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Parallel Complexity of Integer Coprimality

B. Litow $

Abstract

We show that integer coprimality testing is in NC.

AMS classification codes: 68Q15, 68Q22, 68Q25

1 Introduction

The parallel complexity of basic arithmetic operations has been closely in-
vestigated since the 1960’s. In the case of arithmetic, problem size is usually
measured in terms of binary notation for the integer inputs. It is known that
addition and multiplication of n-bit integers can be done in NC1, i.e., by
logspace computable Boolean circuit families of O(logn) depth and with
n?1) Boolean gates. Details about these classical results may be found in
[12], and information about the parallel complexity class NC may be found
in [11, 4]. Tt is also know that division can be done in the same time and
size bounds, but slightly more than logspace is needed to build the reg-
uisite Boolean circuits. It is open whether or not division is in NC1. See
[2, 5, 7] for more information about division. It is natural to ask about other
arithmetic functions. Perhaps the most important function after the basic
operations is GCD (greatest common divisor.) Unfortunately, very little
is known about the parallel complexity of GCD. In this situation it makes
sense to investigate simpler, related arithmetic problems. For this purpose
we have selected coprimality testing.

Throughout the paper n will be a positive integer and a and b will be in-
tegers in the range 2" ! < a,b < 2". The extended GCD problem (EGCD)
is to compute positive integers = and y such that ax — by = GCD(a,b). Of
course, the Euclidean algorithm solves EGCD. a and b are said to be coprime
iff GCD(a,b) = 1. If a and b are coprime, then modular inversion (MI) of a
w.r.t. bis the computation of a positive integer z such that az = 1 mod b.
Note that EGCD solves MI. Deciding whether or not a and b are coprime is
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the coprimality problem (CO).

A PRAM algorithm for GCD that runs in O(81%™) time was given by

Kannan, Miller and Rudolph [6]. This result was iifl)lgpqroved to g5 by Chor
and Goldreich. Adleman and Kompella [1] gave a randomized Boolean cir-
cuit algorithm for GCD that requires O (log® n) depth, but exp(O(y/nlogn))
gates. Adelman and Kompella ask whether or not GCD is in DSPACE(y/n),
which still seems to be an open question. See [1]. It is interesting to note
that Reif and Tygar [10] have shown that if MI w.r.t. a prime p isin P - NC,
then randomized NC is contained in DSPACE(n¢) for any € > 0. The paral-
lel complexity of MI is also open. In this paper we will prove the following

theorem.

Theorem 1 Integer coprimality testing (CO) is in NC.

As a corollary we have

Corollary 1 CO is in polylog space.

Proof : This follows from Thm. 1 and Theorem 4 of Borodin [3]. O

The paper is in sections. Section 2 is a description of the sieve which
is the starting point of our CO algorithm. Section 3 gives the outline of
steps of the algorithm and a complexity analysis. Section 4 contains several
technical lemmas which are used in the analysis of section 3.

2 The CO sieve
Throughout the paper s € [0,1], ¢« = v/—1, p = 1/ab and z = e(s) =
exp(2mes). The comprimality sieve S(a,b) is defined as

1 ds
S@h = [ T @

Lemma 1 Ifa and b are coprime, then S(a,b) > 1/9, otherwise S(a,b) = 0.

Proof : The integrand of Eq. 1 can be expanded as the geometric series

o o0
Z Z pap+bq . z0p—bg—1

p=04¢=0

Note that fol 2%P~b4=1ds vanishes, unless ap —bg —1 = 0. If a and b are
coprime, then there will be p < b and ¢ < a such that ap —bg — 1 = 0. This
means S(a,b) > p?®® = (1—1/ab)??® > 1/9. If a and b are not coprime, then
the integral of every summand in the above expression will vanish. O

The integral in Eq. 1 appears to be a very poor candidate for NC eval-

uation, but we will show that it can be approximated in NC so that Lem. 1
can be used.



3 The algorithm

Throughout the paper, we will use the term ‘rational’ to mean a quantity
a + 1, where « and 3 are ordinary rational numbers. Let f(n) be a ratio-
nal valued function on the non-negative integers. We will say that f(n) is
NC-good iff there is a fixed k such that for each positive ¢ there is an NCk
circuit family that computes g(n) such that |g(n) — f(n)| < 1/2"°. We will
also say that an approximation algorithm is NC-good if it demonstrates that
the quantity being approximated is NC-good. Our task will be to show that
S(a,b) is NC-good.

In this section we will give the scheme of approximating S(a,b). Most
technical details will be covered here, with the exception of some support-
ing material. Lemmas for the supporting material will be proved in section 4.

The approach is based on three facts. We will go into each of them in
this and the next sections.

e The zeros of an integer polynomial can be isolated to a specified pre-
cision in NC. See [9].

o If h = n°W, w is a complex constant, and |r 4+ w| > %M for integers
1 <r < 2", then sums of the form Y2", 1/(r + w)" are NC-good. We
note that w is treated as an indeterminate in actually working out the
form of the approximation.

o(1)

o If0<~vy<1,pisreal,and || > 1/2™ ", then [0, 1] can be partitioned
into n°() subintervals O; such that for s € O;
1
s—y+ B

has an NC-good approximation which is a polynomial in s with rational
expressions in v and g as coefficients.

We point out that the basic idea in both items two and three above is
rescaling. Notice also that item three will permit NC-good approximation
of certain integrals over the interval [0, 1].

We proceed to describe the approximation scheme.

Eq. 1 can be written as

—(a ' 2 ds
S(a,b) =p (+b)/0 (za_l/pa)(z—b—l/pb)



Let w = e(1/a) and v = e(1/b). We obtain the following partial fraction
expansion for S(a,b).

S(a b =p —(a+b) azlbzl/ . 2= 1. ds (3)
i do (2w = 1/p)(z vk = 1/p)

Eq. 3 still appears unpromising, not least because the number of summands
is ab.

Define Ty(w) to be the sum of the first d+1 terms in the Taylor series for
exp(w). It will be convenient to impose the lower bound of 4n < d. Define

Sa(a,b) as
~(a+b) az:l bz:l / Ty(—2mes) - ds (4)
(Ta2rmils = jJa)) — 1/p) (Ta@ro—s — K/B) — 1/7)

7=0 k=0

Lemma 2 For any ¢ > 0 there is a positive integer d = n°© such that
|S(a,b) — Sy(a,b)| < 1/2™.

Proof : Since ab = 20" it suffices to show that the absolute value of the
difference of each summand integral in Eq. 3 and the corresponding sum-
mand in Eq. 4 is bounded above by 1/2™ for a choice of d = no.

Note that |z| = |w| = |v| = 1, and that

(2w~ = 1/p)(z"'v™* —1/p)| 2 1/(ab)”

These facts, and the rate of convergence of the Taylor series for exp(w)
establish the lemma. O

By Lem. 2, we will henceforth assume that d = n9(1),

Let aq,...,a, be the distinct zeros of Ty(w) — 1/p. For the sake of no-
tational simplicity, we will assume that these zeros are all simple, so that
r = d. In fact, we can prove that the ‘critical’ zeros (to be defined later)

are simple, and that simplicity of zeros is not an obstacle to showing that
S(a,b) is NC-good.

By Lem. 2, if we can show that Sy(a, b) is NC-good, then we have shown
that S(a,b) is NC-good. The first step in this direction is the following fact.

Lemma 3 The zeros of Ty(w) — 1/p are NC-good.



Proof : Neff [9] has shown that finding approximations to m bits of all
the zeros of a degree d integer coefficient polynomial whose coefficients have
absolute value at most 2% can be computed by NC circuits of logo(l)(m +
d + k) depth and (mg + k)90 size. It is also known [8], Thm. 4.6, that
distinct zeros of such a polynomial are separated by at least d~¢.272%. In
our case m = k = d = n°®). Notice that the multiplicities can be reported
correctly by the NC circuit. |

Using partial fraction expansion again, we can rewrite Sy(a,b) as

a—1b—-1 d

—(a+b) ppgTa(—2mes) - ds
222 Z/ @ri(s = jja) — ap)@mi(s — ko) —ag) )

7j=0k=0p=1g=1

The p, 4 are the partial fraction coefficients, which are rational expressions
in the zeros.

Referring to Eq. 5, define A, 4 as

! pp.gTa(—2mes) - ds
/o (2mu(s — j/a) — ap)(2mi(s — k/b) — ) (6)

Using Eq. 6, we can write Sg(a.b) as

a—1b—1 d

REDIDIDD Z Ajkpa (7)

j=0k=0p=1g=1

We now proceed to show that Sy(a,b) is NC-good in two stages. First we
will show that each A;y ;. is NC-good, then we show that the summation
of the approximations according to Eq. 7 is NC-good.

Lemma 4 For0<j<a,0<k<b, 1<p,qg<d, Ajpq is NC-good. If
oy is critical, then the resulting approzimation has the form of

l
(In(1 — k/b— o) —In(—k/b—af) - Y _R;
i=0
where each R; is a ratio of polynomials in j, a; = a,/27 and all coefficients
are independent of either j or k. If o, is non-critical, then Zf:o R; can be
replaced by a polynomial in j.

Proof : Note that the numerator of the integrand of Eq. 5 is a polynomial in
s of degree n°(Y) with coefficients that are rational expressions in e, . .. , ag.
This means that it suffices to show that an integral A of the form

s™ds

A= |, Gl =T e T~ ®)
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is NC-good, where 0 < m < d.

By Lem. 3, the integrand of A is NC-good. Using the same kind of ar-
gument used to prove Lem. 2, we can continue the proof by working with
an approximate integrand of A in which o, and a4 are replaced by rational
approximations. However, we will not further encumber notation by spe-
cially indicating this modification. From now on, we will let o, etc., stand
for the approximations to the zeros.

We proceed to show that A in Eq. 8 is NC-good with the required form.
We divide the treatment of A depending on whether or not «, is critical.

Critical case. By Lem. 8, we know that there are only five possible critical
zeros. Using the details from that Lemma, and Eq. 8, we reduce showing
that A is NC-good to showing that an integral B of the form

s™ds

B:/o (s—jla+g+p)(s—k/b—ap)

is NC-good. Here a; = 27m and 8 = 27r, where p is as in Lem. 8. Also note
that g = ¢'/27 with ¢’ as in the Lemma. We have neglected the real term
of v/2 since |v| < 2/2%, and we take d > 4n.

By Lem. 6, B has an NC-good approximation B’ of the form
Z/ R;s™ - ds
s—k/b—al o

By synthetic division, the only contribution to the approximation of B’ that
requires inspection is

fj/ L—/IL—ln(l—k/b— 'Y —tn(—k/b— o)
ZJo,s—kfb—al Jo s—kjb—af % %

Non-critical case. We assume that |a,| > 47. Since

2mu(s —j/a)

| <1/2

we have an NC-good approximation of

1
2mi(s — j/a) — ap

by geometric series expansion in powers o . The remaining steps
are now as in the critical case.

a

£ 2mi(s—j/a)
Qp



By 4 will designate the approximation to A, , , guaranteed by Lem. 4.
We have suppressed j, k as indices because the form of B, depends on p
and g but not on j or k.

Lemma 5 Sy(a,b) is NC-good.

Proof : Recalling Eq. 7, we now know that

d a—1b—-1

d
|Sa(a,b) — ZZZZBP,Q|<1/2”C
p=1¢=135=0k=0

Therefore, it remains to show that

d a—1b—-1

>35S,

p=1¢=1;j=0k=0

is NC-good. Since p,q = n°1), we must show for each p and ¢, that the

above sum is NC-good. We treat the summations over j, k by cases accord-
ing to whether or not o, and a4 are critical.

Both oy, and a4 are non-critical. By Lem. 4, B, , is the product of a poly-
nomial in j and In(1 — k/b — ag) — In(—k/b — ag). The summation over j
assumes a closed form as a rational expression in the limits of summation.
Recall that the powers of j are bounded above by n°(!). Likewise, g | > 2,
and both |1 — k/b| and |k/b] < 1, we see that the logarithmic factors are
NC-good via Taylor series expansion for the logarithm.

ap is critical. We will see that summation on £ can be handled using the
technique for summation on j.

The logarithmic factor does not depend on j. We want to approximate
E“ ! o Bp,q- We have to evaluate

with £ and R; as in Lem. 4. The expressions R; arise in the proof of Lem. 6.
If we look at each of the subcases encountered in that proof, we see that
except for Case j # 0, subcases ¢ = +1 and regions 1 and 3 of subcase
g =0, R; is a polynomial in j, and summation is straightforward.

In the remaining cases, and noting the two remarks in the proof of Lem. 6,
we can apply Lem. 10 to obtain NC-good approximations for the summation
on j.



Finally, we can consider summation over k of the logarithmic contribu-
tion. If o4 is non-critical, then the logarithms have NC-good approximation
via straightforward expansion of the Taylor series as previously described. If
g is critical, then the range of summation can be broken into n°() octaves
and an appropriate rescaling in each octave allows one to get an NC-good ap-
proximation via the Taylor series again. This is very similar to the strategy
for summation over j in the «, critical cases above.

O

We are now able to prove Thm. 1.
Proof : By Lem. 2 and Lem. 5, S(a,b) is NC-good. The theorem follows
from Lem. 1. O

4 Technical lemmas

4.1 The main approximation lemmas

The following lemma, is the main approximation and is a precise reformula-
tion of item 3 discussed at the start of section 3.

Lemma 6 Let a be an n-bit integer, j an integer in the range 0 < j < a,
g € {0,1,—1}, and 1/2?" < |B| < 1/2?"~L. Let £ = 2n. The interval [0,1]
can be partitioned into subintervals, Oy, ..., Oy such that for any given ¢ > 0
there is a polynomial R; € Q[s] such that over s € O;

1

. — Ri(s)| < 1/2™
|s—j/a+g+ﬁL (s)] /

The coefficients of R; are independent of j. The subintervals O; and poly-
nomials R; can be computed in NC2, although the degree of the polynomial
governing circuit size will depend on c.

Proof : We point out to the reader that at two places we will make remarks
that will be used in the final steps of the proof of Thm. 1, but are only ob-
servations in the context of this proof.

We divide the construction of the subintervals and polynomials into
cases. In each case we will make an appeal to Lem. 9.

Case 7 = 0. We consider the subcases depending on g.
Subcase g = 1. Note that

14+ 82 <|s+1+02<4+p2<4(1+p%

This means that we can apply Lem. 9 without using octaves.



Subcase g = 0. Op = [0,1/2¢], and if 0 < 4 < £, then O; = [1/2¢7H+1 1/2¢77).
For s € O; it is clear that the minimum of |s + 8¢|? occurs at s = 1/2¢7+1,
and the maximum occurs at s = 1/2¢7%, It is easy to check that the maxi-
mum is not more than twice the minimum, so we can apply Lem. 9.

Subcase ¢ = —1. This is essentially subcase ¢ = 0 under the change of
variable s’ = s — 1.

Case j # 0. Again, we consider three subcases depending on g. The g = +1
subcases are relatively simple, so we dispose of them first. Now, we also
must observe how 7 occurs in the approximation. This is necessary because
j will enter into the scaling factor per Lem. 9.

Subcase g = —1. We use the change of variable t = —s + 1 + j/a. We have
s—1—j/a+pt = —(t—p¢). Note that t € [j/a,j/a+1]. O = [j/a,j/a+1/24],
and if 0 < i < £, then O; = [j/a + 1/2671 j/a +1/267%]. For 0 < i </,
the minimum of |t — 8¢|? in O; occurs at the low end of the subinterval, and
the maximum occurs at the high end. It is easy to check that the maximum
is not more than twice the minimum so we can apply Lem. 9. The scaling
factor will involve (j/a)?+ 32 for Oy and (j/a+1/2541)2 482 for O;, i > 0.

Remark We remark that the reciprocals of the two scaling factors above
can be decomposed in partial fractions to expressions of the form ﬁ such
that the real part of w is non-negative. This allows application of Lem. 10
to summation of j from 57 =1 to a — 1.

Subcase g =1. Let t = s+ 1 — j/a, and observe that ¢t € [1 — j/a,2 — j/a].
This subcase can be treated in the same manner as g = —1.

Subcase g = 0. We first deal with the subinterval Oy. We partition [0, 1]
into three intervals that we will call regions.

Region 1 s € [0,5/a —|A|]
Region 2 s € [j/a—|B],j/a +|0]]
Region 3 s € [j/a +|5],1]

We first treat region 2. It is clear that the minimum of |s — j/a + [t
is |8| and the maximum is v/2|3|. Lemma 9 applies here, and the resulting
approximation is a polynomial in j/a.

Region 3 can be transformed into Region 1 via the change of variable
t =s—j/a—|pB|, so we concentrate on Region 1. Region 1 is partitioned
into £ + 1 subintervals Oy, ..., O, as follows. We start at the high end of



the region and define Oy = [(1 — 1/2%)(j/a — |8|),5/a — |B|]. If i # 0, then
0; = [(1—1/2)(j/a —|B]), (1 — 1/25*1)(j/a — |B])). For 0 < i < £, let
g; be the minimum of |s — j/a + B¢|? over O;, and G; the maximum.

We claim that
ls —j/a+ B = (s — j/a)* + B

is monotone increasing as s goes from j/a — || to 0. This is clear if we write
s=pu(j/a —|B|), where 0 < u < 1. Note that

s —j/a— B’ = (1 - w)j/a+ plB)* + 52

and that the derivative of (1 — p)j/a + p|B| is —j/a + || which is negative
because j > 0, and 1/a > |f].

We carry out a detailed analysis of ¢g; and G; for 7 # 0. The case i =0
is simpler. Let z = 2'~'5/a. We have

g:i/B*=(Cz+1— 26_—1”1)2 +1
and
Gi/B*=(2Cz +1— W)Q +1
Now 1
2(C = g ) > #(C - a/2%) > zC/2

This last inequality is far from sharp since a < 2" and 222 < 1/|6] < 2¢.
In any event, we get

gi/B3* > C?2? /4 + Cx + 2
We can overestimate G;/3% by
(2Cz +1)? +1=4C%2? + 4Cz + 1

We get
16G; < g;

We apply Lem. 9 with the scaling factor 2 for O; of

2i-2 ol ¢
P = (Catfat Cat )t = 2 (ifa+ U228 g o (L 020,

Remark The above scaling factors for each octave can be expressed by

partial fractions in terms of ratios of the form — such that |j + w| >

Jj+
1/2”0(1) (in fact, a (1) lower bound holds.) This means that Lem. 10 can
be applied to summation of these ratios over j from 7 =1 to a — 1. |
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4.2 The zeros of Ty(w) —1/p
Lemma 7 If w is a multiple zero of Ty(w) — 1/p, then |w| = ©(d).

Proof : w is a multiple zero iff Ty(w) — p = 0 and Tj(w) = 0, where Tjj(w)
is the derivative of Ty(w). These two equations imply that w?/d! = 1/p,
and Stirling’s approximation implies that |w| must be very close to D/e. O

Lemma 8 If d > max{32e,2n + 2}, Ty(w) —1/p = 0, and |w| < 4r, then
w has the following form
w=p+(g't+v)

where 1 and v are real, p = —1/ab+O0(1/2'"), [v| < 2/2%, and ¢’ € {0, £2}.
In addition, w is simple.

Proof : That w is simple follows from Lemma, 7.

We need the following fact. If |w| < 47, then
Ta(w) — exp(w)] < 1/2° (9)
If d > 32e¢, then Stirling’s approximation gives for k£ > d,
lw|® /! < ¥ (4m)F k! < (16e/k)* < 1/2F
and Eq. 9 clearly follows from this.

Write w = u + vi, where u,v are real. If w is a zero, then by Eq. 9 we

have
I — exp(u) - exp(ve)| < 1/2¢ (10)
Let 6 = p — exp(u)cos(v), and &' = exp(u)sin(v). Separating real and
imaginary parts in eq. 10, we get |¢'| < 1/2% and |§| < 1/2%. Since cos?(u) +
sin?(v) = 1, we get
exp(2u) = p? — 28'p + 6% + 6"
From this we can conclude that
|exp(2u) — p?| < 3/2% < 1/2%" < 1/2%"
Taking logarithms, we get
2u = In(1 — ")

where 6" = 2/ab + O(1/2*"). The claim for v is immediate from this and
we set u = u.

We now know that exp(u) = 1 — 1/ab 4 O(1/2%*). This and |§'| =
|exp(u)sin(v)| < 1/2% and |og| < 47 tell us that v = gm + v such that
g € {0,£1,+2}, and |v| < 2/2%. However, ¢ = +1 is ruled out, since then
|| = |p — exp(u) cos(v)| > p, which is impossible, and the lemma is proved.
a
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4.3 Octave rescaling

Lemma 9 If w is a complex quantity, v > 1/2™° for some ¢ > 0, and for
some C = n°M), 4 < |lw| < Cv, then 1/w has an NC-good approzimation
consisting of a sum of nonnegative powers of

jwf?
€ +D7

Proof : We have (the bar designates complex conjugation)

1w @
— == .
If v > 1/2™ for some ¢ > 0, then since
C? |wl|? 1

1

— < 7 <1 =
C?+1~ (C2+1)y2 — C?+1

we have shown that 1/w is NC-good via an aproximation by a truncated
. . . w
geometric series in powers of 1 — (RS EeE O

We will refer to (C% + 1)y2 as the scaling factor.

4.4 Summation by octaves

Lemma 10 Let N > 1 be an integer, n = log N, ¢ = n©()
number. If |k + w| > 1/2"0(1) for integers 1 < k < N, then

A
2 Gy

k=1

and w a complex

is NC-good in terms of n.

Proof : Write w = u + v, where u and v are real. We treat the case u < 0
in detail. The case u > 0 is simpler and can be treated in a similar manner.

Note since |k+Lw| < 27 for some d > 0, and ¢ = nOW)
Lem. 11 and assume that ¢ = 1.

that we can apply

We start with
|k 4+w|? = (k +u)? +0° (11)

Let ko be the integer in the summation range for which |k + w| is minimum.
Actually, if —u is halfway between two integers there will be two such values
of k. However, this is an inessential complication, so we will assume a unique
ko. If k> kg +1 and 0 < z < y, then certainly by Eq. 11, [k +z|? < |k +y|?

12



and |k + 2y|? < 4|k + y|2. Likewise, if k < kg — 1, then |k — z|2 < |k — y|?
and |k — 2y|2 < 4]k — y|?.

Partition the summation range into ‘octaves’. O, ; will be the range
from ko + 2°7! to ko +2° — 1, and O_,; will be the range from ky — 2:=1 to
ko — 2" + 1. The outermost octaves may have fringes, but that won’t affect

1

the argument. Within any octave O+ ;, we know by Lem. 9 that T can

be approximated to within 1 /2"0(1) using the sum of the first n%W) terms
of the geometric series in

|k + w|?

1— .
17 ko £ 21 + w]?

Now, each octave sum involving these powers can be expressed in closed
form as a rational form in 2* and w. These evaluations can clearly be done
in NC, and the summation of these results for all octaves is also in NC, since

i=0(n). O
The next lemma is really included for completeness. It is often assumed
in various forms in the practice of polynomial size approximations.

Lemma 11 If a,b are complez numbers such that 3¥+1 - |a|2k+1_1 o] < 1,
then for 28 <n < 2k+1,

la™ — (a + b)"| < 38+ |2 L p)
Proof : First we will prove by induction on 1 < j < k that
¥ — (a+0)7] <3 -[a - [b

By the triangle inequality, |(a+b)%2 —a?| < 2|ab|+|b|? < 3|ab|. This takes
care of 7 = 1. The induction argument essentially replicates this. Assume
the result for j < k. Note that

(@a+ 5" = (0¥ +1b;)?
where by induction hypothesis,
[bj <% -fal” 7" - o
From this and the triangle inequality, we get
@ = (@07 <23 Jaf* a7 b+ by

By assumption |b;| < 1, so

162 — (a0 <330 oLy

13



which completes the induction.

In general, if 2/ < n < 2711 for j < k, then write n = 27 + g, where
g < 29. We use induction on j. Write (a+b)?’ = a* +b; and (a+b)? = a9+b,.
Using the triangle inequality, we get

| = (a +)"| < lal?[b;| + [al*'|bg| + [bg]lb5]

From this, |b,|,|bj] < 37 - la|¥ =1 . |b| < 1, and the induction hypothsis,
we get the lemma by replacing each of the three right hand terms by the
overestimate, |a|¥ - 37 - |a|¥ ~! - b. O

5 Open problems

The obvious question is whether or not the method of this paper extends to
MI. There appears to be a serious technical complication in attempts made
by the author to go beyond the decision problem CO. In effect, for MI the
numerator of Eq. 1 will involve an ‘entanglement’ of a and b, and this leads
to a breakdown in the approximation approach.

It may also be the case that the integral approximation by octaves has
other applications in computer science.
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