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Eq. 3, p. 4 of
Parallel Complexity of Integer Coprimality

B. Litow &

May 17, 1998

Eq. 3, p. 4 is correct as it stands (up to a constant factor.) Eq. 3, p.4 is based on
multiplying the two partial fraction expansions of
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In general if () is a polynomial in w with simple zeros, then
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where the sum is over the zeros 3 of @, and Q' is the derivative of Q w.r.t. w.

In the case of we have = 2% — 1/p”, i.e., z plays the role of w, and in case of

1
22=1/p*”
Z_,,_IW, Q = (1/2)>=1/p®, and 1/z plays the role of w.

In the first case ¢) can be written as
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where w is a primitive a-th root of unity. In the second case @ can be written as
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where v is a primitive b-th root of unity.

In the first case Q' = az*~", s0 Q'(w’/p) = aw™7/p®~'. In the second case Q' = b(1/z)*!
(remember that the variable is 1/2), so Q'(v*/p) = bv=%/p*~1. This yields
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and
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In turn, Eq. 3, p.4 arises from
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Note that the root of unity factors cancel in the numerator and denominator of each

term.
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