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A new transference theorem and applications to
Ajtai’s connection factor

Jin-Yi Cai*

Abstract

We prove a new transference theorem in the geometry of numbers, giving optimal
bounds relating the successive minima of a lattice with the minimal length of generating
vectors of its dual. It generalizes the transference theorem due to Banaszczyk. We also
prove a stronger bound for the special class of lattices possessing n¢-unique shortest lattice
vectors. The theorems imply consequent improvement of the Ajtai connection factors in the
connection of average-case to worst-case complexity of the shortest lattice vector problem.
Our proofs are non-constructive, based on methods from harmonic analysis.

1 Introduction

A lattice in R™ is the set of all integral linear combinations of a fixed set of linearly independent
vectors over R. Such a generating set of vectors is called a basis of the lattice. Alternatively a
lattice can be defined as a discrete additive subgroup I' of R™. In particular, this implies that
for any discrete additive subgroup I' one can always find a basis in the above sense. The basis
of a lattice is not unique, and are related to each other by unimodular transformations. The
characterization and the complexity of finding a good basis that consists of short vectors is a
central problem in the study of geometry of numbers.

The rank or the dimension of a lattice L, denoted by dim L, is the dimension of the linear
subspace it spans. The length of the shortest non-zero lattice vector is denoted by Ai(L).
More generally, Minkowski’s successive minima A;(L) are defined as follows: for 1 <i < dim L,
Xi(L) = miny, . 4;er Mmaxi<j<; ||vj]|, where the sequence of vectors vi,...,v; € L ranges over
all 7 linearly independent lattice vectors. It is perhaps the first indication of the intricacies of
higher dimensional lattices that, except for dimensions up to 3, the shortest vectors represented
by the successive minima do not necessarily form a basis of the lattice [19]. Define g(L) to be
the minimum r such that a ball B(0;r) centered at 0 with radius r contains a set of lattice
vectors generating L. More generally, we say a sublattice L' C L is a saturated sublattice if
L' = L NTI, where II is the linear subspace of R"™ spanned by L’. Then we define g;(L) to
be the minimum 7 such that the sublattice generated by LN B(0;r) contains an i-dimensional
saturated sublattice L', where 1 < i < dim L. Clearly for d = dimL, g(L) = g4(L) and
ML) < gi(L), 1< i< d.
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The dual lattice L* of a lattice L of dimension n in R"™ is defined as those vectors u, such
that (u,v) € Z, for all v € L. It consists of all integral linear combinations of the dual basis
vectors b}, ..., by, where (bf,b;) = d;;. In particular det(L*) = 1/det(L), and L** = L. For a
lattice with dimension less than n, its dual is defined within its own linear span. There is a
long history in geometry of numbers to study relationships between various quantities such as
the successive minima associated with the primal and dual lattices, L and L*. Such theorems

are called transference theorems. Our main theorem in this paper is the following upper bound
9i(L) - Ap—it1(L*) < Cn, (1)

for some universal constant C, and for all 7, 1 < 4 < mn. This is an improvement of cur-
rently the best transference theorem of this type due to Banaszczyk [6], who showed that
Xi(L)An—it1(L*) < C'n, for some universal constant C’. The estimate for this latter prod-
uct has a long history: Mahler [25] proved that the upper bound (n!)? holds for all lattices.
This was improved by Cassels [10] to n!. The first polynomial upper bound was obtained by
Lagarias, Lenstra and Schnorr [21] where a bound of n2/6 was shown for all n > 7. The
Banaszczyk bound is optimal up to a constant, for Conway and Thompson (see [26]) showed
that there exists a self-dual lattice family {L,} with A\ (L,) = Q(v/n). Since g;(L) > X\;(L)
for all 4 and for all L, our bound (1) is also optimal up to a constant. For a number of other
related results see [5, 17, 6, 7].

We also prove a stronger bound for a special class of lattices where each lattice possesses
an nf-unique shortest vector. This class of lattices plays an important role in the recent break-
through by Ajtai [1] on the connection between the average-case and the worst-case complexity
of the shortest lattice vector problem, and the Ajtai-Dwork public-key cryptosystem [3]. The
transference theorems yield a consequent improvement of the Ajtai connection factors in [1].

The motivation for our investigation stems primarily from computational complexity. Re-
cently Ajtai [1] established the first explicit connection between, in a certain technical sense,
the worst-case and the average-case complexity of the problem of finding the shortest lattice
vector or approximating its length. Moreover, Ajtai [2] proved that it is NP-hard to find the
shortest lattice vector in Euclidean norm, as well as approximating the shortest vector length
up to a factor of 1 + 27%,6 The Ajtai connection [1] of worst-case to average-case complexity
for lattice problems has been improved by Cai and Nerurkar [8]. In a forthcoming paper [9],
Cai and Nerurkar also improve the NP-hardness result of Ajtai [2] to show that the problem
of approximating the shortest vector length up to a factor of 1 + n—la, for any € > 0, is also
NP-hard. This improvement also works for all /,-norms, for 1 < p < co. Prior to that, it was
known that the shortest lattice vector problem is NP-hard for the [,-norm, and the nearest
lattice vector problem is NP-hard under all [,-norms, p > 1 [20, 29]. Even finding an approxi-
mate solution to within any constant factor for the nearest vector problem for any /,-norm is
NP-hard [4]. On the other hand, Lagarias, Lenstra and Schnorr [21] showed, as a consequence
of their transference theorem, that the approximation problem (in le-norm) within a factor of
O(n) cannot be NP-hard, unless NP = coNP. Goldreich and Goldwasser showed that approx-
imating the shortest lattice vector within a factor of O(y/n/logn) is not NP-hard assuming
the polynomial time hierarchy does not collapse [11]. Cai showed that finding an n'/4-unique
shortest lattice vector is not NP-hard unless the polynomial time hierarchy collapses[7].

The recent breakthrough by Ajtai [1, 2] has its motivations from cryptography. It is well
known that the security of a cryptographic protocol depends on the intractability of some



computational problem on the average. Unfortunately as yet we cannot prove any problem
in NP intractable, even for the worst case. (This is the NP # P question!) For lack of
absolute lower bound, one usually takes NP-hardness as “proof” of intractability. However
applications to cryptography demand intractability not only in the worst-case but on the
average as well. Ajtai’s paper [1] provided the only known provable connection of worst-case
and average-case complexity of a problem in NP believed to be intractable. Building on the
Ajtai connection, Ajtai and Dwork [3] have proposed a public-key cryptosystem with provable
security guarantees based on only the worst-case hardness assumption for an approximate
version of the shortest lattice vector problem. More precisely, they defined the notion of an
nf-unique shortest lattice vector, and showed that for a certain c, if finding the shortest lattice
vector in a lattice with an n®unique shortest vector is hard in the worst case, then their
public-key cryptosystem is provably secure. This is the first public-key cryptosystem with
such provable security guarantees. Another public-key system based on lattice problems was
proposed by Goldreich, Goldwasser and Halevi in [13]. Consequently there is considerable
interest recently in the structural and computational properties of these lattices.

Finally we point out that although our work is mostly motivated by computational complex-
ity considerations, our proofs are non-constructive. We build on the work of Banaszczyk [6],
using methods from harmonic analysis.

2 Preliminaries

The main tools of our proof are Gaussian-like measures on a lattice, and their Fourier trans-
forms. For a given lattice L of dimension n in R", v € L, we define
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Lemma 2.1
or(u) = 7+ (u), (7)
where L* is the dual lattice of L. By duality

or-(u) = 7(u). (8)

The proof of Lemma 2.1 uses Poisson summation formula, see [18, 6]. The following lemma is
proved in [6] (Lemma 1.5) and is crucial to our proof (in the following \ denotes set difference):

Lemma 2.2 For each ¢ > 1/+/2m,
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3 The First Inequality

For simplicity we first present an inequality relating the minimal length g(L) of a generating
set of lattice vectors for L, with the shortest lattice vector length A;(L*) of its dual L*. In this
simpler setting, the main idea of the proof can be seen more transparently without unnecessary
complications. In the next section a general version of this inequality will be proved relating
gi(L) and A,_;y1(L*), of which the inequality in this section is a special case.

Theorem 3.1 For every lattice L of dimension n, and for every constant ¢ > 3/2m,
g(L)A (L¥) < ¢en,
for all sufficiently large n.
We prove by contradiction. Suppose g(L)A;(L*) > cn. Let ¢; and co be two constants,

such that cjcp = cand ¢; > 1/v/27 and ¢o > 3/v/27. By substituting L with sL for a suitable
scaling factor s, we may assume that

g(L) > e1v/n

and
A1 (L*) > CQ\/E.

Let L' be the sublattice of L generated by the intersection LNB(0; ¢14/n), where B(0; c14/n)
is the n-dimensional ball of radius ¢;/n centered at 0. Then L’ is a proper sublattice of L. If
dim L' < n, then let P be the linear span of L', and let bq,...,b; be a lattice basis of L N P,



where ¢ = dim L’ < n. This can be extended to a lattice basis by,...,b;,...,b, for L and we
may replace L' by the sublattice generated by b1,...,b;,...,2b,, say. Thus without loss of
generality we may assume L’ is of dimension n. The important point is that we have a proper
sublattice L' C L, which is of dimension n and contains L N B(0; ¢1y/n).

For any fixed u € R",

gL(u) = Y o1

veEL

({v}) cos(2m(u, v))

= Y ou({v})cos2m(u,v)) + Y (or({v}) — or ({v})) cos(2m{u, v))

veL!
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+ A+ B, say.

Since L N B(0;c14/n) C L', the last term

B < Y el
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= oL(L\B(0;c1v/n))
< (Cl \/%e—wc%> " ,

by Lemma 2.2 inequality (9). Denote the last term by €7, say.

For the other error term A, we note that or,({v}) < o/ ({v}), so that
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Our next task is to show that we can choose an appropriate u so that oz (u) is small yet
o1 (u) is large. By Lemma 2.1, we have o (u) = 77+ (u), and o7 (u) = 71+ (u). Thus we only
need to choose a u such that 77+ (u) is small and 77+ (u) is large.

We need the following lemma.

Lemma 3.1 Suppose L1 is a proper sublattice of Lo, then there exists a p € Lo, such that

(Since a lattice is a discrete subset of R", the above minimum over ¢ clearly exists.)

Proof: Suppose such a p does not exist. Then for all p € Lo,

) A1(Lq)
;requillp gl < T

Take any p € Lo\ L;. Then there exists a ¢ € Ly, such that ||[p—q|| < A\1(L1)/3. Let u = p—gq,
then u € Lo\ L1, in particular u # 0.

Consider the following set of lattice points in Lo: {ku|k € Z and k > 1}. By assumption,
each ku is associated with a point in L, with distance less than A;(L1)/3. By definition, u is
associated to 0. But for k large, clearly ku cannot be associated to 0. This is certainly true
when k& > A\ (L1)/(3]|u||). Let ko be the first k such that ku is associated to a z € Ly, where
z # 0. Then kg > 1. It follows that

[lz]] = [lz = Ol = |I(z = kow) + u + ((ko — 1)u — 0)|| < A1(La),
a contradiction. The Lemma, is proved. O

Now we note that since L' is a full ranked proper sublattice of L, L* is a proper sublattice
of L'*. That it is proper follows from the identity of index

det(L™)/ det(L*) = det(L)/ det(L') > 1.

By Lemma 3.1, take a u € L™, such that mingez« ||u — ¢|| > —)‘1(3L*)

have L™ +u = L™, and

. Then since u € L™, we
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by Lemma 2.2 inequality (10). Since both ¢; and c2/3 > 1/v/27, we have both €; and €3 < 1
by elementary estimate. Thus it follows from (11) that

2ey > 1 — 2€7,

which is a contradiction for large n. The proof of Theorem 3.1 is complete.

4 The General Inequality

We now prove a general inequality which relates the quantities g;(L) and Ap—;y1(L*). This
theorem generalizes the result of the last section as well as the transference theorem of Ba-
naszczyk [6].

Theorem 4.1 For every constant ¢ > 3/2x, there ezists an ng, such that
In—i+1(L) - Ai(L*) < cn,
for every lattice L of dimension n > ng, and every 1 <i <n.
We prove Theorem 4.1 by contradiction. The main idea will be similar to the proof in the

last section, relying on a double estimate for the Fourier transforms of Gaussian-like measures
on the lattice and a proper sublattice. But the details are more involved.

Suppose the inequality does not hold. Choose ¢; and co as before. By a suitable scaling
factor, we may assume that both

In—i+1(L) > c1v/n,

and
Ai (L*) > CQ\/’E.
Let uq,...,u;—1 be a set of linearly independent lattice vectors in L* attaining the successive
minima A (L*),...,\;_1(L*), respectively. Let S be the linear subspace of R™ spanned by
Ul,...,uj—1. Thus dim S =7 —1 and there are no vectors in L*\ S with norm less than \;(L*).

For suppose there were some u € L*\ S, ||u|| < Ai(L*). Let j = min{k | |Ju|| < Ax(L*)}. Then
1 <j<i Let C={ui,...,uj_1,u}. It is clear that C is a set of j linearly independent
vectors in L*, with max{||z|| | € C} = ||u|| < Aj(L*). A contradiction. In particular there
are no vectors in L*\\S with norm less than or equal to cay/n.

L*N S is a lattice of dimension 7 — 1. Let v{,...,v] ;| be a basis of L*N S, and this can be
extended to a basis v],...,v}_;,v,...,v, for the lattice L*. Let v1,...,v, be its dual basis



for L. We note that v7,...,v;_; is also a vector space basis for S, while v;,...,v, is a vector
space basis for S* as well as a lattice basis for the sublattice L N S+ of L.

We now define two projections from R" to S-t:

T o R" — 5t (12)
i—1 n n
ijv;-‘ + ijvj — ijvj, (13)
j=1 j=i j=i

is the orthogonal projection onto S+, and

Q0 R* — S+ (14)
n n
ij’l)j = Z.Tj’l)j, (15)
j=1 J=i
is the projection “modulo v1,...,v; 1 in terms of the basis v1,...,v,”. We note that both

projections are well defined, and

n
L) =LNSt={) =z | z; € Z}.
j=t

We need several technical lemmas.
Lemma 4.1
n(L*) = (LN SL)*.

Proof: We have noted already that L N S+ is a sublattice of L of dimension n — 4 4+ 1 with
lattice basis v;, ..., v,. Thus its dual lattice (LN S4)* is also an (n — i+ 1)-dimensional lattice
in the space S+.

For every v € w(L*), there exists a v’ € L*, such that v = 7(v'), i.e., v —v' € S. Hence, for
all z € S+,
(v,2) = (v, z).

In particular, for all z € LN S+, (v, x) is an integer. Thus, v € (L N S+)*.
Conversely, for every v € (L N SL)*, let

i—1

v =v-— Z(v,vj)v;-‘.

=1

We claim that 7(v') = v, and v € L*, thus v € «n(L*). Tt is clear that =(v') = v, since
;;ll(v,vj)v; € S. It is also clear that for each basis vector v; of L, if j < 4 — 1 then
(v',v;) =0, and if j > i then (v',v;) = (v,v;) € Z, since v; € LN S+ for j > i. O

Let L' be the sublattice of L generated by all lattice vectors of L with length at most c1+/n,
namely LN B(0; c1v/n). As gn_i+1(L) > c1v/n, L' does not contain any (n—i+ 1)-dimensional
saturated sublattice of L.



Lemma 4.2 ¢(L') is a proper sublattice of L N S*.

Proof: Clearly o(L') C p(L) = LN S*. To show that it is a proper sublattice let’s assume
o(L') = LN S*. Then v;,...,v, € @(L'). Tt follows that there are vectors wj,...,w, € L/,

vj = ¢(wj), j =1,...,n. Thus, each w; = vj + ch_:ll xvy for some integers x5, j =1,...,n
and k=1,...,i— 1.
Let T be the linear subspace generated by wj,...,w,. Clearly w;,...,w, are linearly

independent, so dim7 =n —i+ 1, and LNT is a saturated (n — ¢ + 1)-dimensional sublattice
of L. By the definition of L', L' does not contain L NT.

However I claim that L' N'T = L NT. This would be a contradiction which would prove
the lemma.

To show that L' NT = LNT, let any u € LNT. u € T implies that there exist real
numbers 74, . .. ,7, such that u = Z;‘:z rjw;j. u € L implies that in the above expression, when
expressed in terms of vq,...,v,, all coefficients in vy,...,v, are integers. In particular, the

coefficients of v;,...,v,, namely r;,...,r,, are all integers. Thus, u belongs to the integral
span of w;,...,w, € L', and thus u € L'. O

We now wish to replace ¢(L') by a full ranked proper sublattice L of LN S+, which
contains p(L') (if ¢(L') is not already one). If dim(p(L')) = n —i+ 1, then p(L') is already
full ranked, we simply let L = ¢(L'). If however, dim(p(L')) < n —i + 1, then we let L be
any proper sublattice of L N S+, which is of dimension n — 4 4+ 1 and contains ¢(L'). This
can be accomplished as follows, for example. Let k = dim(¢(L')) < n — 4, and let by,..., b
be a lattice basis of L N span(p(L')). This can be extended to a lattice basis of L N S+, say
bi,...y bk, ..., byp_i+1. Then we may let L be the integral span of by,...,bg,...,2b,_;+1, say.

Summarizing,
Lemma 4.3 1. o(L') C L;
2. dimL=n—i+1; and

3. L is a proper sublattice of L N S+,

Now we let

L"=L®{v)®--®(v;_1).

Lemma 4.4 1. ' CL";
2. dimL" = n; and

3. L" is a proper sublattice of L.

Proof: For any v € L',

t—1
v = SO(U) + Zxkvk;
k=1

for some integers zy. Since p(v) € ¢(L') C L, it follows that v € L”.



dim L" = n follows directly by the definition of L” and dim(L) =n —i + 1.

Finally, we show that L" is a proper sublattice of L. That L" is a sublattice of L is trivial.
Moreover, (L") = L is a proper sublattice of L N S+ = (L), hence L” is a proper sublattice
of L. O

Corollary 4.1 L* is a proper sublattice of (L")*.
Lemma 4.5 There exists a vector z € (L")*\(L* + 5).

Proof: Since L is a proper sublattice of L N S+ of full rank in the linear space S+, (L)* is
an (n — 4 + 1)-dimensional lattice in S L properly containing (LN S+)* = n(L*). In particular
there exists a y € (L)*\w(L*). Let

1

z=y— ) (Y, k)0
1

.
|

x>
Il

Then 7(z) = y. This implies that = ¢ L* + S, for otherwise, y = w(z) € w(L*).

We show next that z € (L")*. Since dim L” = n all we need to show is that for every
w e L' (z,w) € Z. Take any w € L",

i—1
w = @(w) + ) yeve,
=1

for some integral y;,. By the definition of L”, ¢(w) € L. Then it is easy to verify that

(z,w) = (y, p(w)),

which belongs to Z since y € (L)* and ¢(w) € L. O
Now we come to the crucial combinatorial lemma:

Lemma 4.6 There exists ¢ € (L")*, such that

, Ai(L*)
m — > —.
min ||z —y|| > =5

Proof: Suppose not. Then for every = € (L")*, there exists a y € L* such that

Ai(L*
o —yll < 2

In particular we may choose our z € (L")*\(L* + S) by Lemma 4.5. Let y € L* be the
corresponding point in L* as above. Denote x —y by u, then we still have u € (L")*\(L* + S),
for clearly u € (L")* by Corollary 4.1; and u & L* + S, otherwise z € L* + S as well. In

particular u ¢ S. Moreover, ||u|| < )‘i(:f*)-

Consider the set of points {ku | k = 1,2,...}. Each ku is associated with a point in L* of
distance less than \;(L*)/3. Since u ¢ S, for sufficiently large k, the associated point of L*

10



cannot be in S. Let kg be the first such k, then kg > 1. Let z € L*\S be the point associated
with kou and 2/ € L* NS be the point associated with (kg — 1)u. Then z — 2/ € L*\S.
Furthermore,

[z —2'|] = ||(z — kou) +u+ ((ko — Du — 2)|| < Xi(L*).

This contradicts the definition of S and X;(L*). O

We are now ready to prove Theorem 4.1. We will pick u to be the x promised in Lemma 4.6.
Then as before

L) = 3 ou({v}) cos(2n(u,v))

veL

= > or({v}) cos(2n(u,v) + Y (or({v}) — oz ({v})) cos(2n(u, v))

UEL” UEL”

+ > op({v}) cos(2r(u,v))

veEL\L"
= opi(u)+ A+ B, say.

Since LN B(0;c1y/n) C L' C L”, the last term
|B| < > ol{vh)
vEL\B(0;c1/n)
< (clv27ree_m§)n
=,
by Lemma 2.2 inequality (9).
For the other error term A, we note that or,({v}) < or»({v}), so that we have as before

4] < Y low({v}) — ore({0})]
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Hence
71 () > 777 (u) — 267,
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By Lemma 2.1 67, (u) = 71+ (u) and 7 (u) = T(zn)«(u). Since u € (L")*, (L")* +u = (L")*
so that T(LII)* (’U,) =1.

On the other hand, since

. A1(L*)
— >
sl =l = =

C2

> —+/n,
3

we note that no point in L* + u is within %+/n in norm, and so

2
—||z
ZzEL*—I—ue =]

Yser- e eIl
D ve (L +u)\ B(Osea v/ /3) €
S oy o TP
€9\ * n
< 2 (63—2\/27ree_”(?2)2)

— 24,

TL* (u) =

—l[v]|?

by Lemma 2.2 inequality (10). Since both ¢; and ¢2/3 > 1/4/27, both €; and €3 < 1 as before.
Thus
2ey > 1 — 2€7,

which is a contradiction for large n. The proof of Theorem 4.1 is complete.

We remark that it is known that the product \;(L)A,—i+1(L*) is at least 1 for all L and
all 1 <4 < mn. Since g;(L) > X\;(L), we also have g;(L)Ap—;j+1(L*) > 1 for all L and %, and this
lower bound is easily achievable, for example by the Gaussian lattice Z".

We also remark that the inequality in Theorem 4.1 can be made to hold for all n, and not
just for sufficiently large n, with an appropriate constant c. For example, ¢ = 2 will do, with

c1 = +/2/3 and ¢, = /6.

5 n“Unique Shortest Vector

We say that a lattice L has an nf-unique shortest vector if there exists v € L, v # 0, such
that for all v' € L, if |[v|] < n®-||v||, then v’ is an integral multiple of v. Equivalently
X2(L)/A1(L) > n¢. This class of lattices plays an important role in the recent work of Ajtai [1]
on the connection between the average-case and the worst-case complexity of the shortest
lattice vector problem, and in the Ajtai-Dwork public-key cryptosystem [3]. They showed that
for a certain ¢, if finding the shortest lattice vector in a lattice with an n®unique shortest
vector is hard in the worst case, then the Ajtai-Dwork public-key cryptosystem is provably
secure.

Theorem 5.1 For every lattice L of dimension n, if L* has an n®-unique shortest vector,
0 <e<1/2, and c > 3/2m, then,

g(L)A(L7) < en'™,

for all sufficiently large n.
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Proof: Choose c¢; and co as before such that c;co = ¢ > 3/27, and ¢1,¢2/3 > 1//27. By
a suitable scaling factor, we may assume that both

g(L) > Cl\/ﬁ,
and
)\1([4*) > Cz’nl/z_e.

By nf-uniqueness, As(L*) > co\/n. Take a ball of radius c¢1/n, and let L' be the sublattice
generated by L N B(0;c1y/n). As g(L) > ci1y/n, L' is a proper sublattice of L. Again we may
assume without loss of generality that dim L' = n. As before, for all u € R", we get

or(u) > o (u) — 2¢. (16)

L* is a proper sublattice of (L')*. Therefore by Lemma 3.1 there exists u € (L')*\L*, such
that

min ju — ql| 2 M (L)/3 2 con/?7¢/3.

gelL”

If we take this u, then

We now estimate
ZJ:EL*-HL e_WHZW
T Seep e
The denominator is at least 1. For the numerator, we separate those terms where ||z|| < c2/n/3
from the rest. If there are no terms with ||z|| < c24/n/3 we are done since as before

or(u) = 7o~ (u)

—||z|?

5 (0) = Dz (L* +u)\B(0,csv/ii/3) €
t > sers eIl

So let’s assume such terms exist. Let zp € L* 4+ u be of minimum norm. Note that ||zo|| >
M (L*)/3 > conlt/?7¢/3.

Suppose z,z' € L* + u and both ||z|]| and ||z'|| < c24/n/3. Then z — 2’ € L* and
||z — 2'|| < 2c94/n/3 < A2(L*). Thus z — 2’ is an integral multiple of the shortest vector
v1 € L* where ||vi|| = A\i(L*). Thus z € (v1) + o, the one-dimensional affine sublattice of
L* +u. Separate the sum ) ;... e~ml2lI” into two sums, one over the one-dimensional affine
sublattice (v1) + ¢, and a second sum over all other terms. Then the second sum is bounded
by 2€ as before, since all ||z|| there are more than cav/n/3.

< 2€.

For the first sum, take an orthogonal projection of zy to the linear span Rwv; + zy of the
one-dimensional affine sublattice (vi) + o, then a simple geometric observation shows that

00
Z e—7r||;c||2 < QZe—w(l/Q—l—k?)cgnl*% — e—Q(nI*QG)’
z€(v1)+xo k=0

for € < 1/2. Thus, we derive that

_Q(n172€)

or(u) =1+ (u) < e + 2€5. (18)
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This is a contradiction to (16) and (17) for large n.

A more careful analysis shows that the theorem is valid even for the case ¢ = 1/2. The
details are given in the appendix. O

The upper bound O(n'~¢) is optimal up to a constant, for all €, 0 < ¢ < 1/2. Consider the
family of self-dual lattices of Conway and Thompson [26]. Let L' be such a lattice of dimension
n—1. L' = L' and \{(L') = ©(y/n). Let u be a vector perpendicular to the linear span of L'/
with norm ||u|| = n=\;(L') = ©(n'/?~¢). Define

L* =L @ (u).
Clearly A;(L*) = ||u||, and u is an nf-unique shortest vector of L*.
It follows that U
L=I"=La ().
|lull?

since u is perpendicular to the linear span of L’. Hence, L consists of parallel translations of
L' with orthogonal distance 1/||u||.

If we orthogonally project any n linearly independent lattice vectors of L to the (n — 1)-
dimensional linear span of L', we must collect among which n — 1 linearly independent lattice
vectors of L. Thus, A, (L) > \,_1(L') = ©(y/n). Hence

A (D) (LF) = Q(n'~e).
It also follows that
g(L)M (L) = Q(n' ).

Theorem 5.2 For every lattice L of dimension n, if L* has an n®-unique shortest vector, then
1 <A (L)Ai(LF) < O(nf),

where

1—c¢ if0<ec<1/2,
1/2 if1/2 <c<1,
3/2—c ifl<c<3/2,
0 if ¢ > 3/2.

Proof: The inequality A,(L)A1(L*) > 1 is known. The case ¢ < 1/2 has been proved, since
g(L) > Ay(L). Note that if L has an n-unique shortest vector then it also has an n¢-unique
shortest vector, for ¢ < c¢. Hence we only need to prove the case for 1 < ¢ < 3/2.

Let u be an n®unique shortest vector for L*. Let S be the linear span of u and let 7 be
the orthogonal projection to S*. Then 7(L*) = (LN S*)* by Lemma 4.1. Moreover (L N S+)*
has no “short” vectors compared to u. More precisely, if w € (L N S+)* is a non-zero vector,
then by lifting via 7! to a vector in L*, we see that

[l + [ul /4 > (n°[Jul])*.
It follows that A\ ((L N S*)*) = mingsye(rnstys ||| > [lul|/n*¢ —1/4. By Theorem 3.1,

it 503t ) -0 (1)
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Consider the Gram-Schmidt orthogonalization of n — 1 linearly independent lattice vectors
of L N S+ with norm at most A,_1(L N S*). They form a parallelepiped whose sides are
mutually orthogonal and are at most A, 1(L N S+). The linear space S has a “brick” tiling
by the translations of this parallelepiped centered at each lattice point of L N S+

The closest parallel hyperplane H to S+ which intersects L has orthogonal distance 1/||u|
to S+. Consider the “brick” tiling of this parallel plane H where each orthogonal parallelepiped
is centered at a point of L N H. It follows that every point of H is within distance A\,_1(L N
S+) . y/n—1/2 from a point in L N H. In particular we have a lattice vector in L N H whose

length is bounded by
1 3/2—c
ol—+"= .
llull |l

This vector must be linearly independent from the n — 1 independent vectors in L N S+ with
norm at most A,_1(L N S+).
nd/2—c

It follows that if 1 < ¢ < 3/2, then \,(L) = O( Tal ). Since A1(L*) = ||u|| the theorem
follows. O

6 Ajtai’s Connection Factor

The recent work by Ajtai [1] establishing the worst-case and the average-case complexity of
shortest lattice vector problems can be improved by these transference theorems.

Let n,m, q be positive integers. Let Z, be the integers mod ¢, and let Z7*™ denote the
set of m x m matrices over Z,. For every n,m,q, 2, denotes the uniform distribution
on Zg*™. TFor every X € Zp*™, the set A(X) = {y € Z™ | Xy = 0 mod ¢} defines a
lattice of dimension m. A = A, 4 denotes the probability space of lattices consisting of
A(X) by choosing X according to Qy ;4. By Minkowski’s Theorem it can be proved that,
Ve 3¢ s.t. VA(X) € Ay eppe Fv (v € A(X) and 0 < [jv]| < n).

Theorem 6.1 Let € > 0. Assume there is a probabilistic polynomial time algorithm A that,
with probability l/no(l), finds a non-zero vector of length at most n, for a uniformly chosen
lattice in the class Ay g, where m = O(n) and ¢ = ©(n3). Then there is a probabilistic
polynomial-time algorithm B that, given any integral lattice L of dimension n, with probability
1—e ™™ will

(a) compute an estimate of \1 = Ai1(L) up to a factor n**
5\1, such that

€, i.e., compute a numerical estimate

A1 ~
W <A < Ay

3+0+¢€

(b) compute an estimate of A1 up to a factor n , if L has an n®-unique shortest vector,

where

1—c¢ if0<c<1/2,
1/2 if1/2<ec<1,
3/2—c ifl1<c<3/2,
0 if ¢>3/2;
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A+e_ynique shortest vector.

(c) find the unique shortest vector if it is an n
These exponents represent the tightness of the Ajtai connection, and are significant for any
potential application to cryptography. The Ajtai connection factors given above are further
improvements from the improvements presented in [8]. In the paper [1] a general polynomial
factor n¢ was shown for the problems of (a), (b) and (c) but no explicit values for the exponent
¢ were given. Implicitly a factor less than n'%, n'® and n'° can be derived from the proofs of
[1] for the problems of (a), (b) and (c) respectively.

The key step of the algorithm B is a probabilistic polynomial-time algorithm B’, that uses
algorithm A as a subroutine. Assume algorithm A exists. Then for any given integral lattice
L of dimension n, B’ will find a set of n linearly independent lattice vectors vy, vs,...,v, with
probability 1 — e™™, such that

An(L) < r?%fillvil\ < nfXa(L).
In [1] no explicit factor n/ was given, but a factor of n® can be derived from the proofs. This
exponent f was improved by Cai and Nerurkar in [8] to 3 + ¢, for an arbitrary small € > 0.
This improvement was accomplished by a redesign of Ajtai’s algorithm B’ given A. In terms
of the items in Theorem 6.1 the improvement in [8] implies an Ajtai connection factor of n3T¢,
n®t€ and nt€ respectively.

Our current improvement in this paper is achieved by an improved analysis, rather than
by any change in the algorithm design. We will start with the version of algorithm B’ as given
in [8], assuming the existence of .A. The following is an outline of the steps needed to compute
the various items in Theorem 6.1. We emphasize that the only new ingredients are in the
analysis, all algorithmic steps presented here other than B’ of [8] are due to Ajtai [1].

For notational simplicity we will assume the lattice given is Ly = L*, where L = Lg, and
we will compute the shortest vector problem for the lattice L*. With B’ applied to L, we can
compute with high probability a set of n linearly independent lattice vectors v1,vs,...,v, € L,
such that A\, (L) < Ay (L) < n3te\, (L), where A, (L) = max? , ||v;]|. Let A\f = 1/A,(L). By
Theorem 3.1, 1 < A\ (L)A1 (L*) < g(L)A1(L*) = O(n). It follows that

11 AN 1 )

A (L) >
1( )— An(L) )\n(L) n3+€)\n(L) - n4+e’ )

where, say, ¢ = 2¢, which can be made arbitrary small. This proves part (a).

Next we assume that L* has an n°-unique shortest vector u. Then Theorem 5.2 gives the
improved estimate in this case. This proves part (b). Now we prove part (c¢) and assume ¢ > 4.

Let S be the linear span of u and let 7 be the orthogonal projection to S+. We noted
that 7(L*) = (L N S1)*, and A\ ((L N SH)*) > [|ul|\/n? —1/4 in the proof of Theorem 5.2.
The following idea to compute the unique shortest vector u is due to Ajtai [1]. We do not
change any algorithmic steps, but offer a better analysis using our transference theorems. For
coherence of presentation, we will outline his steps along with the better analysis.

First compute with high probability a set of n linearly independent vectors vy, va,...,vy € L
using algorithm B’. For any fixed constants a > ¢ and b > a + 6, we can randomly sample
n lattice points of L of the form & = Y7 | ¢;v;, where ¢; € Z and |¢;| < n® Then ||¢]| <
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n%tI\, (L) < not4tex, (L). This is at most O(n®t5+¢/||u||) by Theorem 3.1 and A (L*) = ||u]|-
As the closest hyperplane parallel to S* intersecting L has orthogonal distance 1/||u|| to S+,
these sample points are all from at most O(n®t5%€) many parallel hyperplanes to S*. Since
b > a + 6, it follows that some pair of samples are from the same parallel hyperplane to S-*.
If z and y are a pair of such samples, then z — vy is a lattice vector in the hyperplane S=.
Furthermore, if one repeats this process it can be shown that with high probability one can get
n — 1 linearly independent lattice vectors all belong to S+. Provided that one can distinguish
those pairs of samples = and y such that © —y € S+, the orthogonal direction to S+, namely
that which is parallel to u, can be computed. This vector u’ can be expressed as a non-zero
rational linear combination of the basis vectors, and u' is perpendicular to S*. Thus ' must
be linearly dependent on u over Q. Multiplying with the common denominator, we get an
integral combination of the basis vectors, and thus an integral multiple of the primitive vector
u. By taking out the greatest common divisor of the integral coefficients in the expression, we
must get u or —u.

Thus the key is to distinguish those pairs = and y such that v =  —y € S*. Take a prime
t > n® and consider w = v/t. Consider the Z-module I/ generated by L and w. It must be a
lattice. There are two cases. If v € LN S*, then w € S+, and )\, (L') will be at least 1/||u||. If
however v ¢ L N S+, i.e., v belongs to one of the parallel planes of S+ other than S, then L'
is made up of parallel translations of L N S*. Moreover, the orthogonal distance of the closest
pair of linear spans of these parallel translations is 1/¢||u||. Thus in this case A\, (L) is much
smaller than 1/||ul|.

More precisely, first suppose v € LNS+. Then L' is still covered by the same set of parallel
translations of S*-. The orthogonal distance of the closest pair of linear spans of these parallel
translations is 1/||u||. Thus A\,(L') > 1/||u||. In particular the computed estimate A,(L')
satisfies

An(I) > A(L) > ﬁ (19)

Now suppose v € L N St. Let v belong to the kth translation of S+, where k # 0.
There are vectors z1,2z2 € L, v = 2z + k2o, where 2y € L N S+, and (z9,u) = 1. Then
w=v/t=z/t+ kz/t, and (w,u) = k/t.

Clearly |k| < n®t® by the estimate on the norm of the samples, hence (¢,k) = 1. Let
a,3 € Z, such that at + 3k = 1. Then w' = az + fw € L', and

(W' u) = a+ pk/t =1/t
Thus, the orthogonal distance of w' € L' to St is 1/t||u]|.

For any z € L/, it is clear that (tz,u) € Z, thus every point in L’ has distance to S an
integral multiple of 1/#||u||. Thus L’ is covered by the parallel translations of S+ with distance
1/t||u]|, and the closest parallel translation intersecting L’ has distance exactly 1/¢||ul|.

We claim that the following equality is a consequence of ¢ and k being relatively prime,
L'nSt=LnsS*

In fact, suppose z € L' N S. There is a basis of L which consists of a basis of L NS+ together
with 2. This is true because 2, has the closest orthogonal distance to S+ among L\S*, by the
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fact that (z9,u) = 1. By the definition of L', we can write z as an integral linear combination
of these vectors and w,
Zz=iw+ jzo + 2,

where i, j € Z, and 2’ is some vector in LNS*. Taking inner product with u, we get ik/t+j = 0,
and thus 7k + jt = 0. Now (¢, k) = 1 implies that ¢|i and k|j, and thus 4w € L. Since 29,2’ € L
we conclude that z € L as well. Hence z € LN S*. The claim is proved.

It follows that
L'=(LnSYH e W),
namely the set of all parallel translations of L N S+ by w' with orthogonal distance 1/#||u]|.
Thus tu € L'* and is primitive in L™*. By Lemma 4.1, it follows that

a(L™) = (L' N SL)* = (LN SH)* = a(L*).

Any vector 4 of L™ not parallel to tu must project to a non-zero vector in 7(L™*) = 7(L*).
However we have the estimate

M(n(L*)) = M((LNSH)) > [Jullv/n? —1/4,

by the fact that L* has an n®unique shortest vector. (See the proof of Theorem 5.2.)
Thus ||| > ||u||\/n% —1/4 as well. Since a > ¢, t > n® > n¢, it follows that Aj(L*) >

min{|[tul], [[ull/n?¢ — 1/4} > [fully/n*® - 1/4.

By Theorem 3.1 A\, (L") = O(n'=¢/||u||), and we can compute an estimate
An(L') = 0" ¢/ lul]) < 1/|full, (20)

for ¢ > 4 and sufficiently small e. Comparing (19) and (20) we note that in this case An (L) is
smaller than the lower bound obtained for A,(L’) in the case when the vector v belonged to
the hyperplane S=.

If we sampled a large polynomial number of points, with high probability there will be
at least n — 1 linearly independent difference vectors which belong to the hyperplane, and
all of whose estimate will be higher than those which do not belong to the hyperplane. By
taking n— 1 linearly independent difference vectors with the highest estimates A, (L), we could
compute the normal vector to the hyperplane and thus ultimately compute u in probabilistic
polynomial time. The proof of Theorem 6.1 is complete.
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Appendix

In this appendix we give the details for the case € = 1/2 in Theorem 5.1. Denote A = ||vi|| =
A (L*). Then A\ > ¢y > 3/+/2m. Take the orthogonal projection of the vector zg to the
affine line, i.e., let 9 = yo + 20, where gy is perpendicular to the affine line Rv; + zp, and
2o is parallel to v1. We may assume (zg,v1) > 0, otherwise we can replace v; by —v;. Then

|0

[12 = ||vol|? + ||z0|?- It follows that ||yo||, ||20|| < ||zo||, and since xq is the point of L* + u
of minimum norm on the affine line, ||2z|| < A1(L*)/2. Also ||zo|| > A/3 by the choice of u in
Lemma 3.1.

We split the sum

+00 ,
Z e~ Tllzotkul®
k=—00
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into two parts according to k£ > 0 and k < 0. For k > 0, the kth term has

llzo +kuil? = [lyoll* + (|0l + Kl[o1]])?
= [lzoll* + K*A? + 2| | 20| |A
> A?/9 + kN2

Thus the first sum is bounded above by

+o0o
Z =N /9+k2A?]
k=0

The leading term is e=™"/9 < 1/\/e. The successive ratio of the (k + 1)st term over the kth

term, for k£ > 0 is
—m(2k+1)N A e 9/2

e e <
Hence
= 2/9+k2)\2] ].
—7[A < —— — =~ 0.6133443.
2 Ve(1 =1/
For the second part of the sum, we have
llzo —kuoil|* = [lyol[* + (Kllv1| = [|20])?

> (kA —A/2)°
> A?/4

for k£ > 1. Therefore the second sum is bounded by

+o0o

3 erllk-1/20

k=1

The leading term is ™/ < 1 / ¢%/8. The successive ratio of the (k + 1)st term over the kth

term, for k£ > 1, is

—m2k\2 < 67270\2 < -9

€ €

Hence the second part of the sum is bounded by

I 2 1
—mRAA/2) T~ ().3246925.
kz_l ¢ O8(1— 1/¢%)
It follows that
—+00
3 emmleotkull < 0,94,
k=—o00

We conclude that for any ¢; > 1/v/27 and ¢y > 3/v/2m, there are constants €; < 1 and
€2 < 1, such that
1—2€e! = o (u) — 26 <or(u) <0.94 4 2¢€5.

This is a contradiction for large n.
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