Electronic Colloquium on Computational Complexity, Report No. 2 (1998)

On Separating the Read-k-Times Branching Program Hierarchy

Jayram S. Thathachar

Abstract

We obtain an exponential separation between consecutive levels in the hierarchy of classes of functions
computable by polynomial-size syntactic read-k-times branching programs, for all k£ > 0, as conjectured
by various authors [Weg87, SS93, Pon95]. For every k, we exhibit two explicit functions that can be com-
puted by linear-sized read-(k+1)-times branching programs but require size exp {Q (nl/ k+12*2kk*4)}
to be computed by any read-k-times branching program. The result actually gives the strongest possi-
ble separation — the exponential lower bound applies to both non-deterministic read-k-times branching
programs and randomized read-k-times branching programs with 2-sided error ¢, for some € > 0. The
only previously known results are the separation between ¥ = 1 and k¥ = 2 [BRS93| and a separa-
tion of non-deterministic read-%k from deterministic read-(kInk/In2+ C), where C is some appropriate
constant, for each £ [Oko97]. A simple corollary of our results is that randomization is not more pow-
erful than non-determinism for read-k-times branching programs. A combinatorial result that we prove
along the way is a “hash-mixing lemma” (see [MNT93]) for families of hash functions that are almost
universal, which may be of independent interest.

ISSN 1433-8092

1. Introduction

Branching programs and their many variants have long been a popular model for studying the complexity
of functions (see, for example, the survey paper of Razborov [Raz91]). A (boolean) branching program
is a directed acyclic graph with a source node and sink nodes labeled either “accept” or “reject.” Each
non-sink node has out-degree two and the two outgoing edges are labeled z; = 0 and z; = 1 for some
input variable z;. For any boolean assignment to zi,xs,...,%,, there is a unique computation path
from the source node to one of the sink nodes in which all the edge labelings are consistent with the
assignment. In this way, any branching program computes a boolean function. The two important
complexity measures for a branching program are its size, which is the number of nodes, and length,
which is the maximum length of a computation path from the source to a sink.

Branching programs are an important abstraction of many computing models and are closely related
to other well studied models of computation (see, for e.g. [Weg87]). In a natural way, the size and length
measure the space and time, respectively, used in a computation. A superpolynomial size lower bound
for a function f would imply that f is not computable in non-uniform log-space. However, the best
size lower bound for an explicit function in NP is Q(logj —) due to Neciporuk [Nec66] (see, also [BS90]).
Branching programs are also useful for studying time-space tradeoffs (see [Bor93| for a survey of results
and open problems). It is a major open problem to exhibit a function that requires super-polynomial
size branching programs of linear length. Such a result would imply that there are functions that cannot
be simultaneously computed in log-space and linear time. Since linear length implies that on average
each variable is tested only a constant number of times on any path, researchers have looked at restricted
variants of branching programs that capture this property in the hope of proving better bounds.

Read-k-times branching programs (see [Weg87]) have the restriction that along each path from source
to sink, each variable may be tested at most £ times. The case k& = 1, i.e. read-once branching pro-
grams, is well understood and a variety of lower bound and separation results have been shown for it
(see [Raz91] for an overview, [SS93] for an overview and summary of proof techniques and [Sau97b]
for a discussion on the separation results). Wegener [Weg87] conjectured that the hierarchy of classes
of functions computable by polynomial-size read-k-times branching programs, for £ > 1, is proper.
Borodin, Razborov and Smolensky [BRS93] observed (and clarified) that there are actually two poten-
tially different classes of read-k-times branching programs that can be considered — the semantic type
where the restriction on multiple reads applies only to computational paths and syntactic type where
this restriction applies to the non-computational paths as well (for £ = 1, the two classes coincide). For
k > 2, no non-trivial bounds have been proved for semantic read-k-times branching programs. On the
other hand, for the syntactic model, Borodin et al. [BRS93] were able to show exponential size bounds
for some explicit function, for each k& < clogn, where ¢ is some appropriate constant. Here again, a nat-
ural problem is to separate the syntactic read-k-times branching program hierarchy for k¥ > 2. Various
authors [Pon95, SS93, Weg87] have worked on this problem and conjectured candidate predicates for
separating the hierarchy for k > 2; for example, Ponzio [Pon95] suggests looking at the generalization
of the permutation matrix predicate in the k-dimensional hypercube. Okolnishnikova [Oko97] has made
the only progress in this direction by showing that there are functions that can be computed by syntac-
tic read-(kInk/In2 4+ C)-times branching programs, for some constant C, but require exponential size
non-deterministic syntactic read-k-times branching programs. However, the strict separation problem
has been open even for £ = 2, that is, is there a function that can be computed by a polynomial size
read-thrice branching program but requires read-twice branching programs of superpolynomial size?

We resolve this question completely by obtaining an exponential separation between consecutive levels

in the hierarchy of classes of functions computable by polynomial size syntactic read-k-times branching
programs, for all & > 0. For any odd prime ¢, we consider two predicates — the hyperplanar sum-
of-products predicate (HSP’;) and the conjunction of hyperplanar sum-of-products predicate (CHSP’;)
both of which are defined on the k-dimensional hypercube [1,n]* in terms of the (k—1)-dimensional
hyperplanes orthogonal to the k¥ dimensions. (There are a total of kn such hyperplanes. For example,
when k£ = 2, these correspond to the rows and columns of a n x n matrix.) HSP’; is defined to be true if
the number of hyperplanes that have odd parity is equivalent modulo ¢ to the number of hyperplanes that
have even parity. CHSP’; is true if and only if amongst the hyperplanes orthogonal to each dimension,
the number of hyperplanes that have odd parity is equivalent modulo ¢ to the number of hyperplanes
that have even parity. (See Section 2 for a formal definition.) We prove:

Theorem 1: Let k > 1 and ¢ be any odd prime. Then, HSP5*! and CHSPS*! can be computed by
linear-sized read-(k+1)-times branching program whereas any non-deterministic read-k-times branching

program for CHSP’;+1 requires size at least exp {Q (nl/ k+12_2kk_3)} and for HSP’;+1 requires size at
least exp {Q (nl/k+12*2kk*4) }

We also show that a similar size bound holds for randomized read-k-times branching programs with
2-sided error ¢, for some ¢ > 0 that is constant for HSP’;"’1 but depends on £ for CHSP';‘H. An easy
corollary of our result is that randomization is not more powerful than non-determinism for read-k-
times branching programs. Our results and proof techniques are inspired by the work of Borodin et
al. [BRS93], Ponzio [Pon97] and Sauerhoff [Sau97b).

It is evident that lower bounds, hierarchy and separation results contribute to our understanding
of branching program based complexity classes. Okolnishnikova [Oko93] has given exponential lower
bounds on the size of (deterministic) read-k-times branching programs computing some function, for
k < clogn/loglogn, where c is some appropriate constant. For randomized read-k-times branching
programs, Sauerhoff [Sau97a] has exhibited exponential size bounds for the same function considered
by Borodin et al. [BRS93]. Some authors have considered further restrictions of read-k-times branching
programs. For example, k.-OBDDs [BSSW93| are branching programs that can be partitioned into %
layers such that each layer uses the same order to access the variables. Although separation results are
known for such models, they are even weaker than oblivious branching programs. Thus, the arguments
do not apply to general syntactic read-k-times branching programs. Another important motivation
for studying read-restricted variants is that some of them are used in practice as data structures for
boolean functions. For example, ordered read-once branching programs [Bry86], also known as OBDDs,
have been applied in computer-aided design as tools for hardware verification and symbolic model
checking [BCL194]. Unordered read-once branching programs have also shown some promise in this
regard [GM94, SW95].

Some of the important features of our techniques are (i) a combinatorial argument that reduces
the lower bound problem to analyzing the structure of pseudo-rectangles (Section 3), (ii) interesting
properties about the structure of the two hyperplanar predicates and (iii) an analogue of the “hash-
mixing lemma” of Mansour, Nisan and Tiwary [MNT93] for almost universal families of hash functions
(Section 4.2), which may be of independent interest.

For the rest of the paper, we deal only with the syntactic variant of read-k-times branching programs.
In Section 2, we define HSP’; and CHSP’qc for any £ > 1 and odd prime ¢ and motivate the lower bound
problem by showing that they belong to a natural class of predicates that can be computed efficiently
by read-k-times branching programs but are possibly hard for read-(k—1)-times branching programs.

Section 3 contains the combinatorial argument that reduces the lower bound problem on read-k-times
branching programs to analyzing the structure of special types of functions called pseudo-rectangles.
Applying this technique, in Section 4 we show exponential size lower bounds for non-deterministic and
randomized read-k-times branching programs. We conclude with a discussion of our results.

2. The Hyperplanar Predicates

In order to motivate our candidate predicates HSP’; and CHSP’;, where k£ > 1 and ¢ is an odd prime,
we show that they belong to a natural class of predicates N = n* variables that contains many other
potential candidates for separating the read-k-times hierarchy. Each such function is defined on the
k-dimensional hypercube [1,n]* of side n. Let us call the n hyperplanes perpendicular to the d"* axis,
d € [1,k] as d-planes. In other words, the i d-plane, for i € [1,n], is the set {v € [1,n]* : vg = i}.
Let de denote the set of variables corresponding to the i** d-plane; observe that ‘de = nk=1. The
predicates in this class are defined as follows: Suppose g and h are predicates which can be computed
by read-once branching programs of polynomial size. Think of g and h as gates with unbounded fan-in.
Consider the predicate () defined by a depth-2 circuit consisting of an g-gate at the top connected to kn
h-gates. For d € [1,k] and i € [1,n], the input to the [k(d — 1) +4]™ h-gate is X? (See Figure 1). In this
circuit, the function computed at the g-gate can be implemented by a read-k-times branching program
of polynomial size because each variable is input to only k£ h-gates (Take any read-once branching
program computing g and replace each node and its two outgoing edges with an appropriate branching
program computing h.) For example, the generalization of the permutation predicate to k¥ dimensions,

Cin o fen e
AN AN

~N__ ~_ ~_ ~_ ~_ ~N—_
Xl Xl X2 X2 Xk Xk
1 n 1 n 1 n

Figure 1: The predicate) described as a depth-2 circuit

conjectured by Ponzio [Pon95] to separate the read-k-times hierarchy, can be easily seen to belong to
this class. We will see shortly that HSP’qc and CHSP'; also belong to this class.

To define HSP’; and CHSP’(; , it will be convenient to use the Fourier representation for input assign-
ments to X where —1 and 1 are identified with true and false respectively and also treated as elements
of GF(q).

Definition: For d € [1,k], let Hy(X) denote the polynomial 37;cry 5 [1,exe @ over GF(g). Then
def.
HSP’;(X) = true & ZHd(X) =0 (mod q)
d

CHSP’;(X) —true &% vde [1,k] Hya(X)=0 (mod q).

It is easy to see that HSP’; and CHSP’(; can be defined as depth-2 and depth-3 ACCY circuits,
respectively, in the manner considered above: for both functions & is the parity predicate on nk—!
inputs; for HSP’;, g is the Mod, predicate, and for CHSP’;, g is the AND of k£ terms where each term is
a Mod, predicate on n inputs. (For the Mod, predicate —1 and 1 inputs correspond to true and false

respectively.)

The following theorem gives upper bounds for constructing HSP’;+1 and CHSP’;+1 using read-k-times
and read-(k+1)-times branching programs. Although the constructions are extremely simple, as we will
see later, the exponential gap between these bounds is real.

Theorem 2: Both HSP’;H(X) and CHSP’(;+1 can be computed by

1. deterministic read-(k+1)-times branching programs of linear size, and

2. deterministic read-k-times branching programs of size exp{O(N/*+1)}.

Proof (Sketch): The proof for Part 1 follows from earlier observations. For Part 2, the construction
is quite simple and we will describe it only for HSP’;‘H; the construction for CHSPZ"’1 uses similar ideas.
The branching program is composed of k£ blocks, each of which is a read-once branching program. For
d € [1,k—1], the d** block computes polynomial Hy(X) and the k™ block computes the sum of Hj and
Hj11. Tt is easy to compose them so that together they verify that >°; Hg(X) =0 (mod ¢). The former
part is easy: we can easily build a read-once branching program to compute Hy, for d € [1,k—1|. Thus,
the first £—1 blocks can be computed in polynomial size.

For the k% block, we start off by reading the variables of each of the k-planes in order, for computing
Hj, (as was done in the first k—1 blocks). Simultaneously, we also keep track of the partial products for
each of the n (k + 1)-planes which are orthogonal to the k-planes. At the end, we have the products
for all the (k + 1)-planes from which we can also compute Hy1. To keep this “state”, the branching
program needs at most 2" nodes, from which the upper bound on the size follows. O

3. The Lower Bound Technique

Non-deterministic and randomized branching programs are natural generalizations of deterministic
branching programs analogous to other computing models such as Turing machines. We refer the
reader to [Raz91] for a formal definition of these and related models. Recall that in a non-deterministic
branching program [BRS93|, the edges are either unlabeled or labeled with “z = 0” or “x = 17, for
some variable z. The inputs for which it computes a 1 are those that have at least one consistent path

from the source to an accepting sink. A randomized branching program [Sau97a] is syntactically similar
to a deterministic branching program and has two types of variables — input variables and stochastic
variables. We say that it has 2-sided error € for computing a function f, if and only if for each input
o, it computes the correct value of f(o) for at least 1 — e fraction of the settings to the stochastic
variables. (We can also consider the more general model obtained by defining a probability distribution
on deterministic read-k-times branching programs. Our bounds apply to this model as well.) In this
section, we describe the basic technique that reduces the lower bound problem for non-deterministic and
randomized read-k-times branching programs to analyzing the structure of special types of functions
called pseudo-rectangles.

For disjoint sets S,7 C X, we call a function R(X) a pseudo-rectangle with respect to the sets
S, T C X, if R(X) can be expressed as R'(X\T) A R"(X\S). Intuitively, R = R' A R”, where only R’
depends on S and only R” depends on T and they share common variables X\ (SUT). The motivation for
this definition is the following: Borodin et al. [BRS93] showed that one way to prove lower bounds on the
sizes of non-deterministic read-k-times branching programs computing a boolean function f is to analyze
the “covering” of the satisfying assignments of f by special types of functions called “(k, p)-rectangles”.
(Similar approaches were taken by Okolnishnikova [Oko93] and Sauerhoff [Sau97a] for deterministic
and randomized branching programs, respectively.) Although this reduction is a significant step, these
rectangles are still too complex for our purposes. By using a combinatorial argument, we show that
for a suitable choice of parameters, any rectangle can be transformed into a pseudo-rectangle, which
is structurally easier to analyze. Later, we will show that on the hypercube, pseudo-rectangles possess
even nicer properties that essentially allow us to study the lower bound problem for the hyperplanar
predicates in a restricted one-dimensional setting.

We call a function R(X) a (k,p)-rectangle if there exists a family {X1, X,..., Xyp} C 2% such that
o R(X) = Aicpt,kp) 9i(Xi), for some g;’s,
e | X;| < [N/p], and

e each variable appears in at most k sets in the family.

The relationship between rectangles and branching program size is given in Proposition 3 below. (This
is a special case of a general result involving probability distributions over input assignments.)

Proposition 3 ([BRS93, Sau97a]): Let f be an arbitrary boolean function on a variable set X of
size N. Fix an integer k£ and let p € [1, N].

1. Suppose |[R7'(1)| < t for any (k,p)-rectangle R < f. Then, any non-deterministic read-k-times
branching program for f of size s satisfies (25)%% > |f~1(1)| /¢.

2. Suppose any (k,p)-rectangle R(X) satisfies |[R"1(1) N f~'(1)| < a|R7*(1)| + ¢. Then, any ran-
domized read-k-times branching program for f of size s and 2-sided error ¢ satisfies (2skn)*P >

{1 -a) [f71Q)] - 2V},

We now show that (k,p)-rectangles can be transformed to pseudo-rectangles, for a suitable choice of
p. This strengthens the arguments in Borodin et al. [BRS93] who obtain a similar but somewhat weaker
result for functions that are defined on a pair of variable sets.

Lemma 4: Let X be a variable set of size N and set p = 144-k-2*. Then, any (k, p)-rectangle R(X)
is a pseudo-rectangle with respect to some sets S and T each having at least (2/3) - N/2* variables.

Proof: Let R(X) = A kp) 9i(Xi), for some g;’s be a (k,p)-rectangle. Arbitrarily define dummy
singleton sets X;, j € [kp + 1,£], for some £, so that each variable appears in ezactly k sets. Let
X1, X2 - - - X¢ be random variables corresponding to independent Bernoulli trials. Set

S = {zeX : Vie[l,/[r € X; = x; =0]}
T = {z€X : Vie[lH[zeX,= xi=1]}

It follows that S and T are disjoint. Moreover, for each i, either X; NS or X; NT' is empty. Therefore,
each ¢;(X) can be written as either g;(X;\T') or ¢;(X;\S), implying that R(X) is a pseudo-rectangle
with respect to S and T. To complete the proof, we show that with positive probability both S and T’
have at least (1 — §) - N/2F variables, where § = 1/3.

For z € X, let Z, be the indicator random variable for the event “z € S” and let Z =) Z, = |S]|.
Note that z € S if and only if x; = 0, for each of the k£ sets X; that contain z. Therefore, E[Z] =
>, E[Z;] = N/2%. Using Chebyschev’s inequality, we will show that Z is close to its expected value
with high probability.

The variance of Z is given by var[Z] = >, var[Z;]+3_,, cov(Zy, Zy), where cov(Z;, Zy) = E[Z, Z,] -
E[Z,|E[Z,] denotes the covariance of Z, and Z,. For any z, Z, is a Bernoulli random variable, so
var[Z,] < E[Z;] = 1/2*. Observe that if no set X; contains both z and y, then the events Z, and Z,
are independent implying that cov(Z;, Z,) = 0. On the other hand, the number of pairs (z,y) such
that some set X; contains both z and y is at most |'N/p'|2 - kp < 4kN?/p. (The singleton sets do not
contribute to this bound.) For each such pair, cov(Zy, Z,) < E[Z,Z,] < E[Z;] = 1/2F. For N > 36 - 2,
and for p = 144 - k - 2%, we obtain

[Z]<N+4-k-N2 N? N N? N? 6% - E[Z)?
ar — = = .
v 2k 144 -Fk-2F — 36-2F 36-2F 18-2k 2
Finally, using Chebyschev’s inequality, we have
var[Z] 1

PriZ<(1-6)-FlZ]| < 5——= < =.
In a similar fashion, we obtain Pr[|T| < (1 — §) - N/2¥] < 1/2. We conclude that there is at least one
setting of the y;’s in which both S and T have at least (1 — §) - N/2F = (2/3) - N/2* variables. O

In Theorem 6 below, we will derive two special forms for pseudo-rectangles on the (k+1)-dimensional
hypercube, for arbitrary k. Suppose R is a pseudo-rectangle with respect to the sets S and 7. For
both these forms we will obtain variable sets A = {a1,a9,...,an} C S and B = {b1,bs,..., b} C T,
for sufficiently large m. The first form states that in some dimension d, there is a set of m d-planes
such that the i** d-plane in this set contains {a;,b;}. The second form states that there is a set of
m hyperplanes such that the % d-plane in this set contains {a;,b;} and every other hyperplane in the
hypercube contains at most one variable of AU B. The first form will be useful for proving lower bounds
for CHSP’; whereas the second form will be useful for HSP’; . The following combinatorial lemma forms
the basis for the proof of Theorem 6; it is inspired by the k = 2 case due to Ponzio [Pon97].

Lemma 5: Let S and T be disjoint sets of variables in the (k+41)-dimensional hypercube [1,n]**!
each having size at least (2/3)-N/2¥, where N = n**1. Then, there are at least ¢(k+1)n/2 hyperplanes
each containing en” variables of S and en¥/2 variables of T, where € = [3(k + 1)2F+1] L.

Proof: Call any hyperplane S-dense (T-dense) if it contains at least en® (respectively, en”/2) vari-
ables of S (respectively, T').

Let s4 denote the fraction of d-planes that are S-dense. Set s = (3°4s4)/(k + 1) so that by the
arithmetic-geometric mean inequality, Hde[l,k 41184 < s¥*1. By counting the variables of S in the
d-planes, and summing over all d, we see that

SI< I Gan) + > enf(1—san < N[5+ e(k+1)].
de[1,k+1] de[1,k+1]

Rearranging the terms in the equation above and substituting the value of € and the bound on |S|,
s> S| /N —e(k +1) > (2/3) - (1/2%) — (1/3) - (1/2FF1) = 1727+,
implying that s > 1/2.

Now apply the arithmetic-geometric inequality again to obtain [[,;(1 — s4) < (1 — s)Ft1 < 1/2F+1,
Thus, the number of variables of T' that lie in S-dense hyperplanes is at least

|T| — N/2¥+1 > (2/3) - N/2F — 128! = ¢(k 4+ 1)N.

It follows that at least e(k + 1)n/2 S-dense hyperplanes are also T-dense because otherwise the number
of variables of T' that lie in S-dense hyperplanes is at most

N KZ sq—e(k + 1)/2) (€/2) + ek +1)/2| < Nk +1)[(1 = ¢/2) - (¢/2) + ¢/2] < e(k + 1)N.
d

a

Theorem 6: Let X be the variable set of the (k+4-1)-dimensional hypercube of size N = n**1. Set
p=144-k-2% and ¢ = [3(k +1)2¥+1]~1. Then, any (k, p)-rectangle R(X) can be expressed as a pseudo-
rectangle with respect to sets A = {a1,a9,...an} and B = {b1,bs,... by} in two ways as described
below:

(i) Here m = en/2 and for some dimension d, each pair {a;, b;} lies in some unique d-plane, for i € [1,m]

(ii) Here m = en/(4k) and for each i € [1,m], there is exactly one hyperplane containing {a;, b;}, but
every other hyperplane contains at most one element of A U B.

Proof: Applying Lemma 4, R(X) is a pseudo-rectangle with respect to disjoint sets S and 7', each
of size at least (2/3) - N/2*. Part (i) of the Lemma follows easily by applying Lemma 5 because for
some dimension d, at least en/2 d-planes must be dense in both S and T

To derive part (ii), similarly to part (i), we first fix a d and a set I" of en/2 d-planes each containing
en® variables of S and en® /2 variables of T'. Now we choose the variables a; € A and b; € B in stages
as follows: In the first stage, we pick an arbitrary d-plane P in I'. We let by be an arbitrary element
of T in P and eliminate the variables of the other k£ hyperplanes containing b; from our consideration.
(This also eliminates some variables in P.) Next, we choose a; to be an arbitrary element of S in P
and repeat the same process with respect to a;. Finally, we delete all the variables of P. Observe that
this process eliminates 2kn*~! variables from each of the other d-planes in T'. More generally, in the ;%"
stage, we only consider those elements that have not been eliminated in the previous stages and in the
manner described above, we choose pairs b; € T, a; € S sharing some d-plane in I" and then delete the
variables of this plane and the other 2k hyperplanes containing a; and b;. We can continue this process
for en/(4k) stages after which we obtain the required sets A and B. O

4. Lower Bounds for Read-k-times Branching Programs

In this section, we give exponential size bounds for non-deterministic and randomized read-k-times
branching programs computing HSP’;‘H(X) and CHSP’;H(X). Consider the easy case k =1 and ¢ =3
for the purposes of motivating the proof of the exponential size lower bound for read-once branching
programs computing CHSP3. The following notation will be useful: for a polynomial F(X), and a
partial assignment p to the variables Z C X, let F'[,(Y) denote the polynomial depending on the
variables Y = X\ Z, obtained by restricting the variables of Z to values specified by p.

When k = 1, X corresponds to a matrix of size N = n%. It can be shown that any assignment that
sets all the variables in X except for those in some fixed 5 X 5 sub-matrix can always be extended to
a complete assignment that satisfies CH S P3, implying that the number of satisfying assignments is at
least 2%V /225,

In order to apply to apply Proposition 3 part 1, we consider an arbitrary (k, p)-rectangle R < CH SP%.
Setting p = 2, it follows that R(X) is of the form R'(S) A R"(T), for disjoint S and T of size N/2.
Thus, we get pseudo-rectangles for free without having to resort to the machinery of Lemma 4. (For
k > 2, we do not obtain such a form directly.) Lemma 5 implies that there must be m = Q(n) rows or
columns each containing at least one element of S and one element of 7. Let A = {a1,a9,...,a,} C S
and B = {by,by,..., by} C T be variables occurring, say, in the first m rows. Since R < CHSPZ, any
assignment that satisfies R(X) must set H;(X) to 0 mod ¢. For any assignment p to X\(A U B), we
obtain Hy[,(AUB) = Y>; ui(aib;) + ¢, where u € {—1,1} and ¢ € GF(q) are determined by p. Suppose
we can show for some fixed A < 1 that R[,(A U B) can cover only (2X)™ of the assignments to AU B
that satisfy the above equation. Since p was picked arbitrarily, the number of satisfying assignments of
R(X) is therefore at most 2V \™, which is exponentially small in the number of satisfying assignments for
CHSP3. Applying Proposition 3 part 1 gives the exponential size lower bound for read-once branching
programs computing CHSP3.

The two key observations in the description above are that (a) R[,(AU B) = R'[,(A) A R"[,(B) is
a standard rectangle as considered in communication complexity and (b) but for the coefficients ¢ and
u;’s, the polynomial Hi[,(A U B) is similar to the standard inner product function over GF(gq) — a
function which has been studied extensively in communication complexity (for example, see [KN9T]).
An important difference that makes the problem non-trivial is that the assignments to the a;’s and
the b;’s are distributed over {—1,1}" rather than GF(q)™. Thus our goal is essentially studying the
rectangular complexity of an inner-product-like function in a non-standard setting.

For the predicate HSP’;H, an argument similar to the one outlined above can be carried out using
Theorem 6 part (ii). In this case, the restricted polynomial has an additional term — a linear function
of the a’a and b’s. We will consider this general form in the proofs below.

4.1. Non-Deterministic Read-k-times Branching Programs

We show that any rectangle (in the communication complexity sense) can cover only an exponentially
small set of the solutions to any equation involving an inner product-like function (Lemma 8) but the
set of satisfying assignments of HSPi*!(X) or CHSPS™'(X) is “dense” (Lemma 10). Finally we use
Proposition 3 and the arguments outlined above to get the desired lower bound. The proof of Lemma 8
uses the following simple fact from linear algebra.

Lemma 7: Let S be a set of vectors in GF(q)", for some n, and let » = dim(span(S)). If there is an
integer £ such that for each coordinate ¢, every vector in S assumes only £ possible values, then |S| < £.

Proof: Choose a basis v!,v2,...,v" for the subspace generated by S and assume without loss of

generality for each 4,5 € [1,r] that vj- =1, if 1 = j, and 0 otherwise. Since each vector w € S can be
expressed as some linear combination Y, a;v?, it follows that a; = w;, for i € [1,7]. Therefore, only £
possible values are allowed for each a;, implying that |S| < £". O

Lemma 8: Let m be an integer and ¢ an odd prime. Fix any u € (GF(¢)*)™, v,w € GF(¢)™, and
c € GF(q). Let £,II C {—1,1}™ and let R denote ¥ x II. If every assignment (o,7) € R satisfies
Yiui(o; — vi)(m —w;) + ¢ =0 (mod g), then |R| < 2™.

Proof: Pick any ¢° € ¥ and 7° € II. Treating the elements of ¥ and II as vectors over GF(q), set
S={6 : 6;i=wui(o; —0),0 € T} and M={r—7°: 7 e}
Note that ‘f]‘ = |X| and ‘1:[‘ = |TI|. Moreover, for any ¢ € ¥ and 7 € TI, it can be verified that & -7 = 0.
(For two vectors u,v € GF(q)™, u-v =}, ujv; mod g denotes the standard inner product over GF(q).)

If we let V = vector space generated by ¥ and W = vector space generated by II, then by the above
property, V and W are orthogonal subspaces. Therefore, dim(V') + dim(W) < m.

Because ¥ C {—1,1}™, for any fixed coordinate there are at most two fixed values that every vector
in 3 can assume. Applying Lemma 7 with § = 5 and £ = 2, we obtain ‘2‘ < 2dm(V) " Gimilarly

‘1:[‘ < 2dim(W) " from which it follows that
|R| — ‘E| |H| < 2dim(V)+dim(W) < 2m7
proving the lemma. O

We now show that the number of satisfying assignments of HSP’;"’1 and of CHSP’;"’1 are “close” to
the maximum possible. The proofs are based on the following simple lemma:

Lemma 9: Let ¢ be any odd prime. For any u € {—1,1}2¢"1 ¢ € GF(q), there exists v € {—1,1}2¢"1
such that v -v+¢ =0 (mod ¢) and [];v; = 1.

Proof: It suffices to produce y € {—1,1}247! such that (i) ;% + ¢ =0 (mod ¢) and (ii) [[;4; =
[I; u;- Then we can set v; = u;y; for i € [1,2¢g—1] so that u-v+c = >,y + ¢ = 0 (mod ¢) and
[Livi=1Lvwi 1Ly = (Hz Ui)2 =1

Clearly, there exists at least one y € {—1,1}2¢! satisfying (i). Suppose [[; v; = — I, u;, violating (ii).

Since at least g of the y;’s must be equal, assume without loss of generality that y; =y = --- = y,, so
that >"ic1,q¥i =0 (mod g). Now, replace y; by —y;, for i € [1,q]. It can be verified that (i) still holds.
Because ¢ is odd, the value of []; y; will be negated implying that (ii) holds as well. |

Lemma 10: For any k£ and any odd prime ¢, the number of input assignments satisfying CHSP’; (X)
is at least 2V/2(2¢=D" and the number satisfying HSPF(X) is at least 2V /2207 where |X| = N.

Proof: For each predicate, we will fix a particular subset of the variables Y. Let p denote an arbitrary
assignment to the variables of X\Y. We will show that p always be extended by an assignment ¢ to Y
such that the complete assignment (¢, p) satisfies the predicate. It follows that the number of satisfying
assignments is at least 2V /2/Y1.

CHSP’;(X): In this case Y is the set of variables corresponding to the sub-hypercube [1,2¢—1]*. Note
that |Y| = (2¢ — 1)*, as required by the lemma. For two assignments ¢ and 7 to a set of variables,
let their point-wise product o ® 7 be the assignment such that o ®@ w(x) = o(z) - 7(x). We have to
construct ¢ such that (¢, p) sets each polynomial Hz(X) to 0 (mod ¢). We first construct k£ intermediate
assignments ¢1, ¢, ..., ¢g. Loosely speaking, each ¢4 will satisfy the property that (¢g, p) sets Hg(X)
to 0 (mod ¢) but does not “influence” the value of Hy (X), for d’' # d.

Lemma 11: Let Y be the the set of variables corresponding the sub-hypercube [1,2¢—1]* and let p
be an arbitrary assignment to the variables of X\Y. Then there exist assignments ¢1, ¢a,... ¢ to Y
such that for any d € [1,k], (i) Hg,(¢q4) =0 (mod ¢) and (ii) for any d' # d, and for any assignment o
to Y, Hylo(0 © ¢a) = Halp(c) (mod g).

Proof: Fix any d and substitute for p in the polynomial Hy(X). We have

Hip(v) = > II »e@- II = + > II o) (1)

i€[1,2¢—1] ze XY TEYNXY i€[2g,n] ze X4
— ~ ~~ d
uU; c

where v € {—1,1}2¢"1 and ¢ € GF(q). Apply Lemma 9 to obtain v € {—1,1}2¢"! such that u-v +a =
0 (mod ¢) and [[;v; = 1. Define the assignment ¢4 to Y by assigning v; to every variable in Y N X¢,
for i € [1,2¢—1].
To verify (i), substitute the values assigned by ¢, for the variables of Y in Equation (1). We
d
have [cynxe Pa(z) = lemXi |, which simplifies to v;, since |Y N X¢| = (2¢—1)* is odd. Therefore,
Equation (1) simplifies as Hyl,(¢q) = u-v+ ¢ =0 (mod g).

For proving (ii), fix any d’ # d and observe that we can write a expression for Hy[,(Y") similar to
Equation (1), that is, Hg[,(Y) = (X; 4} [Izeynxe @) + ¢, for some v’ € {—1,1}?¢"! and ¢ € GF(g).
Substitute for o and o ® ¢4 in this equation. We have

Halp(da) = Y ui [¢alx) + ¢

i zeynxy

Hylp(0©¢a) = D uwp [I (@)@ + =3 ui][ol@)pal@) + ¢

TEYNXY i zeynxd
We show that for each i € [1,2¢-1], I], evnxd ¢4(z) = 1, which would imply the desired equality
Hyl,(0 ® ¢pg) = Hy[p(¢q). This can be seen as follows:

‘Yan’ nx¢
V.

I s== T]] I da=x= II v = J] w=1

zeYNXy J€2¢-1] geynx ¢ nx¢ j€l,2¢—-1] j€l1,2¢—1]

because for any d # d’,

Ynxdn X;-i‘ = (2¢—1)%1 is odd. O

(Proof of Lemma 10 continued): Apply Lemma 11 to obtain ¢4, for d € [1, k] and set ¢ to be their
point-wise product. For any d € [1,k], by applying Lemma 11 part (ii) above repeatedly, we obtain
Hyl,(¢) = Hylp(¢q) (mod g), which by part (i) is equivalent to 0 (mod g).

10

HSPZ(X): Here Y = {y1,y2,...,Y2¢-1}, where y; corresponds to the element (i,1,1,...,1) in the
hypercube [1,n]*. Observe that Y C X 4 for any d # 1. On the other hand, the variables of Y are
split amongst the first 2¢g—1 1-planes. As before, substitute for p in each of the polynomials H;(X) and
separate the sub-expressions that depend on p only. When d = 1, we have

H,W)= Y w JI s + >] o).

i€[1,2¢-1] zeX\{y;:} i€[2¢,n] ze X}
— ~ ~~ -
Ui b

Thus, H1|-p(Y) = Ez UiY; + b=1u- Y+ b (Where Y= (ylayfb .- 5y2q—1))-
When we substitute for p in Hg(X), where d # 1, and sum over all such d, we obtain

Y HY) = I v II e + > 11 »r@

de(2,k] def2,k] \j€[1,2¢-1] zexd\Y i€[2,n] ze X
= I » > II @ + > I r®
JE[L,2¢—1] d€2,k] zex{\Y ;_ig[[;,:]l reXy

-~~~

a

al
It follows that H[,(Y) =>4 Hdp(Y) =u-y+b+all;y; +d"

Apply Lemma 9 with 4 and ¢ = b+ a + a' to obtain v € {—1,1}2¢"! such that u-v+c= 0 (mod q)
and []; v; = 1. Define ¢ by assigning values v to y. The lemma follows because

H(¢p)=uw-v+b+a][vi+a' =u-v+bt+a+d =u-v+c=0 (mod g).
J

We now have all the pieces to prove Theorem 1.

Proof (of Theorem 1): The upper bounds follow from Theorem 2. For proving the lower bounds
via Proposition 3 part 1, first consider any (k,p)-rectangle R < CHSP’;‘H, where p = 144 - k - 2F,
and apply Theorem 6 part (i) to obtain d and sets A and B each of size m = Q(n/(k - 2F)), so that
R(X) = R'(X\B) AR"(X\A). By the symmetry in the definition of CHSP}!(X), and we can assume
without loss of generality that d = 1. Pick an arbitrary assignment p to the variables of X\(A U B).
Let T' denote the set of assignments that satisfy R[,(A U B). In other words, I' = ¥ x II, where
Y={o : R[)(0)=1}and I = {7 : R"[,(m) =1}

Because R < CHSP’;H, for any (o,7) € T', we have Hi[,(o,m) = 0 (mod ¢). Since Hy[,(o,7) =
i uioim; + ¢, for some v € {—1,1}™ and ¢ € GF(q), Lemma 8 implies that [I'| < 2™. Since p was
chosen arbitrarily, it follows that |[R7!(1)| < 2N¥-2m2m = 2N=m_ Combining this with Lemma 10
and applying Proposition 3 part 1, the size of any non-deterministic read-k-times branching program
computing CHSP’;+1 is at least

(2N7(2q71)k/2N7m)1/(2kp) _ (me(zqfl)k)l/(z’cp) _ oQ(nk—3272k)

proving the theorem for CHSP’;H.

11

For HSPI(;H, a similar argument can be carried out using Theorem 6 part (ii). In this case, we
consider the polynomial H[,(A U B), which by the property satisfied by A and B can be written as
> ui(a; —vi)(bi — w;) + ¢, for some u € (GF(q)*)™, v,w € GF(¢)™ and ¢ € GF(q) that depend only on
p. Thus Lemma 8 can be applied again from which the lower bound follows by similar arguments. O

4.2. Randomized Read-k-times Branching Programs

Since we have already proved Lemma 10, to apply Proposition 3 part 2, we only need to show that the
density of satisfying assignments of HSP';H(X) or CHSP’;+l in any (k, p)-rectangle R(X) is significantly
small. Consider the predicate CHSP’;“. Similar to the proof of Theorem 1, R(X) = R'(X\B) A
R"(X\A), and we pick an arbitrary assignment p to X\(A U B) which defines ¥ and TI. We want to
show that in the “rectangle” defined by ¥ and II, the distribution of the values of H;[,(AU B) is almost
uniform on GF(q). Because it would then imply that roughly 1/¢ fraction of the values of Hi[,(AU B)
are = 0 (mod ¢). Since p was picked arbitrarily, it follows that the density of satisfying assignments of
CHSP’;H(X) in R(X) is roughly at most 1/q.

The polynomial Hq[,(AU B) = >, u;a;b; + ¢, for some u € {—1,1}"", ¢ € GF(q), can be viewed as a

family of hash functions H of size 2™ mapping {—1,1}" to GF(q). Each assignment o to A determines
a hash function h, € H such that for any assignment 7 to B

ho(m) = Hy[p(o,) = Z U;0;7; + C.

Ideally, we want to say that 7 is a universal family of hash functions and then argue that the distribution
in any rectangle is balanced (as done in [MNT93], for example). But H is not a universal family; for
example, when m = 1, h € H is not uniform over GF(q) because it can output only 2 values in GF(q).
However, as m grows large, we will see that H behaves almost like a universal family. This prompts the
following definition.

Definition: Let H = {h : Z — O} be a family of hash functions. For 0 < § < 1, we say that H is
0-almost universal on I, if

(A) Forany z € Z and a € O,

1 1
hlzgi[h(m) =a) — 9] < @(5/3)

(B) For z # y, we call (z,y) a good pair if for all a,b € O,
1
P = =b < —=(1
PLH) = AM) =] < 21+ 5/3),
and a bad pair otherwise. Then, for each fixed z € Z, Pryez[(z,y) is bad | y # z] < §/2.

Note: When 6 = 0, we obtain the standard universal family of hash functions. In our applications, ¢
will be exponentially small in |Z].

The following lemma, which generalizes the well-known “hash-mixing lemma” [MNT93], shows that
rectangles corresponding to almost universal families of hash functions are “balanced”. It will be proved
in the next section.

12

Lemma 12: Let H = {h : Z — O} be a é-almost universal family of hash functions. Let A C Z,
GCH,and BCO. If p=|B|/|0|, then

|H|
G11Al

Pr_ [h(z) € B —p‘ < \/ p(1 —p)(1+26|Z]).

T€AREG

We now show that the family of hash functions corresponding to the inner-product-like functions
considered above is an almost universal hash family for appropriately large sets. Its proof depends
upon the following lemma that estimates the number of {—1,1} solutions to a type of modular linear
equation:

Lemma 13: For any integer n, u € (GF(q)*)", c € GF(q),

1
P cz=c (m - -
ze{ilr’l}n[u z =c (mod q)] p

< (1 - 3) cos™(m/q).

Proof: Let w = ¢*™/% denote the complex ¢* root of unity. The number S of solutions z € {—-1,1}"
to the equation u - z = ¢ (mod q) is ezactly given by the formula (e.g., see [Gou72|)

Z wCs H (w—ujs_l_wu]'S):%_l_l Z w s H (w45 4 W),

©sef00-11 jelm Tselig-1 jelm)

Let |-| denote the magnitude of a complex number. Then,

S 1
2n q

Z wCs H (w—ujs +ij5)

1
. On
a2 s€[l,q—1] j€lln]

IN

w s H (wfujs +ij5)

1 1
o 1—- n}au(1
q 56[qd—] je[l,n]

For any s,

wes H (w—Ujs+ijs)
Jjell,n]

=™ J] lo ™ +w®®|= J] 2cos(2ujsm/q) < (2cos(r/q))".
j€[tn] JE[tn]

The last inequality above holds because ¢ is odd. The lemma follows by substituting this bound in
Line (2). O

Lemma 14: Let m be an integer and ¢ an odd prime. Fix any u € (GF(q)*)™, v,w € GF(q¢)™
and ¢ € GF(q). Define the family of hash functions H as follows: for each h € H, associate a unique
vector in {—1,1}™ (also referred to as h) and define h(z) = Y, ui(h; — v;)(z; — w;) + cmod ¢, for
z € {—1,1}™. Then for large enough m, there is a set I' C {—1,1}™, of size at least 2™(1 — ¢™/'%) such
that H is A2“"-almost universal on T', where A\ = cos(m/q) and e = 1/80.

13

Proof: Let I' denote the set of inputs z € {—1,1}™ such that z; # w; for at least m/4 coordinates.
Observe that by Chernoff’s bound, |T'| > 2™(1 — e=™/16), as desired. (If some of the w;’s do not belong
to {—1,1}, then the size could be much larger. For example, if none of the w;’s belong to {—1,1} then
in fact I' = {-1,1}™.)

To prove Property (A) of the definition of an almost universal family, fix an z € T and let 2’ € GF(¢q)™
be defined by z = u;(z; —w;) for all i. Now h(z) can be expressed as h-z'+ ¢ mod ¢, where ¢’ € GF(q)
is independent of h. Moreover, at least m/4 of the z}’s are non-zero. Therefore, by Lemma 13, for any
a € GF(g),

1
S e P . m/4 2em
2 [h(z) = g .| = (1 —1/g)A™" < A™/3,

proving Property (A) for H.

To show Property (B), fix any z € T" and a set of m/4 coordinates K where z; # w;, for i € K. Now
consider the set I';, C I such that for each y € I'y, amongst the coordinates in K, y; = z; in at least
ym/4 places and y; = —z; in at least ym/4 places, where vy = 1/9. We will show shortly that (z,y) is
a good pair for each y € I';. Assuming this to be true, the number of bad pairs can be estimated using
Chernoff’s bound. We have

P T < < 9o—(1-27)’m/16 ~ y2em
Prlygleloyls Pr W@l [o7y]<2e < A2,

since A > 1/2, when ¢q > 3.

Fix any y € T'y. Our goal is to show that (z,y) is a good pair. Let a,b € GF(q) and consider the
h’s such that h(z) = a and h(y) = b. Let I (respectively, J) be a set of ym/4 coordinates in K where
z and y agree (respectively, disagree). Let z’ be defined as before. Similarly, let y' € GF(q)™ be such
that y; = u;(y; —w;) for all i. Again, h(z) = h-2z' + ¢ mod ¢ and h(y) = h-y' + d’ mod ¢, where ¢ and
d' are independent of h. Fixing some choice of h’s, where k ¢ I U J, we have

Zhixg -I-Zhjzvg- = a—(d+ Z hixzy) (mod q), (3)

el JjE€T kgIuJ
dohiyi+d hiyy = a—(d+ Y hyp) (mod g), (4)
i€l Jj€g kEIUJ

Set a’ and b’ to be the expressions in the right hand sides of Equation (3) and Equation (4) respectively.
Subtract Equation (4) from Equation (3). Since y; = z; for < € I, and y; = —x; for j € J, we obtain

Z 2hjz; =a — b (mod q) (5)
JjE€J

Applying Lemma 13 with n = ym/4, the number of solutions (k;);cs to this equation is bounded by
(1/q) - 20™/4(1 + (¢ — 1)A\?™/%). For each such solution, we substitute in Equation (3) to get

Z hix, =a' — (Z hjz7) (mod g).

i€l jeJ

Since x # 0 for i € I, by Lemma 13, the above equation has at most (1/q) - 27™/4(1 + (¢ — 1)A\™/4)
solutions (h;);cr. Thus,

Pr[h(@) = anhly) =8 < (1/g)"- (1 + (¢ - DA < (1/g)7 - (14 X/3),

14

proving that (z,¥) is a good pair. O

Using Lemma, 12 and Lemma 14, we argue below that each sufficiently large rectangle is balanced.

Lemma 15: Let m be an integer and ¢ an odd prime. Fix any v € (GF(q)*)™, v,w € GF(q)™ and
c € GF(q). Let £,I1 C {—1,1}™ and let R denote ¥ x II. If S denotes the set of assignments (o, 7) € R
such that >, ui(0; — vi)(m —w;) + ¢=0 (mod g), then for large enough m,

[RN S| < (1/q) |R| +227m2°™, (6)
where A = cos(m/q) and € = 1/80.

Proof: If |R| < 2A“"22™ the lemma holds trivially. Therefore, we can assume that |R| > 2\™22™
implying that || > 2A“"2™ and |II| > 2A“"2™. Associate ¥ with a family of hash functions H as
described in the statement of Lemma 14. By Lemma 14, H is A2™-almost universal on some set T' of
size at least 2 (1 — e™/16). Let I’ denote the set IINT so that [II'| > (2A™ — ¢~/16)2m > \emgm,
since A > 1/2.

Applying Lemma 12, with H = {-1,1}"*, G =%, Z = A=1I' and O = GF(q), we obtain

o Prglem) €811 <\t - 1/ 4 3)

2m

< JE (1) (areemam)
|23] [T
1
A€m2m
|2 1]
Therefore,
1
IRNS| < [S||[I\IT'| + |3 |IT'| ((l/q) + xem2m W)
< e ™192%™ 4 (1/q) [R| + X2 /|2 TV
< (/@) [R] + (7m0 4 x7m)2%m
< (1/g)| Rl +2xm2™,
which proves Equation (6) and hence the lemma. O

Applying Proposition 3 part 2, Lemma 10, Lemma 15, and using arguments similar to Theorem 1,
we obtain

Theorem 16: Any randomized read-k-times branching program for HSP’;‘H(X) with 2-sided error
(1/3)-2-(2¢=1) must have size at least exp {Q (nl/k+12_2kk_4)} and for HSP’;“(X) with 2-sided error
(1/3) - 2-(2¢=D* must have size at least exp {Q (nl/k+12_2kk_3) }

15

5. Almost Universal Family of Hash Functions

This section is devoted to the proof of Lemma 12.

Proof (of Lemma 12): Assume that p < 1/2, because otherwise we can prove the lemma with B in
place of B. Consider the matrix M whose columns are indexed by hash functions from H and rows by

elements from Z. Define
| 1 ifh(z)eB
Mazn = { 0 otherwise

Using the Cauchy-Schwartz inequality,

B Heg[h(x) € B]— p‘ = |EnegEgca[Mzn —]|
< \/Bhcg{BacalMy — 0]}
< g i Bacal Mo — pl)? (7)
S |g| heH \BzcA|Myh — P

We estimate the expression in the right hand side as follows.

Enern{Esca[My, — p]}?
= Epen{(EzealMzn — p])(Eyea[My — p])}
= EgeayeaBren[MopMyp — p(Myp + M) + p] (8)

Let us bound each term in the above expression. First, by Property (A) in the definition of H, we have
Epen[M,) > p(1 —6/3), for z = x,y. Therefore

EwEA,yEAEhEH[Mx,h + My,h] > 2p(1 - 5/3)'

Next, for z,y € A, we bound Epey[My M,] by considering the two cases:
Case 1: Either z = y or (z,y) is a bad pair. For each such pair, by Property (A), we have
Enen[MzpMyp] < Eper[Mzp] < p(1+6/3).
Case 2: (z,y) is a good pair. In this case, by definition
Bner[MonMyp] < p*(1 +6/3).

Let U denote the number of pairs considered in Case 1 above. By Property (B), U < |A| + 6 |Z]| |A| /2.
Therefore, we can combine the two cases to obtain

IA

p(1+6/3)-U/ A +p*(1+6/3) - (1 - U/ A
p(1—p)(1+6/3)-U/|A]” +p*(1 +6/3)
< p(1—p)(1+6|Z))/A) +p°(1+6/3)

EzeayeaEnen [Mg n My p)

16

The last inequality is implied by the following:
(146/3)-U/|AI<(1+6/3)1+6|Z1/2)=1+6(1/3+|Z|/2+6|Z|/6) <1+6|Z|.
Substituting these bounds in Line 8, we obtain
Ener{BrealMop —pl}* < p(1—p)A+6[Z))/ Al +p"(1+6/3) — 2p"(1 = 6/3) +p
= p(1—p)(L+8|Z))/ Al + 9?6
< p(1=p)A+6|Z])/[A+p(1 = p)é|Z]/|A]
(Because p < 1/2 and |A| < |Z])
= p(1—p)(1+26|Z])/ Al

Finally, from Equation (7), we conclude

|H|
G114l

1—p)(1+26|Z)).
P p(1 = p)(1+2 7))

Pr wm€m—43¢

6. Discussion

Let BP; (respectively, NBP,, BPBP;) denote the class of functions computable by polynomial sized
read-k-times (respectively, non-deterministic, randomized read-k-times with 2-sided error ¢) branching
programs. We have shown that for all ¥ > 0, BP,1\NBP; # ¢ via the predicates CHSP'; and HSP’;.
We have also shown via the predicate HSP’; that for some fixed constant e, BP,1\BPBP; # ¢.
Observe that —CHSP’;"’1 can be easily computed by a non-deterministic read-once branching program

that “guesses” a d and verifies that the polynomial H; does not evaluate to 0 modulo ¢g. Thus, we also
obtain the relation NBP,\BPBP; # ¢.

It would be interesting to improve the error bounds of the randomized read-k-times branching pro-
grams computing HSP’;+1 or CHSP’;H. This is not trivial because many of the probability amplification
techniques standardly used for many other computing models do not translate for randomized read-
k-times branching programs. The value of €, that we have obtained for each predicate is limited by
the density of the satisfying assignments because we are essentially using Yao’s technique to bound the
size of a deterministic branching program that is allowed to err on ¢ fraction of the inputs. Possible
approaches for improving the value of €5 include improving the bound on the density of the satisfying
assignments or considering non-uniform probability distributions that are biased towards the satisfying
assignments.

References
[BCL*94] J.R. Burch, E.M. Clarke, D.E. Long, K.L. MacMillan, and D.L. Dill. Symbolic model
checking for sequential circuit verification. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 13(4):401-424, April 1994.

17

[Bor93]

[BRS93]

[Bry86]

[BS90]

[BSSW93]

[GM94]

[GouT2]

[KN97]

[MNT93]

[Nec66]
[Oko93]

[Oko97]

[Pon95]

[Pon97]

[Raz91]

[Sau97al

[Sau97b]

Borodin. Time-space tradeoffs (getting closer to the barrier?). In ISAAC: jth International
Symposium on Algorithms and Computation, pages 209-220, 1993.

Borodin, Razborov, and Smolensky. On lower bounds for read-k-times branching programs.
Computational Complexity, 3:1-18, 1993.

R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Transac-
tions on Computers, C-35(8):677-691, August 1986.

Boppana and Sipser. The complexity of finite functions. In Handbook of Theoretical Com-
puter Science, Ed. Jan van Leeuwen (Volume A (= “1”). Elsevier and MIT Press, 1990.

B. Bollig, M. Sauerhoff, D. Sieling, and 1. Wegener. Read k times ordered binary decision
diagrams — efficient algorithms in the presence of null chains. Technical Report Forschungs-
bericht Nr. 474, Universitat Dortmund, 1993.

J. Gergov and C. Meinel. Efficient analysis and manipulation of OBDDs can be extended to
FBDDs. IEEFE Transactions on Computers, 43:1197-1209, 1994. Techreport 92-10.

H. W. Gould. Combinatorial identities; A Standardized Set of Tables Listing 500 Binomial
Coefficient Summations. Morgantown, W. Va., 1972.

Eyal Kushilevitz and Noam Nisan. Communication complezity. Cambridge University Press,
Cambridge [England] ; New York, 1997.

Y. Mansour, N. Nisan, and P. Tiwari. The computational complexity of universal hashing.
Theoretical Computer Science, 107:121-133, 1993.

E. Necéiporuk. On a Boolean function. Soviet Math. Doklady, 7:999-1000, 1966.

E. Okol’nishnikova. On lower bounds for branching programs. Siberian Advances in Mathe-
matics, 3(1):152-166, 1993.

E. Okol’nishnikova. On the hierarchy of nondeterministic branching k-programs. In Fun-
damentals of computation theory : 11th International Symposium, volume 1102 of Lecture
Notes in Computer Science, pages 376-387, Krakow, Poland, 1997. Springer Verlag.

Stephen Ponzio. Restricted Branching Programs and Hardware Verification. PhD thesis,
Massachusetts Institute of Technology, 1995.

Stephen Ponzio. Towards a new lower bound for read-twice branching programs. Private
Communication, 1997.

A. A. Razborov. Lower bounds for deterministic and nondeterministic branching programs.
Lecture Notes in Computer Science, 529:47-61, 1991.

M. Sauerhoff. A lower bound for randomized read-k-times branching programs. Technical
Report TR-97-019, Electronic Colloquium on Computational Complexity, 1997.

M. Sauerhoff. On nondeterminism versus randomness for read-once branching programs.
Technical Report TR-97-030, Electronic Colloquium on Computational Complexity, 1997.

18

[$S93]

[SW95]

[Weg87]

Janos Simon and Mario Szegedy. A new lower bound theorem for read only once branching
programs and its applications. In Advances in COmputational Complexity (J. Cai, editor),
volume 13 of DIMACS Series in Discrete Mathematics, pages 183-193. AMS, 1993.

Detlef Sieling and Ingo Wegener. Graph driven BDDs—a new data structure for Boolean
functions. Theoretical Computer Science, 141(1-2):283-310, 17 April 1995.

Ingo Wegener. The Complezity of Boolean Functions. B.G. Teubner, Stuttgart, 1 edition,
1987.

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc

19 ftp://ftp.eccc.uni-trier.de/pub/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

