Electronic Colloquium on Computational Complexity, Report No. 4 (1998)

On the Power of Randomized Ordered Branching

Programs®

Farid Ablayev f Marek Karpinski

Abstract

We introduce a model of a randomized branching program in a natural way similar
to the definition of a randomized circuit. We exhibit an explicit boolean function
fn 14{0,1}™ — {0, 1} for which we prove that:

1) f, can be computed by a polynomial size randomized ordered read-once branch-
ing program with a small one-sided error.

2) fn cannot be computed in polynomial size by any nondeterministic ordered
read-k-times branching program for any k& = o(n/logn). The required nondeter-

ministic size is 2U7/%),

1 Preliminaries

Various models of branching programs have recently been found very useful in the field
of digital design and hardware verification. They were introduced in [L.59] and [M76],
and studied extensively during the last decade (see, e.g., [W87] and [W94]) under various
computational efficiency aspects. For the known lower bounds results we refer also to
[R91], and [BRS93].

Developments in the field of digital design and verification have led to the restricted
forms of branching programs. A most common model used for verifying circuits is an

*A preliminary version of this paper appeared in [AK96]
TDept. of Computer Science University of Bonn. Email: ablayev@cs.uni-bonn.de. Visiting from

University of Kazan. Research partially supported by the Volkswagen-Stiftung and Russia Fund for Basic
Research 96-01-01962

IDept. of Computer Science University of Bonn, and International Computer Science Institute, Berke-
ley, California. Email: marek@cs.uni-bonn.de. Research partially supported by DFG Grant KA 673/4-1,
by the ESPRIT BR Grants 7097, and EC-US 030, by the Volkswagen-Stiftung, and by the Max-Planck

Research Prize.

ISSN 1433-8092

ordered binary decision diagram (OBDD), also called an ordered read-once branching pro-
gram (see [B92], [W94]). It has turned out recently that many important functions cannot
be computed by read-once branching programs in polynomial size (see [B92], [SS93], and
[P95]).

In this paper we define a notion of a randomized branching program in a natural way
similar to the definition of a randomized circuit. Our goal is to show that randomized
computation with a small error probability for ordered read-once polynomial branching
programs can be (exponentially) more efficient than the deterministic one. We exhibit
an explicit boolean function f, which is easy for ordered read-once randomized branching
programs, but it is hard for ordered read-k-times nondeterminstic branching programs.
Note that for read-poly-times randomized branching programs, the error probability can
be made less than 27" by repeating computations and taking majority of the results. This
means the resulting branching programs can be made (nonuniformly) deterministic (cf.
[A78], [AB84] and [S97]).

The results presented in this paper are generalization of the results presented in [AK96]
for the case of boolean functions.

A deterministic branching program P for computing a function ¢ : {0,1}" — {0,1}
is a directed acyclic multi-graph with a distinguished source node s and a distinguished
(accepting) sink node ¢. The outdegree of each nonsink node is exactly 2, and the two
outgoing edges are labeled by x; = 0 and z; = 1 for a variable x; associated with this node.
Call such a node an z;-node. The label “z; = §” indicates that only inputs satisfying
x; = 6 may follow this edge in the computation. The branching program P computes a
function ¢ in the obvious way: for each o € {0,1}" we let g(o) = 1 iff there is a directed
s-t path starting in the source s and leading to the accepting node ¢ such that all labels
x; = o; along this path are consistent with o = 0y,04,...,0,.

A branching program becomes nondeterministic if we allow ”guessing nodes” that is
nodes with two outgoing edges being unlabeled. Unlabeled edges allow all inputs to proceed
to the next node. A nondeterministic branching program P computes a function g, in the
obvious way; that is, g(o) = 1 iff there exists (at least one) computation over o starting in
the source node s and leading to the accepting node t.

Define a randomized branching program as a branching program which has in addition
to its standard (deterministic) inputs especially designed random (“coin-toss”) input nodes.
When these random inputs are chosen from the uniform distribution, the output of the
branching program is a random variable.

We say that a randomized branching program (a, b)-computes a function g if it outputs
1 with the probability at most a for an input = such that g(z) = 0, and it outputs 1 with
the probability at least b for an input z such that g(z) = 1. The randomized branching
program computes the function g with a one-sided e-error if it (¢, 1)-computes the function
g.

For a branching program P, we define size of P size(P) (complexily of P) as the number
of its internal nodes of P.

For a randomized branching program P, size(P) is the sum of numbers of its internal
and random nodes.

The size of a nondeterminstic branching program is the number of its internal nodes
(withoul “gquessing” nodes).

A read-once branching program is a branching program in which no variable appears
more than once on any computation path. An ordered read-once branching program is a
read-once branching program which respects a fixed ordering 7 of variables, i.e., if an edge
leads from an x;-node to an z;-node, the condition 7(¢) < 7(7) has to be fulfilled.

A read-k-times branching program is a branching program with the property that no
input variable x; appears more than k& times on any consistent computation path in the
program (a path is consistent if for all ¢ the labels “z; = 0” and “z; = 1”7 do not both
appear on the path).

A syntactic read-k-ltimes branching program [BRS93] is a branching program with the
property that no input variable z; appears more than k times on any path (consistent or
not) in the program. (Non-syntactic read-k-times devices can be more powerful than the
syntactic ones [J94].)

An ordered read-k-limes branching program is a read-k-times branching program which
is partitioned into k layers such that each layer is an ordered read-once respecting the
same ordering 7. In [BSSW94] it is proved that deterministic ordered read-(k + 1)-times
branching programs are more powerful than deterministic ordered read-k-times branching
programs. Namely the classes of functions computed by deterministic polynomial size
ordered read-k-times branching programs form a proper hierarchy for k& = o(n'/?/log” n).

We will use a slightly more general notion of a non-syntactic read-k-times branching
program in this paper. We call a branching program read?-k-times if it has the following
property: no input variable x; appears more than k£ times on any consistent accepting
computation s—t path in the program. We call a branching program read®-k-times if
it has the following property: no input variable z; appears more than k times on any
consistent rejecting computation path in the program. Clearly, a branching program is
read-k-times if it is read?-k-times and read”-k-times .

Note that one can think of each internal node of a branching program as a state of the
computation. This observation is important for the lower bound proofs in our paper. Note
also that this point of view is essential for investigating the amount of space necessary
for computing certain functions. Restricted models of branching programs are useful for
investigating the time-space tradeoffs. We can think of read-k-time (k > 1) restrictions
as a restriction on time, say time < kn (see, e.g., survey [B93]). This approach draws a
time-space tradeoff point of view to our results. Recent results on the general lower bounds
on randomized space and time can be found in [A94] and [FK95].

2 The Functions

We introduce now the following two boolean functions.

First, we define the boolean function f, of n = 4[variables as follows. For a sequence
o €{0,1}* we call the odd bits “type” bits, and the even bits “value” bits. We say that
even bit 0,1 € {2,4,...,4l}, has “type” 0 (1) if corresponding odd bit o;_; is 0 (1). For

a sequence o € {0,1}*, denote by ¢¥ (¢') a subsequence of o that consists of all even bits
of type 0 (1).

We define the boolean function f, : {0,1}" — {0,1} as follows: f,(o) =1 iff 6° = o'

The function PERM [KMWSS|, [J89] is defined on n X n matrix X = (z4)i<ij<n
of boolean variables. For an input o € {0,1}*" PERM(c) = 1 if and only if ¢ is a
permutation matrix, i.e., if each row and each column of o contains exactly one 1 entry.
It is known (see [KMWSS], [J89]) that nondeterministic read-once branching programs for
PFERM have exponential size.

3 Results

In Theorem 1 below we present a randomized read-once branching program of polynomial
size for the function f,,. Our design uses a variant of a fingerprint technique (cf., e.g., [F79],

[KR87] and [GKPR96]).

Theorem 1 The function f, can be compuled with one sided ¢(n)-error by a randomized

read-once ordered branching program of size

0 (%")

Proof: We design a randomized read-once ordered branching program P for f, that
works in two phases as follows.

Phase 1. (randomized). Choose d(l) to be some function in O(l), s.t. d(l) > 2. P
randomly selects a prime number p from the set Qguy = {p1,p2,...,paq)} of the first d(1)
prime numbers.

P selects a prime number p in the following way. P uses t = [logd(l)] random input
variables y1,y2,...,y: where y; € {0,1} and Prob(y; = 1) = Prob(y; = 0) = 1/2. The
branching program P reads its random inputs in the fix order yi,y2,...,y:. A sequence
Y = y1yz2...ys is interpreted as the binary notation of a number N(y). P selects i-th prime
number p; € Qqqy iff N(y) =1 mod d(I).

Phase 2. (deterministic). Tet o € {0,1}* be an input sequence. The sequences ¢* and
o' are interpreted as the binary notations of numbers N(c¢°) and N(c') respectively. P

reads an input sequence x = o in the order xy, x4, ..., xy4.
Now P does the following.
a) it verifies if 0] = |o'| =,

b) it computes modulo p the numbers N(6%) and N(c¢') (¢ = N(6”) mod p and b =
N(o') mod p) in the following way. At the beginning of the computation, P sets a := 0
and b := 0. Next, if P reads the j-th symbol o; € {0,1} of the sequence 0° = ay,09,...
(respectively j-th input symbol ¢} € {0,1} of the sequence o' = o},00,...) then a :=
a+ 02’ mod p (respectively b :=b + 0’27 mod p).

Let o and 3 be the first parts of length ¢ and k, respectively, of the subsequences o
and o' that were tested along the path from the source to the internal node (state) v.

For p € Qqu), denote by S, a deterministic subprogram of P that carries out the
deterministic part of the computations of the phase 2 with a prime p. For the realization
of the phase 2 it is sufficient to store in a state v four numbers: ¢,k € {0,1,... 1},
a = N(a)(mod p), b= N(3)(mod p), and the type bit ¢ € {0,1}.

If |6° # |o'| then P outputs the correct answer with probability 1.

Consider now the case |0 = |o!].

If N(¢%) = N(o')(mod p) then P outputs 1 else P outputs 0.

From the description of P it follows that if N(¢") = N(o') then P outputs the cor-
rect answer with probability 1. If N(¢%) # N(o!) then it can happen that N(¢%) =
N(c')(mod p) for some p € Qq). In this case P makes an error.

For z = ¢ we have |N(¢") — N(c")| < 2! < pipy---pi where p1,py,...,p are the first
[prime numbers. This means that in the case when N (o) # N(o') the probability ¢(n)
of an error of P on the input = ¢ is no more than 2//d(/) (no more than [/d(l) if ¢ is a
power of 2).

The size of 9, is at most

4l .
> 2n+1)%p"
=1

The size of P is at most

201 _ 1 4+ Z size(Sp).
PEQa()

The value of the i-th prime is O(ilogi). Therefore, the above upper bounds for the
size(Sy), and size(P) yield

n

size(P) = O(n’d*(1)log® d(I)) = O (;EZ) log? ~ @) .

<

[
Using the proof technique of Theorem 1 the following result was also proved in [S97].

Theorem 2 ([S97]) The function PERM can be computed with a one sided e(n)-error by

randomized read-once ordered branching program of size

@) (e(n)_QnS log” n) .

[

Below we prove an exponential lower bound for the complexity of computing the func-
tion f, by nondeterministic ordered read-k-times branching programs. We use a proof
method based on a two-way communication game (cf., [Y79], [KN97]). We present this

5

method in the lemma below for a more general notion of ordering variables than the tra-
ditional one.

Note that the methods based on a communication game were also used in [K91], and
later in [BSSW94]| for proving lower bounds in a context of branching programs.

Definition 1 We call a read-once branching program m-weak-ordered if its respects a par-
tition w of the variables into two parts X, and Xy such that if an edge leads from an x;-node
to an xz;-node, where v; € Xy and x; € X,,, then the condilion t < m has to be fulfilled.
We call a read-k-times branching program read-k-times m-weak-ordered if it s parti-
tioned into k layers such that each layer is m-weak-ordered read-once respecting the same

partition ™ of variables in each layer.

A m-weak-ordering of variables of a branching program P means that if some input
x; € Xy is tested by P, then along the remaining part of the computation path no variables
from X, can be tested.

We call a branching program P a read-k-limes weak-ordered if it is read-k-times m-
weak-ordered for some ordered partition m of the set of variables of P into two sels.

From the definition it follows that if a read-k-times branching program is ordered then
it 1s weak-ordered.

Let g : {0,1}" — {0, 1} be a boolean function. Let m be a partition of the set of variables
X of g into two parts X; and X,;. Consider a k-round nondeterminstic communication
computation. We use a standard model of a k-round nondeterminstic communication
computation for boolean functions, cf., e.g., [KN97]. For a valuation o of z, two players
A and B receive respectively, parts of o: 04 € X; and o € X,. A k-round protocol
specifies for each input o, a sequence of k binary strings (messages) my, my,..., my to
be sent alternatively between the players such that at the end one of the players accepts
(outputs 1) or rejects (outputs 0) an input o. Call m = mym,...my a full message. The
player A is always the first one to send a message. We say that a k-round nondeterminstic
communication protocol ¢ computes a function g with g(o) = 1 iff there exists an accepting
computation of ¢ on an input o. The complexity of a k-round protocol is max|m| (here
|m| is the length of m) over all inputs o € {0,1}". Denote by NCy r(g) the complexity of
the best k-round nondeterministic communication protocol that computes g.

Define the accepting (rejecting) complexity of a k-round protocol as |m| (m is a full
message) maximized over all inputs o € g7!(1) (¢ € g7'(0)). Denote by NC,éTr(g) the
accepting complexity of the best k-round nondeterministic communication protocol that
computes g and by Nle,r (g) the rejecting complexity of the best k-round nondeterministic
communication protocol that computes g.

Lemma 1 1. Let P be a nondeterministic read-k-times m-weak-ordered branching program
that computes a function g : {0,1}* — {0,1}. Then

size(P) > 9(NCakor,x(9)=1)/(2k=1)

6

2. Let P be a nondeterministic read”-k-limes m-weak-ordered branching program thal

computes a function g : {0,1}" — {0,1}. Then

size(P) > o(NC3_y (9)=1)/(2k=1)

3. Let P be a nondelerministic read®-k-times m-weak-ordered branching program that

computes a function g : {0,1}" — {0,1}. Then

size(P) > o(NCg_y (9)=1)/(2k=1)

Proof: Case 1. Consider the following communication game with two players A and
B for computing a function g. Players A and B have a copy of P. In order to compute
g on the set of inputs {0,1}", A and B communicate with each other in (2k — 1) rounds
by sending messages in each round according to the following protocol ¢. Player A is the
first to send a message. Let o € {0,1}" be a valuation of z. For each i, 1 <1 < k — 1,
the communication protocol ¢ on obtaining o, simulates computation on the i-th layer of
P by two communication rounds 2¢ — 1 and 2:. The output is produced by the player B.

First round: Player A starts simulation of P on his part o4 of an input o from the
source of P. Let vy be a node which is reachable by P on o4 from the source during this
simulation. Player A sends a node v; (binary code of vy) to B.

Second round: Player B on obtaining message v; from A starts its simulation of P on
his part o of an input ¢ from node v;. Let vy, be a node which is reachable by P on op
from vy during this simulation. Player B sends a node vy to A.

Last round (round 2k — 1): Player A on obtaining message vq_o from B starts its
computation from a node vgz_o on his part o4 of an input o. Let vgz_; be a node which
is reachable by P on o4 from a node vg;_y during this simulation. Player A sends a node
vor—1 to B. Player B on obtaining wvq_; starts its part of simulation of P from wve;_; on
op and then outputs the result of the computation.

The full message that A and B have exchanged during the computation is m =
V1Ug ... Ugp_.

Denote by M; the set of all internal nodes which can be sent on the i-th round by player
Ato Bifiisodd (by player B to A if ¢ is even) during the computation on {0, 1}". Denote
d; = |M;|. Using this notation, it follows that the number of all full messages that can be
exchanged over the inputs from {0,1}" according to protocol ¢ is no more than [[#7' d;.

The number of full messages used by ¢ must be greater than equal to 2N¢2#-1+(9)=1
and therefore,

2k—1
H d; > gNCak—1,x(9)-1

=1

The lower bound of our lemma follows from this inequality.

For d = max{d; : 7 € {1,2,...,2k — 1}} we have

2k—1
dzk—l > H d¢ > 2N02k—1,7r(9)_1

=1
and hence

d > 9(NCak—1,x(9)=1)/(2k=1)

Proofs of cases 2 and 3 of Lemma 1 are similar to the case 1. The only difference is
that instead of the set {0,1}", one uses the set g7'(1) of “one” inputs of ¢ (case 2), and
the set g='(0) of “zero” inputs of g (case 3), respectively. I

Theorem 3 Any nondeterministic ordered read®-k-times branching program that com-

putes function f, has size at least 20/4=1/(k=1),

Proof: Let P be an ordered read-k-times branching program (with an ordering 7 of
variables) which computes the function f,. For an ordering 7 denote by 70 = {iy,1s,...,4;}
a subsequence of 7 that consists of the first [even numbers of 7. Respectively, denote by
™ = {1,792, .., 51} a subsequence of 7 that consists of the last [even numbers of .

Consider the partition 7 of variables X of f, into two parts X; and X,, such that X,
contains all variables with indexes from 7%, and X, contains all variables with indexes from
7. Clearly P is read-k-times and m-weak-ordered.

For the function f, we have

NCA(fa) 2 1 =n/4 1)

s

for t > 1. To prove the inequality (1) we consider an arbitrary ¢-round nondeterministic
communication protocol ¢ that computes the function f, and respects the partition = of
the inputs.

Call a sequence o € f'(1) 7-hard if all its “value” bits oy, i € 7%, are of “type” 0 and
all its “value” bits o;, 7 € 7', are of “type” 1. Denote

X" ={o€{0,1}": 5 is 7-hard}.

We call X7 a 7-hard set of inputs.

Let am(o) be a set of messages of accepting computations of protocol ¢ on an input
o € X7. Then using “crossing-sequence” argument we have that for an arbitrary distinct
pair of inputs 0,0’ € X7, it holds that am(c)Nam(c’) = 0. Clearly | X~
that the protocol ¢ should use at least 2" different full messages during the computation
over the inputs from a 7-hard set X7. From the definition of accepting communication

— 2!, This means

complexity we have that the communication complexity of the protocol ¢ is at least n.
Inequality (1) will follow by considering the best possible protocol.
From the lower bound for thf‘,r(fn) above, and Lemma 1 we have

size(P) > 9(I=1)/(2k=1) _ o(n/4=1)/(2k=1)

We formulate now following Corollaries.

Corollary 1 f, cannot be computed by nondeterministic ordered read®-k-times branching

programs in polynomial size for k = o(n/logn).

Corollary 2 f, cannot be compuled by nondeterministic ordered read-k-times branching

programs in polynomial size for k = o(n/logn).

Note that from Theorem 1 it follows that the complement of function f, has a poly-
nomial nondeterministic ordered read-once branching program. Below we give a more
straightforward proof of this fact.

Property 1 The complement = f, can be computed by nondeterminstic ordered read-once

branching programs of polynomial size.

Proof: The function —f, is OR of n functions Gi(zy,...,z4), 1 < 1 < n, where
Gi(z1,...,z4) = 1 ifand only if 1) |6°] # |o'| or 2) if |6°| = |o'| then i-th even bit of type
0 is not equal to the i-th even bit of type 1. Clearly, G;(x1,. .., z4) has a polynomial size
read once branching program for the ordering 7 = {zy,29,...,24}. I

4 Concluding Remarks

It is known that the complexity class P—0BDD of boolean functions computed by determinis-
tic ordered read-once branching programs of polynomial size is incomparable with AC® (class
of boolean functions computed by polynomial size unbounded fanin and constant depth
boolean circuits): PARITY which is not in AC® has linear size ordered read-once branch-
ing programs (cf. [KN97]), and PERM function is hard for ordered read-once branching
programs but it is in AC® (see the property below). We prove now that the complexity class
BPP—O0BDD of functions computed by randomized ordered read-once branching programs of
polynomial size is incomparable with the complexity class AC®. This sheds some new light
on the relationship between randomized, nondeterministic and deterministic classes asked

in [JRSWO7].

Property 2 PERM is in AC®, and f, is notl in AC°.

Proof. The function PERM can be represented formally as follows.

PERM(X) = ROWS(X)ANCOLMNS(X),

where ROW S(X) = 1 if and only if each row of matrix X contains exactly one entrance
of 1. We have,
ROW(X) = ROW (X)) A ... N ROW,(X),

where ROW;(X) = 1 if and only if i-th row of matrix X contains exactly one 1.
ROW;(X) =K, V...V K,,

where K;j(X) = Zjy A ... A Zij—1 AN Zij A Zijg1 A ... Zin. This representation proves that
PERM € AC°.

To prove that f, ¢ AC° we show that PARITY is AC%reducible to f,. Set all even
bits of f, to 0. We get a subfunction of f, which is a symmetric function. Using now a
property that the value of this subfunction is 1 iff a half of remaining inputs are set to 1,
we can represent PARITY as OR of linearly many such boolean subfunctions. I

5 Open Problems and Further Research

We have displayed an explicit boolean function outside the class AC® which can be computed
by polynomial size randomized ordered read-once programs, and which requires for any
deterministic or nondeterministic ordered read-k-times branching program an exponential
size (for k = o(n/logn)).

It will be very interesting to develop new lower bound techniques for randomized branch-
ing programs in order to separate the classes of boolean functions computable efficiently
by randomized branching programs (with restricted number of testing variables) from the
class that remains hard for randomized programs. Another interesting issue is an exact
dependence of the sizes of the read-once branching programs on their respective error prob-
abilities.

Acknowledgements

We would like to thank Stephen Ponzio, Sasha Razborov, Roman Smolensky, and Thomas
Thierauf for interesting discussions on the subject of this paper.

10

References

[A94]

[AK96]

[ATS]

[ABS4]

F. ABLAYEV, Lower Bounds for Probabilistic Space Complexity: Communica-
tion-Automata Approach, Proc. LFCS '94, Lecture Notes in Computer Science,
Springer-Verlag, 813, (1994), pp. 1-7.

F. ABrLAYEV AND M. KARPINSKI, On the Power of Randomized Branching
Programs, in Proc. ICALP’96, Lecture Notes in Computer Science, Springer-
Verlag, 1099, (1996), 348-356; see also ECCC TR95-054, 1995. Available at

http://www.eccc.uni-trier.de/eccc/.

L. ADELMAN, Two Theorems on Random Polynomial Time, Proc. 19th IEEE
FOCS (1978), pp. 75-83.

M. Ajral AND M. BEN-OR, A Theorem on Randomized Constant Depth Cir-
cuits, Proc. 16th ACM STOC (1984), pp. 471-474.

[BSSW94] B. BOLLING, M. SAUERHOFF, D. SIELING AND I. WEGENER,

[BRS93]

[B93]

[B92]

[F79]

[FK95]

On the Power of Different Types of Restricted Branching Programs, ECCC,
TR94-025, 1994. Available at http://www.eccc.uni-trier.de/eccc/.

A. BORODIN, A. RAZBOROV AND R. SMOLENSKY, On Lower Bounds for Read-
k-Times Branching Programs, Computational Complexity, 3, (1993), pp. 1-18.

A. BoORODIN, Time-Space Tradeoffs (Getting Closer to the Barrier?), in Pro-
ceedings of the ISAAC’93, Lecture Notes in Computer Science, Springer-Verlag,
762, (1993), pp. 209-220.

R. BRYANT, Symbolic Boolean Manipulation with Ordered Binary Decision Di-
agrams, ACM Computing Surveys, 24, No. 3, (1992), pp. 293-318.

R. FREIVALDS, Fast Probabilistic Algorithms, in Proc. MFCS’79, Lecture Notes
in Computer Science, Springer-Verlag, 74, (1979), pp. 57-69.

R. FREIVALDS AND M. KARPINSKI, Lower Time Bounds for Randomized Com-
putation, Proc. ICALP’95, Lecture Notes in Computer Science, Springer-Verlag,

944, (1995), pp. 183-195.

[GKPR96] L. Gasieniec, M. Karpinskl, W. PLaNDOWSKI AND W. RYTTER, Ran-

[HR88]

domized Efficient Algorithms for Compressed Strings: The Finger-Print Ap-
proach, Proc. 7th Annual Symposium on Combinatorial Pattern Matching
(1996), pp.39-49.

B. HALSTENBERG AND R. REISCHUK, On Different Models of Communication,
Proc. 20th ACM STOC, (1988), pp. 162-172.

11

[J89]

[794]

S. JUKNA, On the Effect of Null-Chains on the Complexity of Contact Schemes,
Proc. FCT’89, Lecture Notes in Computer Science, Springer-Verlag, 380, pp.
246-256.

S. JUKNA, A Note on Read-k-Times Branching Programs, RATRO Theoretical
Informatics and Applications, 29, No 1 (1995), pp. 75-83.

[JRSWO7] S. JUKNA, A. RAzZBOROV, P. SAvICKY AND I. WEGENER, On P versus

[KRS7]

NP N co—NP for Decision Trees and Read-Once Branching Programs, ECCC,
TR97-023, 1997. Available at http://www.eccc.uni-trier.de/eccc/ .

R. KArp AND M. RABIN, Efficient Randomized Pattern-Matching Algorithm,
IBM Journal of Research and Development, 31, (1987), pp. 249-260.

[KMW88] M. KrRAUSE, C. MEINEL AND S. WAACK, Separating the Eraser Turing Ma-

[K91]

[KN97]

[L59)]

IM76]

[P95]

[R91]

597]

9593]

chine Classes L., NL., co— NL,, and P,, Proc. MFCS’88, Lecture Notes in
Computer Science, Springer-Verlag, 324, pp. 405-413.

M. KRAUSE, Lower Bounds for Depth-Restricted Branching Programs, Informa-
tion and Computation, 91, (1991), pp. 1-14.

E. KusHiLevITZ AND N. NisaN, Communication Complexity, Cambridge Uni-
versity Press, 1997.

C. LEE, Representation of Switching Circuits by Binary-Decision Programs, Bell
System Technical Journal, 38, (1959), pp. 985-999.

W. MASEK, A Fast Algorithm for the String Editing Problem and Decision
Graph Complexity, M.Sc. Thesis, Massachusetts Institute of Technology, Cam-
bridge, May 1976.

S. Ponzi0, A Lower Bound for Integer Multiplication with Read-Once Branching
Programs, Proc. 27th ACM STOC, (1995), pp. 130-139.

A. RazBORrRoV, Lower Bounds for Deterministic and Nondeterministic Branching
Programs, Proc. FCT’91, Lecture Notes in Computer Science, Springer-Verlag,
529, (1991), pp. 47-60.

M. SAUERHOFF, A Lower Bound for Randomized Read-k-Times Branching Pro-
grams, ECCC, TR97-019, 1997. Available at

http://www.eccc.uni-trier.de/eccc/.

J. SiMON AND M. SzZEGEDY, A New Lower Bound Theorem for Read-Only-Once
Branching Programs and its Applications, Advances in Computational Complex-

ity Theory, ed. Jin-Yi Cai, DIMACS Series, 13, AMS (1993), pp. 183-193.

12

[(W87] I. WEGENER, The Complexity of Boolean Functions, Wiley-Teubner Series in
Computer Science, 1987.

(W94] 1. WEGENER, Efficient Data Structures for Boolean Functions, Discrete Mathe-
matics, 136, (1994), pp. 347-372.

[YT79] A. YA0, Some Complexity Questions Related to Distributive Computing, Proc.
11th ACM STOC (1979), pp. 209-213.

13

ftp://ftp.eccc.uni-trier.de/publ/eccc

ECCC ISSN 1433-8092
http://www.eccc.uni-trier.de/eccc
ftpmail @ftp.eccc.uni-trier.de, subject "help eccc’

