Electronic Colloquium on Computational Complexity, Report No. 7 (1998)

Recycling Queries in PCPs and in Linearity Tests

[Preliminary Version]

Luca Trevisan®

January 7, 1998

Abstract

We study query-efficient Probabilistically Checkable Proofs (PCPs) and linearity tests. We
focus on the number of amortized query bits. A testing algorithm uses ¢ amortized query bits
if, for some constant k, it reads gk bits and has error probability at most 27%. The best known
PCP construction for NP in this respect uses 3 amortized query bits [14]; at least one amortized
query bit is necessary, unless P = NP [5]. This parameter is an extremely natural one and has
applications to proving non-approximability for constraint satisfaction problems. Furthermore,
a PCP characterization of NP with less than 2 amortized query bits would imply a separation
of the PCP model from the 2-Prover 1-Round model.

Our approach is to take an atomic verification procedure and then iterate it several times,
saving queries by recycling them between different iterations of the atomic test.

We first apply this idea in order to develop query-efficient linearity tests. Linearity testing
is a problem closely related to testing the Long Code and making PCP constructions. It is also
a significant combinatorial problem still lacking tight characterizations, except for the case of
three queries [4]. The best known linearity test uses 3 amortized query bits [4]; a different one
achieves 1 amortized free bit (a different parameter related to the Max Clique problem) but uses
an unbounded number of amortized query bits [5]. We develop a general analysis technique and
a linearity test achieving simultaneously amortized query complexity 1.5 and amortized free bit
complexity .5. This test answers an open question raised by Bellare, Goldreich and Sudan.

We then show how to adapt a weaker result to the PCP setting, and we obtain a PCP for
NP that makes 5 queries and has error probability 1/4, so that its amortized query complexity
is 2.5.
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1 Introduction

The PCP characterization of NP [2, 1], a.k.a. the PCP Theorem, is a major achievement of com-
plexity theory and a powerful tool for proving hardness of approximation for optimization problems.
Informally stated, the PCP Theorem says that there is a way of encoding membership proofs for NP
statements so that such encoded proofs can be probabilistically tested using logarithmic random-
ness and looking only at a constant number of bits of the encoding. The encoding of a correct proof
will pass the test with probability one! while, if the statement is wrong, any adversarially chosen
string submitted to the test will be accepted only with small probability, say at most 1/2. The
latter probability is the error probability, or soundness of the test. The algorithm implementing the
test is usually called the verifier. After the appearance of the PCP Theorem, there has been a lot
of effort devoted to finding quantitative strengthenings of it, with improved trade-offs between the
different parameters arising in the proof-checking procedure. One of the main motivations for this
line of research has been the goal of getting improved, and eventually tight, non-approximability
results for certain optimization problems.

PCP PARAMETERS. Four main parameters have been considered for their applications to proving
hardness of approximation: the number of query bits, the number of free bits and their amortized
versions (see also [3] for a survey on recent PCP results and for the role of different parameters.)
We say that a verifier uses f free bits if there is a subset of f queries such that for any possible
outcome to these queries there is only one possible answer to the other queries that would make
the verifier accept.? We say that a verifier uses § amortized query bits if, for some constant k&, it
makes gk queries and has error probability at most 27%; amortized free bits are defined similarly.
The notion of amortization is due to [7, 5].

PCPs with small query complexity (and, subject to that, with low error) have applications to
prove hardness of approximation for the Max 3SAT problem; a tight result, due to Hastad [14] is
known in this context (the tightness is due to [15, 25].) Protocols with small free bit complexity
(and, subject to that, with low error) imply hardness of approximation results for the Vertex
Cover problem; a tight result is not known and is a major open question. The amortized free bit
complexity parameter is related to the hardness of approximating Max Clique; in this case a tight
result is known, due to Hastad [13], showing that NP can be characterized with ¢ amortized free
bits for any € > 0. The amortized query complexity parameter is related to the approximability of
constraint satisfaction problems described below. A tight result is not known.

Max kCSP (for k-ary Constraint Satisfaction Problem) is the generalization of Max kSAT where
each clause is allowed to be an arbitrary predicate over (at most) k boolean variables. Max k& CSP
was implicit in [19], has been named in [16] and then studied e.g. in [10, 22, 23, 24, 17, 25]. This
problem is known to be 2-approximable for k& = 3 [25] and 2*~!-approximable for & > 4 [22]; on
the negative side it is NP-hard to approximate within a factor 2l5/3] — ¢ for any k [14]. A PCP for
NP using q amortized query bits implies the NP-hardness of approximation of Max kCSP within
olk/al _ ¢,

An additional motivation for the study of PCPs with low amortized query complexity is the
fact that NP cannot be characterized with 2-Provers 1-Round having amortized query complexity
smaller than 2 (we take the query complexity of a 2-Prover 1-Round protocol as the sum of the

'In some cases, including the construction presented in this paper, there is the less restrictive assumption that
correct proofs are accepted with probability at least 1 — e where ¢ can be made arbitrarily small independently of the
other parameters of interest.

2A more general definition is given in [5].



answer sizes) unless P = NP [21]. Thus, if NP had a PCP with 1.99 amortized query bits, this
would imply a separation between the PCP and the MIP model, a question asked in [6] and [5].
The best known result here is a characterization of NP with 3+ ¢ amortized query bits [14]. There
cannot be a characterization with 1 amortized query bit unless P = NP [5, 22]. We believe that
14 € is the right answer: our goal is to make progress in this direction.

TeEsTING PROOFS. The standard method of getting good PCPs is by composition, a paradigm
introduced in [2] and then used e.g. in [1, 6, 7, 5, 12, 13, 14]. In the most recent constructions
[5, 13, 14] one starts with an outer protocol given by Raz [20], a 2-Prover 1-Round protocol with
perfect completeness, constant answer size and small soundness, and then one tries to improve on
the parameter of interest, in our case the number of amortized query bits. To this aim, one defines
an appropriate error correcting code and a testing procedure, called the inner protocol. Given two
strings, the inner protocol checks whether or not they are the encodings of two possible consistent
answers of the provers of the outer protocol. There is a way to compose the two protocols so that
the “composed verifier” V inherits the query complexity and the error probability of the inner
verifier ViI"e* and even if V" required a polynomial or even exponential amount of random bits,
the composed verifier V' will only use logarithmic randomness. Note that since the outer verifier
given in Raz [20] is essentially the best possible, we only have to care about the inner one, i.e. on
the definition of the code and on checking codewords and consistency.

THE LoNG CoDE. A first series of works [1, 6, 7] developed inner verifiers using the Hadamard
Code, and the essential testing problem was the “linearity test” problem, first investigated by
Blum, Luby and Rubinfeld [8]. More recently, the Long Code was introduced in [5] and used
in [5, 12, 14]. The Long Code of a string @ € {0,1}" is a string A of length 22" indexed by the
functions f:{0,1}" — {0, 1}, and such that A(f) = f(a) for any function f (we give an alternate
equivalent definition in Section 2.) It should be noted that the linearity test is still relevant to the
analysis of the Long Code: in [5] the linearity testing was a subroutine of the Long Code test; in
[14] the analysis of the Long Code is based on a “perturbed” linearity test and its analysis follows
the lines (alas with several complications) of the analysis of the linearity test given in [4]. Thus,
it appears that techniques and ideas developed to test linearity are, with appropriate extensions,
very useful in testing the Long Code and eventually getting PCP constructions. This motivates us
to get, for starters, a good linearity tester with low amortized query complexity.

TESTING LINEARITY: THE PROBLEM AND PREVIOUS RESULTS. In the linearity test problem we
are given oracle access to a function f : {0,1}” — {0,1} and we want to determine whether f is
linear, i.e. f(a)® f(b) = f(a®b) for any a,b € {0,1}", or if f is very far from every linear function,
where the distance Dist(f, g) between two functions is the fraction of points where they disagree
(for a function f and a family F we also use the notation Dist(f, ) = min,cr Dist(f, g).) Observe
that the set of linear n-ary functions, denoted LIN, is a Hadamard Code® with codewords of length
2"; recall that this code has minimum distance 1/2. We want a randomized test that always accepts
linear functions and that accepts with very small probability functions that are far from the set
of linear functions. The error probability of the test is the probability that it accepts a function
that is far; clearly this definition depends on what do we mean by “far”. Bellare, Goldreich and
Sudan [5] call “codeword test” the problem where “far” functions are at distance 1/4 from the code.
This definition is motivated by the fact that “non-far” functions have unique decoding. Defining

3Tn fact, it is a first-order Reed-Muller Code.



“far” to be the set of functions at distance 1/2 — ¢ from the set of linear functions is still good
(this is called “relaxed codeword testing” in [5]) since a function that is at distance at most 1/2 —¢
from some linear function is at this distance from at most 1/4¢? other linear functions, so we can
still use bounded distance decoding. We obtain the same bound 1/4¢? if we say that a function
is not “far” whenever it as distance at most 1/2 — £ from either LIN or from the set of functions
that are the bitwise complement of linear functions, denoted LIN. This is the notion of “relaxed
codeword test” that we adopt in this paper. The linearity test of Blum, Luby and Rubinfeld [§]
(henceforth called the BLR test) makes three queries: picks random a,b € {0,1}” and accepts iff
fla)@® f(b) = f(a®b). The BLR analysis has been improved in [9, 4, 18]; in [4] it has been shown
that the acceptance probability of this test is at most 1 — Dist(f, LIN), that is 1/2 + ¢ when f
is at distance 1/2 — ¢ from the set of linear functions. Thus, the BLR test has amortized query
complexity essentially 3. No better test is known with respect to amortized query complexity. With
respect to amortized free bit complexity, in [5] there is a test that has amortized free bit complexity
essentially 1 and that distinguishes linear functions from functions at distance 1/4 from the set
of linear functions. There is a lower bound showing that this result is tight. Bellare et al. asked
whether this lower bound can be beaten using relaxed codeword tests.

TeESTING LINEARITY: OUR REsuLTs. We develop a general framework to define and analyse
linearity tests that execute several instances of the BLR test and recycle query bits between different
executions.

In order to analyse the acceptance probability of such tests, we describe the way bits are recycled
in terms of graphs. To every graph G with k vertices and m edges we associate a test that we
call LinTestGraph(G, ). Such a test queries k + m bits, uses k free bits, and runs m instances of
the BLR test. We show that the acceptance probability of LinTestGraph (G, -) can be formulated in
a way that is very convenient for Fourier analysis (Theorem 5). We then use Fourier analysis to
obtain tight bounds on the error probability of three infinite families of tests. The use of Fourier
analysis to study linearity tests was introduced in [4]. Hastad elected it to a fine art in his papers
on testing the Long Code and on improved PCP constructions [12, 14]. Our results are as follows
(k > 11is any fixed positive integer):

1. The test associated with a path of length k& has acceptance probability at most
(1 — Dist(f, LINULIN))*,

with 2k 4+ 1 query bits and k& + 1 free bits. Thus it uses roughly 2 amortized query bits and
1 amortized free bit.

2. The test associated with a star with & rays has acceptance probability at most

% v (227;1)(1 — 2Dist (f, LIN U TIN)).

Its (amortized) query and free bit complexity are as before.
3. The test associated with the graph K has acceptance probability at most

-l 22](2_‘1 . -
52 + (QT)U — 2Dist(f, LINU LIN)),

it reads 3k + 2 bits, and uses 2k 4 2 free bits. The amortized query complexity is roughly 1.5
and the amortized free bit complexity is roughly .5, beating the lower bound of [5].



The only tool of Fourier analysis that we use is Parseval’s equality. In a sense that can be made
formal, 1.5 amortized query bits are a natural limit to the techniques developed in this paper (this
is discussed in Appendix 6.)

PCP: Our REsuLTs AND POSSIBLE IMPROVEMENTS.  All the results that we have for the linearity
test extend to the analysis of one Long Codeword, using the random perturbation idea of [14].
Unfortunately, it is necessary to look at two alleged Long Codewords in order to build an inner
verifier, and there is also a consistency test to be implemented. For the moment, we are able to
extend to the PCP setting the analysis of the linearity test based on the star with three vertices:
this gives a PCP that makes five queries and has soundness 1/4. The amortized query complexity
of our PCP is thus 2.5. This also implies that Max 5CSP is hard to approximate within 4 — ¢ and
that Max kCSP is hard to approximate within 20*%] — ¢ We can also show that tests based on a
path of length three or more will not help in the PCP setting. We do not know what happens with
a star with three rays or more. From tests based on stars it might be possible to get amortized
query complexity 2 4+ ¢ and amortized free bit complexity 1 + €. In order to do better, another
lower bound of [5] implies that we have to do proof composition in a more complicated way. A
further discussion on limitations of our techniques is given is Section 6.

OVERVIEW OF THE PAPER. We introduce basic definitions in Section 2. We describe graph-based
linearity tests in Section 3 and present a first analysis of their acceptance probability. In Section 4
we present a Fourier analysis of three graph-based families of tests. Section 5 is devoted to our
PCP construction. In Section 6 we discuss whether further improvements are possible using current
techniques. A composition theorem for our definition of inner verifier is proved in the Appendix.

2 Linear Functions, Fourier Analysis, and PCP

From now on boolean functions will be defined with values in {1,—1} rather than {0,1}. The
association is that —1 stands for 1 (or true) and 1 stands for 0 (or false). Observe that multiplication
in {1, —1} acts as boolean xor in {0,1}. For an integer k, we denote by [k] the set {1,...,k}. For
two sets « and  we denote by aAS = (aU ) — (an 3) their symmetric difference. Recall that A
is commutative and associative.

We will often blur the difference between vectors in {1, —1}" and functions from [n] to {1, —1};
for a vector z € {1, —1}", its a-th entry (a € [n]) is denoted by z(a) and can be thought of as the
evaluation of a function 2 : [n] — {1, —1} in the point a. If 7 : [m] — [n] and 2 € {1,—-1}", the
vector z o € {1,—1}" is defined as z o w(b) = 2(w (b)) for any b € [m)].

Given two vectors z and y, their bit-wise product, denoted zy, is defined as zy(i) = z(i)y (7).

Given two functions f, ¢ : {1,—1}" — {1, —1}, their distance is the fraction of points where
they disagree, that is

_ He: f(z) #g9(2)}]

Dist(f,g) = o = Pr.[f(z) # g(2)] .
We say that a function f:{1,—1}" — {1, -1} is linear iff f(z)f(y) = f(zy) for all z,y € {1,-1}".
There are 2" linear functions. There is a linear function [, for any set a C {1,...,n}; it is defined
as

lo(z) = H z(a) .

aEx



By convention, we say that a product ranging over the empty set equals 1. We will be using three
standard properties of linear functions, the fact that they are linear in «, linear in z and that they
are equally often 1 and —1, except for the case of the function that is identically 1:

L (@)5(x) = Laag(@) , la(@)lo(y) = lo(xy) | (1)
];;la(x) - { (1) (I)ft}?el':VVi@SQ. (2)

We denote by LIN,, the set of linear functions of arity n: this set is a Hadamard Code with codewords
of length 27. We also use the notation LIN,, = {f : —f € LIN}. We usually drop the subscript.
It is useful to see a function f:{1,—-1}" — {1,—1} as a real-valued functions f: {1,-1}" — R.
The set of functions f : {1,—1}" — R is a vector space over the reals of dimension 2". We define
a scalar product between functions.

fra=5 X f@e) =B

re{1,~1}n

For functions f :{1,—1}" — {1, —1}, the scalar product has a couple of alternative characteriza-
tions.

fr9="Pr[f(z) =g(z)] - Pro[f(z) # g(x)] = 1 - 2Dist(f,g) .

The set of linear functions is easily seen to form an orthonormal basis for the set of functions
f:{1,-1}" = R. This implies that for any function f:{1,-1}" — R we have

§(@) = ¥ fulu(e) whete f = 1 -1,

For a function f : {1,—-1}" — {1,—1}, we also have several useful properties of the coefficients
fa, namely —1 < f, < 1, fo = 1 = 2Dist(f, 1), |fa] = 1 — 2min{Dist(f,1,), Dist(f, —1,)},
maxg fo = 1 — 2Dist(f, LIN), max, |f,| = 1 — 2Dist(f, LIN U LIN). We now state the only result
from Fourier analysis that will be used in the rest of the paper.

Lemma 1 (Parseval’s equality) For any function f:{1,—-1}* — {1,-1}, 33, f2 =1.

The Long Code is the set of linear functions whose support is a singleton, i.e. LONG,, = {l{a} :
a € [n]}. We say that [;, is the Long Code of a. Thus, the Long Code is formed by n codewords
of length 2". An alternate but equivalent definition was used in [5]. We think that our definition
makes more explicit the relation between linear functions and the Long Code.

We give the definition of PCP parameters and classes. We follow the notation of [6, 5].

Definition 2 A verifier V for a language L is a probabilistic polynomial time algorithm that receives
an input x and has oracle access to a string P, that is supposed to represent a proof of the statement
“e € L”. For a verifier V, an input x and a proof P, we denote by Ace(V,z, P) the probability
over the random choices of V' that V acceptls x having oracle access to P.

Definition 3 For constants 0 < s < ¢ < 1 and for an integer q, we say that I € naPCP, [log, ¢]
if there exists a verifier V for L that satisfies the following property:



e For any input x and any proof P, V tosses O(log|z|) random coins, where |z| is the length
of x, and makes at most ¢ non-adaptive queries to P;

e Forany x € L, there exists a P such that Acc(V,z, P) > ¢ (completeness);
o loranyxz & L, for all P, Ace(V,z, P) < s (soundness).
We have the following connection with the Max £CSP problem.

Theorem 4 ([1]) If NP = naPCP_[log, k] then it is NP-hard to approximate Max kCSP within
S —¢ for anye > 0.

In [22] Theorem 4 was extended to the case of adaptive queries, we will not need such extension in
this paper.

3 Graph-Based Tests and Their Acceptance Probability

The BLR test picks z; and z3 independently and uniformly at random and tests whether
f(z1) f(z2) = f(z122) (equivalently, whether f(zy)f(z2)f(z12z2) = 1). In order to run several
instances of the BLR test we will pick at random 1, ..., 2, and then, for some pairs (3, j), test
whether f(z;)f(z;)f(ziz;) = 1; the total number of queries will be k& plus the number m of tests
that we performed; if we are using the same z; more than once, then the number of queries is
smaller than 3m and this may lead to an improvement in the amortized query complexity. The
problem is that we have to show that re-using queries does not increase the error probability. A
convenient way to represent a test that recycles queries is to think of it as a graph G = ([k], F)
where the k vertices are associated with the k elements x4, ..., z; that we pick at random and the
edges (7,7) € F are associated with the tests f(z;) f(z;) f(z;2;) that we perform.
Formally, for a graph G = ([k], ) we define the following test LinTestGraph (G, f).

LinTestGraph(G, f)
Choose uniformly at random zy,...,2; € {1,-1}"
if f(zi)f(z;) f(wiz;) =1 for all (4,j) € I
then accept
else reject

LinTestGraph(([k], ), f) reads k+|F| bits, k of which are free bits. We denote by AccGraph(G, f)
the probability that LinTestGraph (G, f) accepts. The acceptance probability of the test is expressed
by the following nice formula.

Theorem 5

II @) fa;)| (3)

(7,5)€S

AccGraph((H], 1), f)= o Y E
SCH

L1400y TE
Y

ProoFr: We introduce the following operator A : {1,—1}* — {0, 1}:

1 Ifey=---=zp=1

T1 A AT = ]
1 Tk { 0 Otherwise.



It is not hard to see that it holds

xm---mk:<12“)-- (Hf”k)_%znxz. (4)

SC[k] i€S

where the latter equality may e.g. be proved by induction on k. The reader may want to notice that
the last term in Equation (4) is the Fourier expansion of the function f(zy,...,2%) = 21 A+ - Az,
It remains to observe that when LinTestGraph(([k], ), f) picks z1, ..., 2k, it accepts if and only if

/\f(mé)f(fﬁj)f(méﬂfj) =1,

and thus

AccGraph(([k], E), f) = E /\ f(mz)f(xj)f(fvﬁ]):|

L1y T
- 9017?,0% 2|E| Z ]._.[ f (TZ'J;J')
SCE (i,j)eS ]
= 2|E| Z Il o [ II fG@ ) f(ziz)
o (i,5)€S ]

4 Fourier Analysis of the Path-Test, the Star-Test and the K-
Test

For any k, let ([k + 1], P;) be a path of length k& where P, = {(i,i+ 1) :i=1,...,k}. In order to
study the test induced by such graph we have to study the expectation of products like the ones
appearing in the left-hand side of Eq. (3).

Lemma 6 For any function f:{1,—-1}" — {1,-1},

]___[ f(z f(ziz;) ka+2-

( 7J)Epk

L1y 71'14

ProoOF: We first note that all the terms of the form f(z;) in the product cancel except for f(z;)
and f(zg41). Thus the product can be rewritten as

f)f(zze) - fzr, 2e00) f(2r4) - (5)
We expand each function and distribute the products. We expand f(:m) as D a, Faglag(21); we

expand f(z;z;41) as Y, faj a;(Tj@jt1); we expand f(zpy1) as 3o, fak+1 lagyr (Thgr). Using
Equations (1), Exp1e551on (5) becames

Z -fao e fak+1laoAa1 (xl) v 'lakAak+1 (‘rk-l-l) . (6)

A0y s X g1
When we take the average over the choices of z1,..., 2541, all the expressions laiAfli-}-l (zi41) are

independent random variables, whose average is zero unless a;Aa;11 = @. Thus, everything cancels
except when ay = v, ..., ap = agyq so that the expression reduces to ), fk+2. a



Lemma 7 For any graph ([k + 1], 5), where S C Py,

E

T1y..00Tk

11 f($i)f(‘rj)f($i$j):| < (max | fu )]

(¢,4)€S

ProOF: The lemma is certainly true for S = ). Otherwise, S is a non-empty subset of a path,
and so it is a collection of paths. Let us say that .S is a collection of h paths, of length [y,... I3
respectively. Note that [S| = [; + ...+ {;. The outcomes of the BLR test in different subpaths
are clearly independent random variables, so that the expectation of their product is equal to the
product of the expectations. Applying Lemma 6 to each subpath we get

1‘17 4Tk

I /@ m_,,] lf[ZfW.

(i,5)€S

Now, observe that, using Parseval’s equality,

Yo < (max | L)Y f2 = (max| f,

(e} [}

)"

We thus have

E

L1y ThyTR41

h
IT s ] T max | o))" = (max] )

(i.4)€S

a

The analysis of the Path-Test is now a one-liner.

Theorem 8 AccGraph(([k+ 1], Px), f) < (1 — Dist(f, LIN ULIN))*.

Proor: To save notation, let us define fmax = maxy |fa]. Recall that 1 — Dist(f,LINULIN) =
(14 fmax)/2. Using Theorem 5, Lemma 7 and the Binomial Theorem, we get

k
AccGraph(([k+1], P), f) < zik S =3 (’“) o = 3 (14 frna) = (1-Dist (f, LINULTN))*

O
For any k, let ([k 4+ 1], Sk) be the star with & rays, i.e. the graph whose set of edges is S, =
{(i,k+1):i=1,...,k}. We now analyse the associated test.

Lemma 9 For any f:{1,-1}" = {1,—-1}, and any k > 1

E

L1y Tl TE41

II f(im)f(éfj)f(imiﬁj)] < max|f,| -

ProoOF: We have to distinguish two cases, depending on whether k is odd or even. If £ is odd, we
have to estimate

k
. [ flowen T] flianen i >] | ™)

L1yeesThsTE41



We again have to expand each function. Let a4y be the set used in the expansion of f(zx41), let
«; be the set used in the expansion of f(z;zr41), and let 5; be the set used in the expansion of
f(z;). Then the expression (7) becomes

> foro fs,  E [l(alA--AakH)($k+1)la1Aﬁl (z1) - -lakAﬁk(wk)} :

L1y ThyTE41
aly'-'vak+17/617~“7ﬁk

Now, everything cancels except when az41 = ayA---Aag and o; = 3; for ¢ = 1,..., k. The
expression thus simplifies to

Z falA...Aakfgl 22 fik S mOilea S mgx|foz| .

QYoo

If k£ is even, we have to estimate

L1y TEyTE41

which (details are omitted) is equal to

S Paam B B < max(F2) = (max|fu])? < max |l

QA yeeey XL
O
Theorem 10 AccGraph(([k + 1],5%), f) < & 2 7+ (1 — 2Dist(f, LIN)).
Proor: From Theorem 5, Lemma 9, and the fact that a subgraph of a star is a star we have
11 ; 1 2F-1 —
AccGraph(([k+1],Sk), f) = oF + 5 Z mgx|fa| = 5% + Q—k( — 2Dist(f, LINULIN)) .
SCSy,,5#£0
O
We finally consider the bipartite complete graph with components of size 2 and k, Ky =
([k+ 2], Bx), where By = {(¢t,k+ 1) : i € [K]} U{(5, k+2) : 3 € [k]}.
Lemma 11 For any graph ([k + 2], S) where S C B and S # 0, it holds
I @) f(e;)flaiay) < max|fal
L1 yee 7Tk+2 ( "7 Es
Proor: [Of Lemma 11] We can assume without loss of generality that all the vertices 1,...,k in

([£+ 2], S) have degree at least one, otherwise the analysis reduces to that of a smaller graph with
such property. We can also assume that both k4 1 and k£ + 2 have degree at least one, otherwise
the analysis reduces to the analysis of the star. Let A C [k] be the set of vertices connected with
k 4+ 1, B the set of vertices connected with & + 2, and C' the set of vertices connected with both
k+ 1 and k4 2. We have to consider the three cases arising when k£ + 1 and k£ + 2 have odd and
even degree (there are four cases, but two of them are symmetric). If both have odd degree, then
the expression to estimate is

E  f(@r41) f(Theo) (H f(@rpzy) f ) (H f(@rs2z)) f ) (H f $k+1$3)f($k+293j)) :

lL‘l,...,lL‘k+2 ]EA ]EB ]EC



if k44 has even degree (i = 1,2), then f(zy4;) does not appear at the beginning of the expression.
We will only analyse the previous expression. For the other cases we will just give the final result.
We call oy and ay the Fourier coefficients used to expand f(zx41) and f(242) respectively. For
any j € [k], z; occurs in two functions; we call 3; and 7; the sets used in the Fourier expansion
of the two functions (in the order they appear in the previous expression). We get the following
expression

k
Z fal t .f"/k E l(al A 51 A ﬁl)(mk+1)l(a2 A ﬁz A 71)(mk‘+2 HZB‘LA'V‘L( )

T1yeesTht2 i€A  ieC
a1,02,8171 1Bk VE i=1

When we take the average, everything cancels except when g8, = v, for all 1, ay = A 6; A 5;, and

1€ A 1eC
= A Bi A ¥. So the average is
1€EB eC'
iCAUB icBUC
ﬁlv"'vﬁk ﬁlv 7ﬁk

The reader can verify that when the degree of k 4+ 1 is even and the degree of £ + 2 is odd (or
vice-versa), the the expectation is bounded by (max, |fa|)3 (the path of length three is a special
case of this analysis), and when the degree of both &+ 1 and k£ + 2 is even the expectation is at
most (max, |fa|)*, or (max, |f,])? in the special case occurring when A = B = () (that is, when
S = By and k is even). O

Theorem 12 AccGraph(([k+ 2], By), f) < 7x + 22;2—;1(1 — 2Dist(f, LIN ULIN)).

5 Application to PCPs

In this Section we present our PCP construction and its analysis. To this aim, we first extend the
framework of proof-composition of [5]. Our definition of inner verifier and of decoding strategy is
general enough to capture the recent results of Hastad, is fairly compact and conceptually simpler
than previous similar definitions.

Armed with this tool, we develop a PCP construction by simply proving one technical lemma.
We hope that our framework will be used in other constructions.

5.1 The General Framework

We first need a definition analogous to that of folding from [5]. Observe that if A = l{ay is a Long
Codeword, then A(z) = —A(—z) for any z; for any function A : {1,—-1}" — {1, —1} we will define
a new function A’ that satisfies such a property. The definition of A’ is as follows:

, A(m) If .Z’(l) =1
A=) :{ —A(=z) Tfz(1)=-1.

We stress that, for any z, A’(z) can be evaluated with one query to A, moreover A’ is equal to A

if Ais a Long Codeword. From the fact that A’(z) = —A’(—z) for any z it follows that A/, = 0 for
any « of even size, in particular for @ = (). This property is used in the proof of Lemma 15.

10



Definition 13 An inner verifier is a randomized algorithm V that given a function © : [m] — [n]
and given oracle access to two functions A : {1,-1}" — {1,—-1} and B : {1,-1}" — {1,-1}
decides whether to accept or reject. A decoding strategy is a pair of randomized algorithms (Dy, D3)
such that for any A : {1,-1}" — {1,-1} and any B : {1,—-1}" — {1,—1}, Di(A) returns an
element of [n] and Dy(B) returns an element of [m].

An inner verifier V' is (¢, s, q)-good with respect to a decoding strategy (Dq, Dy) if for any 7 :
[m] = [n], any A : {1,-1}" = {1, -1}, and any B : {1,-1}"" — {1, =1}, the following properties
hold.

o V makes at total number of at most q queries to A and B.
o if A is the Long Code of a, B is the long code of b, and w[b] = a, then

Pr[V (A, B, m)accepts] > ¢ .

e For any constant ¢ > 0, there is a positive constant 8, > 0 independent of m and n such that

Pr[V(A', B',m)accepts] > s+ implies Pr[D(A") = n(Dy(B"))] > 6. .

Theorem 14 If there exists a (c,s,q)-good inner verifier then for any ¢ > 0 NP =
naPCP. 4 .[log, ¢q].

A proof of Theorem 14 is given in the Appendix. It differs from a similar proof in [5] since, in our
definition of inner verifier, we allow randomized decoding strategies (which is easy to deal with)
and we do not have a “circuit test” (this requires some more care).

Using Theorem 14, the goal of developing a PCP construction reduces to find an inner verifier
and a decoding strategy. We will use a decoding strategy from [14] and its Fourier analysis.
Before quoting this result, we need one more piece of notation: let m and n be two integers and
7 : [m] — [n]; for a set 3 C [m] we denote by m2(3) the set of elements a € [n] such that there is
an odd number of bs in # that are mapped into a by 7. In symbols,

7T2({b1, ey bh}) = W(bl)Aﬂ'(bQ)A . A?T(bh)

The reason why we introduce this operator is that [3(z o 7) = I, (g)(2), and, in turn, evaluating a
linear function in z o7 is a problem that arises in the Fourier analysis of inner verifiers.

Lemma 15 ([14]) There exists a decoding strategy (DY, DI} such that, for every 0 < ¢ < 1/2
and every o < 1 — g,

S AL | BEal > e implies Pr[DI(A') = 7(DF(B'))] > poly(e) .
BCm]

A proof of Lemma 15 can be extracted from the last paragraphs of [14, Lemma 2.2]. Our proof is
a slight simplification of the one given in [14] (the decoding strategy is simpler.)

ProoF:[Of Lemma 15] The decoding strategy is as follows: D;(A) first picks a random « with
probability 213 (by Parseval’s equality, this is a probability distribution), and then picks a random

element of a. Similarly, Dy(B) picks a random § with probability Bé and then a random element
of 3. Clearly,

Pr[Dy(A)=rm(Dy(B)) > > L/KLB;
op.anm@yzo 1?1 1Pl
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Let ¢ be a constant such that (1 —&)* < ¢/k? for any integer £ > 1 (note that ¢ depends only
on £). By hypothesis,

e < Z Bﬁa'w'
3
< Z |B2 1—¢)lfl
8
= Z | 772(5)|B[29(1 _€)|B| + Z |A7T2(/3)|B[23(1 _€)|ﬁ|
BilAry (g I<e/2 BilAry () >/
£ o .
< 5t X MaelBia-9F
ﬁ.|Aﬂ2(5)|>s/2
< 242 A2 321 —e)f
< gtz X AnpBiii-o
BlAry (5 |>e/2
5 2 o c
< 42N A2 BE
>~ 2—}_8%: w2 (8) ﬁ|ﬁ|2
e 2 . 1 ., 1
< -4 =) A B2 —
<9t 2|y ()7 18]

< S+ TRiD(A) = (Do B)
and thus Pr[Dy(A") = n(Dy(B')) > &2 /4ec. O

5.2 Our PCP Construction

We now define our inner verifier and analyse it. It performs two executions of the protocol of
Hastad [14]. One query is recycled between the two executions. The reader can compare our
analysis with the analysis of the linearity test associated with a path of length two (or a star with
two rays).

Inner. (A, B, )
Choose uniformly at random z;, 29 € {1,—1}" and y € {1, -1}
Choose at random ey, e5 € {1, =1} such that Vb € [m].Pr[e;(b)=1]=1—-¢
if A(21)B(y)B((z107m)ye;) =1 and A(z2)B(y)B((z2 0 m)yez) =1
then accept
else reject

Lemma 16 For any A:{-1,1}" = {-1,1}, B: {-1,1}" > {-1,1}, 7 : [m] = [n], € > 0,

1 3 n 52 ﬁ
Pr[lnner. (A, B, 7) accepts | < 1 + 1 zﬁ:|Aﬂ2(ﬁ)|Bﬁ(l . L

Proor: It is immediate to see that

Pr[Inner.(A, B, ) accepts | = - + Z xl’];_}61 A(z1)B(y)B((z1 o m)yer) + 1@5}@ A(z2)B(y)B((z2 o m)yes)
+— E A(z1)A(z9) B((z1 o m)yer) B((z2 o m)yes)

4 Z1,T2,Y,€1,€2
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It has been proved in [14] that
E A(z;)B(y)B((z;om)ye;) Z 1 — 2¢) 5l < Z |Bﬁ (1- 2€)|ﬁ|
TiyY,€q
B B

It remains to evaluate the last term. We expand A(z;) =3, /Alallal (z1), A(z2) = 24, AQQZM (z2),

B(zyomyer) = g, Bp,lg, (21 0m)lg, (y)lg, (er), and B(za0myes) = Y5, By, lg, (2207m) 15, (y) 15, (e2)-
The expectation of the product becomes

Z Aal Aaz Bﬁl Bﬁz (E lalAﬂ?(ﬁl) ('rl)> (P la2A7T2(ﬁz) (r2)> <% lﬁlAﬁz (y)> (E lﬁl (61)> (E lﬁz (62)>
a17a27/617/92 2 “ 2
(8)

Let us first estimate the last two terms. Following [14] we have

Elp.(c =11 E ei( = (1-2¢)l%l
bes: ©

For the other terms, everything cancels except when 5y = ; = § and a; = ay = 73(f). We thus
have that (8) is equal to

ZA B3 (1= 20)PL < 3T AL () BF(1 - 20)
5

a

Lemma 17 For any 0 < ¢ < 1/2, Inner. is a ((1 — €)?,1/4,5)-good inner verifier with respect to
(D, DfY).

Proor: Of course Inner.(A’, B', 7) makes 5 queries, two to A" and three to B’. If A is the long
code of a and B is the long code of b and 7 (b) = a, then the test performed by Inner. reduces to
check whether ey (b) = ex(b) = 1. This test is satisfied with probability (1 —&)%. It remains to check
the third property of the definition of inner verifier. Assume that

1
Pr[lnner.(A’, B, m)accepts] > 1 + e

then we have that A
YA I BE(1 =207 > e > e
B 3

and by applying Lemma 15 with o = (1 — 2¢) we get

Pr[Dy (A) = n(Da(B))] > poly(e) -

Theorem 18 For any ¢ > 0, NP = naPCP,__ .1, [log,5].

As observed by Oded Goldreich, one can also derive NP = naPCP_, ; ;4[log, 5] by letting the verifier
fail unconditionally with probability 1 — (1/4)/ (i +€) and proceed normally otherwise. In this

way, the soundness becames 1/4 and the completeness (1 —¢)/(1 4 4¢), that is arbitrarily close to
1 since ¢ was arbitrary.

13



6 Possibility of Improvements

We believe that NP can be characterized using 14+ amortized query bits and that there exists a lin-
earity tester working with 14 ¢ amortized query bits. (Un)fortunately, it appears that significantly
new ideas are needed to improve the results of this paper.

LINEARITY TEST. It is possible that the test associated with a bipartite complete graph K}, has
acceptance probability at most iy + ﬁ—;l(maxa |fa]). If this is the case, then the test associated
with the graph K}, ; has amortized query complexity 1+ ¢ (for any € and sufficiently large £). In
order to prove that, we have to bound expectations of products over all the subgraphs of Kj, .
The expectations always simplify to a sum of coefficients, and Parseval’s equality is the only tool
that we know in order to bound such summations in a convenient way. In order to have squares in
the summation (and to apply Parseval) we need vertices with degree two in the graph. Thus, our
approach only works for graphs where most vertices have degree two, and Kj 5 is the densest one
with this property. In order to beat amortized query complexity 1.5 we have to bound summations

without using Parseval’s equation.

PCP. There is an immediate extension of the Path-Test to the case of inner verification. We
may pick vectors z,...,2; and yi,...,yx, and then perform the atomic verification of [14] using
xzy and yp, then z9 and y;, then x5 and yy and so on. Each query is used twice, and this may
lead to a protocol having soundness 1/22%=! with 4k queries (k queries to A and 3k queries to B).
Unfortunately, it is not hard to see that if we read only £ bits from A then the soundness will be
at least 27%. To get around this difficulty, we may look at an extension of the Star-Test, and pick
vectors z1,...,2; and y and then do the atomic test on x; and y. This test requires 2k + 1 queries
and may have soundness 27%. We do not know how to analyse it. Difficulties similar to the analysis
of the Kp p-Test seem to arise. As shown in [5], an inner verifier like the one that we describe
cannot have an amortized free bit complexity better than one. Furthermore, from a verifier with §
amortized query bits it is possible to find another one with ¢ — 1 amortized free bits [5] (the latter
are in fact “average amortized free bits”, but the lower bound of 1 holds also on the average case).
Thus 2 amortized query bits are a lower bound if we use our definition of inner verifier. Even if we
believe that it is possible to get below 2, a proof of that is not in sight. The PCP construction of
[13] gets around the lower bound of [5] at the price of an increase in both the amortized free bit
and query complexity. Since the inner verifier of [13] has amortized free bit complexity & for an
arbitrary § > 0, it does not harm if the combined protocol has amortized free bit complexity O(§);
the amortized query complexity, on the other hand, is always at least one and blows up in such a
composition scheme.
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A Appendix

A.1 Proof of Theorem 14

The starting point is a 2-Prover 1-Round to be used as outer verifier. We will use the same
canonical protocol already used in [5, 12, 13, 14]. The verifier receives a 3SAT formula as produced
using [1] that is either satisfiable or such that a constant fraction of the clauses is unsatisfiable.
Distinguishing between the two cases is NP-hard. The verifier expects one proof to contain, for
any k-tuple of variables, the value of these variables according to a fixed satisfying assignment,
and expects the other proof to contain, for any k-tuple of clauses, the value of the 3k variables
occurring in the clauses according to the same fixed satisfying assignment. The verifier picks &
random clauses, and one random variable in any clause. It reads in the two proofs the value of
the k picked variables and the value of the 3k variables occurring in the £ clauses, respectively.
Finally, the verifier checks that the answers are consistent and that they satisfy the & clauses. This
protocol recognizes an NP-hard problem and has completeness 1 and, by [20], a soundness that is
exponentially small in k. It is convenient to restate this result in terms of constraint satisfaction
For any integer d, the problem C2P1R(d) (for Canonical 2-Prover 1-Round) is defined as follows:

Instance: a pair of collections of variables X, ..., Xx and Y7, ..., Yy, ranging over the domain U
and V respectively, with |U|,|V| < d, a collection of subsets Sy, ..., Sy C V and a collection
of weighted constraints of the form ((X; = m;;(Y;)) and Y; € S;), where 7, ; : V — U. Note
that .S; does not depend on 4, and it is the same in all the constraints involving Y;. The
non-negative weight of such constraint is denoted by w; ;.

Goal: find an assignment of values from U to the X; and of values from V' to the Y; that maximizes
the total weight of satisfied constraints.

We have the following result, restating the soundness and the completeness of the protocol just

described.

Theorem 19 For any p > 0, there exist d = poly(1/p) and a polynomial time reduction that given
an instance ¢ of 3SAT produces an instance 1 of C2P1R(d) such that

o if © is satisfiable then v is satisfiable

o if © is not satisfiable, then no solution satisfies more than a fraction p of the total weight of
the constraints of 1.

It is in fact better to work with an essentially equivalent problem having a slightly different
definition. We call this problem ND2P1R(d) (for Non-uniform Domain 2-Prover 1-Round) and its
definition follows.

Instance: a pair of collections of variables Xy,..., Xy and Yy,..., Yy, with associated domains
[n1], ..., [nn] and [m4], ..., [mar], where n;,m; < d, and a collection of weighted constraints
of the form (X; = m;;(Y;)), where 7;; : [m;] — [n;]. The non-negative weight of such
constraint is denoted by w; ;.

Goal: find an assignment of values from [n;] to each X; and from [m;] to each Y; that maximizes
the total weight of satisfied constraints.

The same hardness result clearly hold for ND2P1R(d).
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Theorem 20 For any p > 0, there exist d = poly(1/p) and a polynomial time reduction that given
an instance ¢ of 3SAT produces an instance ¥ of ND2P1R(d) such that

e if © is satisfiable then v is satisfiable

e if © is not satisfiable, then no solution satisfies more than a fraction p of the total weight of
the constraints of 1.

Proo¥: [Sketch] We reduce C2P1R(d) to ND2P1R(d). We start from an instaance 9 of C2P1R(d)
and we produce an instance ?» of ND2P1R(d), using the same variable set and the same weights.
The domain of any X; variable is set to [|U|]; the domain of Y; is defined as [|S;]]. We fix some
encoding of the elements of U and S; as numbers. We use the same functions m; ;, but restricted
to (encodings of) elements of S;. If % is satisfiable then an encoding of the satisfying assignment
will satisfy ¥. Conversely, any assignment that satisfies a certain weight of constraints in ¥, when
translated back into an assignment for ), still satisfy the same constraints. a
We now have to show how to “compose” an instance ¥ of ND2P1R(d) and an inner verifier.

Proor: [Of Theorem 14] Let Inner be a (¢, s, ¢)-good verifier with respect to a decoding strategy
(D1, D2). Fix an arbitrary 0 < e < 1 - s, and let § = 4./, be a constant such that

Prllnner(A’, B', 7) accepts | > £/2 implies Pr[D;(A’) = m(Dy(B'))] > 8

We describe a verifier V' for 3SAT. The “composed” verifier V' receives an instance ¢ of 3SAT, and
computes an instance ¥ of ND2P1R(d) as promised in Theorem 20 with p = £§/3. For a fixed ¢, p

is a fixed constant, and so is d. V expects the proof to contain, for any i = 1,..., N, the long code
A; of some a; and for any j = 1,..., M the long code B; of some b; such that a1,...,an,b1,..., b
satisfies all the constraints.

V' picks a constraint X; = m;;(Y;) with probability proportional to w;;, then executes

Inner(Af, Bi,m; ;). Observe that V' can simulate Inner(Al, B!, 7; ;) even if it has only access to
A; and Bj;, and that if Inner makes at most ¢ queries then also V' makes at most ¢ queries. The
randomness used by V is a logarithmic amount in order to pick a constraint and then a constant
amount in order to simulate Inner (the input of Inner has a size that depends only on ¢, that is a
fixed constant.)

Completeness of V: If ¢ is satisfiable, then 1 is satisfiable, and let ay,...,an, by, ..., by be a
satisfying assignment to Xq,..., Xy, Y1,...,Yy. If we let A; be the long code of a; and b;
be the long code of B;, then V accepts with probability at least c.

Soundness of V: If V accepts with probability at least s+, let us consider the random assignment
generated by taking for any i and any j X; = Di(Aj) and Y; = Dy(Bj). There are constraint
of total weight at least £/2(1 — s —¢/2) > ¢/2 such that when Inner is performed over them it
accepts with probability at least s4+¢/2. For all such constraints we have Pr[X; = 7 (Y;)] > 4.
Thus, on the average, a fraction at least de/2 of the total weight of the constraint is satisfied
in . This is more than the p and so ¢ is satisfiable. We conclude that if ¢ is not satisfiable
then no proof is accepted by V with probability greater than s+ <.
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