� instead of a path to the sink. It is easy to see that
we obtain such a shortest path iff � is arranged after seven or eight of the � -variables. Hence, only
those variable orderings may be � -optimal where � is at one of these positions. Also for the proof
of the second claim of Lemma 20 it suffices to consider variable orderings where � is at one of these
positions.

5.4 The Position of the Remaining � -Variables

In the following we only consider variable orderings that start with seven � -variables, � and then
� � � � � of the � -variables. After that the remaining � -variables and the  -variables may be mixed
arbitrarily. We prove that the OBDD size for � does not increase if we move all � -variables before
all  -variables. This implies that the variable ordering � described in Lemma 20 in � -optimal. If
'
� , � � � � , then either the minimum OBDD size for � is at least � �
� � � % � or all previous steps
do not increase the OBDD size for � . But then by the calculation in Section 5.1 the number of nodes
labeled by an � -variable or � is at least % � � � ��% � which implies the second claim of Lemma 20. In
order to show that we may move all � -variables before all  -variables we proceed in the following
steps.

1. We show that for all variable orderings that are still possible that the number of nodes labeled
by  -variables is at least ' � . Hence, the number of such nodes does not increase when moving
the � -variables before the  -variables.

2. We move all � -variables except the last four � -variables in the variable ordering before all  -
variables and prove that the number of nodes labeled by � -variables does not increase.

3. The number of nodes labeled by the last four � -variables is at least %�% . If all � -variables are ar-
ranged before all  -variables, then there are exactly

� �
nodes labeled by the last four � -variables,

namely � nodes for each variable.
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4. If before the last � -variable at least four  -variables are arranged, then the number of nodes
labeled by  -variables is at least '��3� � � . Hence, in this case we may move all � -variables
before all  -variables without increasing the OBDD size.

5. Let �	� be one of the last four � -variables. If before �.� one, two or three  -variables are arranged,
then there are at least � nodes labeled by �.� . Hence, the OBDD size does not increase when
moving all �	� before all  -variables.

By the proof of these claims Lemma 20 follows.

Proof of Claim 1 Let �����
�
�	�
��� ��� � be the relative ordering of the � -variables. We replace � ���
�
�
����� ��� �
by the constant � . Now the remaining � -variables ��� , ��� and � � , and � are arranged before the  -
variables. It is easy to see from the definition of � that by choosing appropriate assignments to �H� ,
��� , � � and � we may obtain the subfunctions � , � , � � , � �
� , � < and � < < . Hence, the OBDD contains an
SBDD for � , � , �
� , �
�
� , � < and � < < . Since the replacement of � -variables and � does not increase the
number of nodes labeled by  -variables, the OBDD contains at least ' � nodes labeled by  -variables.

Proof of Claim 2 We consider again the assignment � � to the  -variables. The value matrix and
the grid graph for the subfunction � / ��1 are shown in Fig. 7. The numbers � � �!%H� � % � �0%*�0
 � for

 @ + �"�
�	�
� � �"B and �/� �*��� � % � ��% ��
7� for 
 , � are exactly the numbers of �
� -nodes in an OBDD for
� / �)1 and, therefore, lower bounds on the numbers of �.� -nodes in the OBDD for � . The number of
� � -nodes in an OBDD for � and the variable ordering � can be seen in Fig. 6. A comparison shows
that these numbers are equal for 
�) � % � � � . Hence, the number of � � -nodes for 

) � % � � � does
not increase when moving � � before all  -variables.

Proof of Claim 3 Also the lower bound for the �.� -nodes for 
 , � % � � �
follows by considering the

subfunctions � / �)1 . The lower bound is �:���*�"� ��� � �	�
� ���/���*���&%�� � %�% . The exact number of �	� -nodes
in an OBDD for � and � can be seen from the value matrix in Fig. 6. Since there are nine different
and nonconstant � 	 � � % � � %���
7� -blocks, there are exactly nine nodes labeled by ��� . Hence, at most
� � nodes labeled by � -variables may be saved if the last four � -variables are not arranged before all
 -variables.

Proof of Claim 4 We consider the case that before the last �$� -variable there are at least four  -
variables. We show that there are ' ���,� � nodes labeled by  -variables. We consider the OBDD for
� / �F2�� and prove that it contains at least four nodes labeled by the first  -variable and six nodes for
each of the second, third and fourth  -variable. At all these nodes subfunctions are computed that
are not subfunctions of � / � 2�� . Hence, none of these nodes can be saved by mergings. On the other
hand, the OBDD for � / � 2)� and � contains exactly two nodes for each  -variable. Hence, the number
of nodes labeled by  -variables in the OBDD exceeds the number of such nodes in the OBDD for the
variable ordering � by at least � � .
Since � / � 2)� � � ���$���
�	�
� ��� ��� � �� "���
�
�
���� ��� �G� is partially symmetric with respect the � - and  -variables,
we may describe the subfunctions explicitly by giving the corresponding blocks. Let

�
be the number

of � -variables that are arranged after the first  -variable. Since we moved all but the last four � -
variables before all  -variables, we have

� ) � . The subfunctions associated with the nodes labeled
by the first  -variable correspond to � � � ��� 	 � � % � � ��� -blocks of � � with at least two different
columns. For

� � � these are the blocks listed in the following. For
� � � we may apply the same
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arguments.� � � � � '�'�'
� � � � '�'�' � �

� � � � � '�'�'
� � � � '�'�' � � � � � � � '�' '

� � � � '�' '	� �
� � � � � '�'�'
� � � � '�'�' � �

The functions described by these blocks have as subfunctions the parity of all  -variables. There is
no such subfunction of � , � , � � and � �
� . Hence, no mergings are possible and the number of nodes
labeled by the first  -variable exceeds the number of such nodes in an OBDD for the variable ordering

� by at least % .
Now consider the second  -variable. Let

�
be the number of � -variables arranged after this  -variable.

The subfunctions of � / � 2)� associated with the nodes labeled by this  -variable can be described by
� � � ����	 � % � -blocks with at least two different columns. For

� � � these blocks are the following
ones. � � � � � ' '�'

� � � � ' '�' � �
� � � � � '�'�'
� � � � '�'�' � �

� � � � � '�' '
� � � � '�' ' � �� � � � � ' '�'

� � � � ' '�' � �
� � � � � '�'�'
� � � � '�'�' � �

� � � � � '�' '
� � � � '�' ' � �

All functions described by these blocks have as subfunctions the parity of
� % � � � of the  -variables.

Again there are no mergings with the OBDD for � / � 2�� .
The lower bound for the number of nodes labeled by the third and fourth  -variable is proved in the
same way.

Proof of Claim 5 Let � � be one of the last four � -variables. Let ? be the number of � -variables
arranged after �	� . Then ? @ + �%�
�"�6%H� � B . Let ' be the number of  -variables arranged before ��� .
Then ' @ + ���&%H� � B . The subfunctions of � / � 2)� that are computed at �	� -nodes can be described by
�F? � %�� 	 � � % � �,� � ' � -blocks of the value matrix of � with at least two different rows. There are
seven such blocks. For ? � � these blocks are listed in the following. For ?3�,� the same arguments
can be applied. � � � � � ' '�'

� � � � ' '�' � �
� � � � � '�'�'
� � � � '�'�' � �

� � � � � '�' '
� � � � '�' ' � �� � � � � '�'�'

� � � � '�'�' � �
� � � � � '�'�'
� � � � '�'�' � � � � � � � '�' '

� � � � '�' ' � �
� � � � � '�'�'
� � � � '�'�' � �

In order to show that there are at least nine nodes labeled by �$� we present two subfunctions of � / �F2�� .
Let  "� ,  ,� and  � (or a subset of them if ' � �

) be the  -variables arranged before �.� . If we replace all
� -variables except �	� by � and  �� ,  ,� and  � by � , we obtain

� � � / ��1�2)�76 � �72�� 6 ��� 2)� � � � � / ��1�2)�76 � � 2)�76 ���72)� �
Similarly we may obtain

� � � � / ��132)�76 � �*2�� 6 ���72)� � � � � �
�/ ��132)�76 � � 2)�76 ���72�� �
Both functions essentially depend on �.� and are different from the functions described by the blocks
given above. The reason is that all except the last one of the blocks listed above describe functions
which have as subfunctions the parity of at least

� % � � �
of the  -variables. The last block describes

the functions �	� . Altogether, there are at least nine nodes labeled by �$� . This completes the proof of
Lemma 20.
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5.5 The Nonapproximability Result for MinOBDD

We describe how to compute the functions ( and ) of the L-reduction. For the computation of ( ��� �
we choose the trivial cut � ( � � � of size � and the variable ordering � of the  -variables for this cut as
described in the proof of Lemma 16. The SBDD size for � , � , � � , �
�
� , � < and � < < and this variable
ordering is � ��% � � 
�� � � . Hence, by the first claim of Lemma 20 the OBDD size for � and the
� -consistent variable ordering described in this lemma is ����� � � 
�� �%� . It is easy to see that the
OBDD for � and this variable ordering can be computed in polynomial time. Thus, also ( can be
computed in polynomial time.

If D����70 is the size of a maximum cut of � , by Lemma 16 and Lemma 17 the minimum size of an
SBDD for � , � , � � , � �
� , � < and � < < is � ��% � � 
�� � �4� D ���70 . By the first claim of Lemma 20 the
minimum size of an OBDD for � is  ���<� � ����� � � 
4� �H��� D ��� 0 .
Now we consider how to compute ) . If the input for ) is a variable ordering with an OBDD size  
for � that is at least � ��� � � 
-� �%� , the output is a cut of size D � � . Then the second condition of
the definition of the L-reductions is fulfilled because D ��� 0$� D � D����70 � � � ��� �+� 
3� �%�$�=� � ����� �+�

4� �H� � D����70"��), �  ���<� .

Let an OBDD for � with a variable ordering � and size  � ����� � � 
�� �H� � D < with D < � � be
given. Let � be the relative ordering of the  -variables in � and let ' � be the SBDD size for � , � , �
� ,
���
� , � < and � < < and the variable ordering � . By the second claim of Lemma 20 it cannot happen that
'
�3, � � � � . We consider the following � -consistent variable ordering � � : seven � -variables, � , the
remaining � -variables, the  -variables in the ordering � . By the first claim of Lemma 20 the variable
ordering � � is � -optimal. This implies that the OBDD size for � and � � is not larger than the OBDD
size for � and � , i.e. it is at most � ��� � � 
 � �%��� D < . Then, by the first claim of Lemma 20 we have
' � ) � ��% � � 
4��� � � D < . Hence, by Lemma 17 there is a cut of � of size D , where D ,,D < . This cut
can be computed in polynomial time from � . In particular, ) can be computed in polynomial time.

Because of D , D < � ����� � � 
�� �H���  and D ��� 0 � � ��� � � 
�� �H�*�  ��� � it follows that
D����70 � D�)  �, ��� � , i.e. the second property of the definition of the L-reductions is fulfilled for
+ � � .
In order to prove the first property of the definition of the L-reductions we exploit the well-known fact
that for each graph � � � ( � . � the size D ��� 0 of a maximum cut is at least & . & � % (see, e.g., Motwani
and Raghavan (1995)). Hence, � ) %"D ��� 0 . Combining this inequality with  ����<� � ����� � � 
 � �%�1�
D����70 we obtain  ��� �4) � ���%��%"D���� 0��1� D���� 0 or D����70�,  ���<� ��� � � . Hence, the first property is fulfilled
for * � � ��� �	� .
Altogether, we proved MaxCut ) % MinOBDD, where the parameters of the reduction are * � � ��� �	�
and + � � . Hence by Lemma 3, if there is a polynomial time approximation algorithm for MinOBDD
with a performance ratio of �;� � , then there is a polynomial time approximation algorithm for MaxCut
with a performance ratio of � �3� ��� *��3��� . By Theorem 2 this performance ratio is at least � � � � �#" �3 
for each  '� � if

��������
. By solving � �3� ��� * � ��� , � � � � �#" �3 for � and choosing an appropriate

 we obtain ��� � � � ������� � �
for each

� � � if
���� ���

. Hence, we have proved Theorem 4.

We may obtain a slightly stronger nonapproximability result for MinSBDD if we construct an SBDD
for the functions � , � , � � , ���
� , � < and � < < instead of an OBDD for � . The functions ( and ) can be
computed in a similar way as in the case of MinOBDD. Also the proof that the second condition of
the definition of the L-reductions is fulfilled for + � � can be done similarly. For the first condition,
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we have by Lemma 16 and Lemma 17 that  ����<� � � � % �+� 
 � � � � D���� 0 . Together with the property
� ) %�D ��� 0 of maximum cuts we obtain D ��� 0 ,  ���<� � � � � . By the same computation as outlined
above we obtain the lower bound � � � � 	�� 	*� � �

for each
� � � on the performance ratio of each

polynomial time approximation algorithm for MinSBDD if
��������

.

This lower bound is weaker than the lower bound stated in Theorem 5. The reason is that when
proving Lemma 16 and Lemma 17 we introduced components that we only use for the proof of the
nonapproximability result for MinOBDD. Hence, we get a smaller value for * than possible. Now we
sketch which components can be omitted or simplified for the proof for MinSBDD.

It is not necessary to combine the functions �I���
�
�
�	� ��� into a single function � and to combine
�����
�
�
������	 into ��� and �
�
� . Then we do no longer need the 
 -variables. The � -variables can be
omitted and we represent � �7/ 0���2�� and � � / 0���2)� instead of � � . The representation of these subfunctions is
the same as enforcing the � -variables to be tested before the � -variables. Hence, also � � is no longer
needed. The functions � < and � < < can be omitted. Finally, � can be defined as �
� � � � , i.e. we omit �
and the  -variables. Now the SBDD size for a variable ordering corresponding to a cut of size D is
�,% � � 
-� ��� � D . Hence, * � � � ����� and we obtain the result of Theorem 5.
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Figure 1: The situation before and after moving � � at the top.
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that maps assignments of

�

and the �-variables to the set
 �� �� �	� � 	 	� � �� � � �� � � � �

. The symmetry sets of this function are


 � �

and

 � �� � � �� ��� �
�

.



� �� �� �
� ����

� �� �

� � ��� �� �� �

� � � � � � � �

� � � � � � � � � �

� �

� �

� � �

� � � � �

� � � � � � �

� � � � � � � � � � �

Figure 7: The value matrix and the grid graph of


��� 
 . The symmetry sets of this function are


 � �

and


 � �� � � �� � �� �
�

.ftpm
ail@

ftp.eccc.uni-trier.de, subject ’help eccc’
ftp://ftp.eccc.uni-trier.de/pub/eccc
http://w

w
w

.eccc.uni-trier.de/eccc
E

C
C

C



ISSN
 1433-8092



