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Abstract. Recently, Ajtai [3] discovered a fascinating connection between the worst-
case complexity and the average-case complexity of some well-known lattice problems.
Later, Ajtai and Dwork [4] proposed a cryptosystem inspired by Ajtai’s work, provably
secure if a particular lattice problem is difficult. We show that there is a converse to the
Ajtai-Dwork security result, by reducing the question of distinguishing encryptions of
one from encryptions of zero to approximating some lattice problems. This is especially
interesting in view of a result of Goldreich and Goldwasser [13], which seems to rule out
any form of NP-hardness for such approximation problems.

1 Introduction

Lattices are discrete subgroups of some n-dimensional space and have been the subject of
intense research, going back to Gauss, Dirichlet, Hermite and Minkowski, among others.
More recently, lattices have been investigated from an algorithmic point of view and two
basic problems have emerged: the shortest vector problem (SVP) and the closest vector
problem (CVP). SVP refers to the question of computing the lattice vector with minimum
non-zero euclidean length while CVP addresses the non-homogeneous analog of finding a
lattice element minimizing the distance to a given vector. It has been known for some time that
CVP is NP-complete [11] and Ajtai has recently proved that SVP is NP-hard for polynomial
random reductions [2].

The celebrated LLL algorithm [17] provides a partial answer to SVP since it runs in
polynomial time and approximates the shortest vector within a factor of 2*/2 where n denotes
the dimension of the lattice. This has been improved to the bound (14 ¢)” by Schnorr [18].
Babai [6] gave an algorithm that approximates the closest vector by a factor of (3/v/2)". The
existence of polynomial bounds is completely open: CVP is presumably hard to approximate
within a factor 20°8™)° " a5 shown in [5] but a result of Goldreich and Goldwasser [13] suggests
that it is hopeless to try to extend this inapproximability result to y/n/logn.

Recently, in a beautiful paper, Ajtai [3] found the first connection between the worst-case
and the average-case complexity of SVP. He established a reduction from the problem of
finding the shortest non zero element u of a lattice provided that it is “unique” (i.e. that it is
polynomially shorter than any other element of the lattice which is not linearly related) to the
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problem of approximating SVP for randomly chosen instances of a specific class of lattices.
This reduction was improved in [8]. Later, Ajtai and Dwork [4] proposed a cryptosystem
inspired by Ajtai’s work. Actually, they introduced three such systems which we will describe
as AD1, AD2 and AD3 and showed that the third was provably secure under the assumption
that the “unique” shortest vector problem considered above is difficult.

Again, from a theoretical point of view, the achievement in the Ajtai-Dwork paper is
a masterpiece. However, its practical significance is unclear. This is partly due to the fact,
exemplified by RSA, that the success of a cryptosystem is not only dependent on the com-
putational hardness of the problem on which it is based, but also on the performances
that it displays in terms of speed, key size, expansion rate, etc. It is also related to the
fact that, so far, use of lattices in cryptography has been directed at successfully breaking
schemes [1, 19, 7, 16, 10, 20, 15, 9]: experiments have shown that lattice reduction algorithms
behave surprisingly well and can provide much better approximations to SVP or CVP than
expected. At the “rump” session of CRYPTQO’97, Victor Shoup and the authors reported on
initial experiments on the cryptosystem AD1: their conclusion was that, in order to be secure,
practical implementations of AD1 would require lattices of very high dimension.

At this point, it was natural to ask whether or not the security level offered by the
Ajtai-Dwork cryptosystem (AD3) is exactly measured by the hardness of approximating
lattice problems. In other terms, is there a converse to the Ajtai-Dwork security result? The
present paper shows that this is actually the case by reducing the question of distinguishing
encryptions of one from encryptions of zero to approximating CVP or SVP (recall that AD
encrypts bits). More precisely, we prove that if one can approximate CVP within a factor
cn'33, then one can distinguish encryptions with a constant advantage d, where ¢ and d
are related constants. This is especially interesting in view of the result of Goldreich and
Goldwasser quoted above since it seems to rule out any form of NP-hardness for AD. We
prove a similar result for SVP, with a more restrictive factor. This shows that AD is essentially
equivalent to approximating the shortest vector within a polynomial ratio and allows to
reverse the basic paradigm of AD: for dimensions where lattice reduction algorithms behave
well in practice, AD is insecure. This opens the way to a practical assessment of the security
of AD for real-size parameters.

2 The Ajtai-Dwork Cryptosystem

In this section we recall the construction of Ajtai and Dwork [4]. We adopt the notations and
the presentation of [14]. For any ¢ between 0 and %, we denote by Z=+e the set of real numbers
for which the distance to the nearest integer is at most €. We denote the inner product of
two vectors in the Euclidean space R™ by < z,y >. Given a set of n linearly independent
vectors wy, . .., wy,, the parallelepiped spanned by the w;’s is the set P(wy, ..., w,) of all linear
combinations of the w;’s with coefficients in [0, 1[. Its width is the minimum over ¢ of the
Euclidean distance between w; and the hyperplane spanned by the other w;’s. Reducing a
vector v modulo a parallelepiped P(wy, ..., w,) means obtaining a vector v’ € P such that
v’ — v belongs to the lattice spanned by the w;’s, which we denote by v = v (mod P).
To simplify the exposition we present the scheme in terms of real numbers, but we always
mean numbers with some fixed finite precision. Given security parameter n (which is also
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the precision of the binary expansion for real numbers), we let m = n® and p,, = onlogn e
denote by B,, the big n-dimensional cube of side-length p,,. We also denote by S,, the small
n-dimensional ball of radius n=%.

Given n, the private key is a uniformly chosen vector u in the n-dimensional unit sphere.
For such a private key, we denote by H, the distribution on points in B, induced by the

following construction:

1. Pick a point @ uniformly at random from {z € B, : < z,u >€ Z}.
2. Select 4y, ..., 0, uniformly at random from S,.

3. Output the point v =a+ ), J;.

The public key corresponding to w is obtained by picking the points wy, ..., wy, v1,..., 0y
independently at random from the distribution H,, subject to the constraint that the width
of the parallelepiped w = P(wy,...,w,) is at least n=2p, (which is likely to be satisfied,
see [4]).

Encryption is bit-by-bit. To encrypt a ’0’, uniformly select by, ..., b,, in {0, 1}, and reduce
the vector > ;" | b;v; modulo the parallelepiped w. The vector obtained is the ciphertext. The
ciphertext of ’1’ is just a randomly chosen vector in the parallelepiped w. To decrypt a
ciphertext x with the private key u, compute 7 =< z,u >. If T € Z & %, then z is decrypted
as ’0’, and otherwise as ’1’. Thus, an encryption of ’0’ will always be decrypted as ’0’, and an
encryption of ’1’ has a probability of % to be decrypted as '0’. These decryption errors can be
removed (see [14]). The main result of [4] states that a probabilistic algorithm distinguishing
encryptions of a ’0’ from encryptions of a ’1” with some polynomial advantage can be used
to find the shortest nonzero vector in any n-dimensional lattice where the shortest vector v
is unique, in the sense that any other vector whose length is at most n®||v|| is parallel to v.

In this article, we are interested in a converse to the Ajtai-Dwork theorem. We first
describe a reduction that works for any choice of the keys. Next, we improve the bound,
based on a probabilistic analysis. Finally, we show how to use a SVP-oracle instead of a

CVP-oracle.

3 Deciphering with a CVP-oracle

We define an (n, k)-CVP-oracle to be any algorithm which, given a point z € R” and a
n-dimensional lattice L, outputs a lattice point a € L such that for every g € L: dist(z, a) <
kdist(z, 3), where dist denotes the Euclidean distance. Each oracle call made by a Turing
machine contributes by a single unit to the overall complexity of the machine.

Using such an oracle, we will see how one can distinguish in probabilistic polynomial
time ciphertexts of '0’ from ciphertexts of "1°. To any choice of the keys, we will associate a
particular lattice. Given a ciphertext, one can build a vector such that: if this vector is close
enough to the lattice, then the ciphertext is a ciphertext of 0’ with high probability. To check
whether this vector is close enough, one calls an oracle.

Let (w, w1, ..., wp,v1,...,0,) be a set of keys. We first need a basic result:

Lemma 1. Lel x be a ciphertext of 0: v — 3770, biv; = 377 ajw; with b; € {0,1} and
o; € Z, where we keep notations introduced in the previous section. Then the o;’s satisfy:

|aj| < n°y/m.
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Proof. We have a; = [0;] where the §;’s are defined by: >, bjv; = >, 6;w;. If we
project this equality on the orthogonal complement of each hyperplane spanned by (wg)r;,
we find that |6;] < n°y/n, since the width of the parallelepiped P(wy,...,w,) is at least
n_Qpn. a
For any real B, let Lg be the n + m-dimensional lattice (in R***™) spanned by the columns
of the following matrix:

fwy ... Pw, Pvy ... Po,
1 0 0
0

1

nty/n
o
0 0 ntyn

From the previous lemma, we infer the following:

Proposition 2. If x is a ciphertext of '0°, then, for any choice of [,

dz’st(( ﬁox ) ,Lﬁ> < V2n8.

In other words, a ciphertext of '0” is, in some sense, close to the lattice Lg. But there is more:

Proposition 3. Letc > 0 and y be a point in the parallelepiped w = P(wy, ..., w,). If

: By 6.5 1 765
dZSt(( 0 7Lﬁ S&"fb ; then <U,y>€Z:t€ 1+W+7 .

Proof. We have gy = 3 (Z:il bivi + 377, ajwj) +e, where ||e||? and Zb?ng + Za? are
both less than e2n'3. Thus, dist(Z, < u,y >) is less than
265

> Ibildist(Z, < w,vi >) + Y Joy|dist(Z, < u, w; >) e

=1 7=1

Since < v;, u > belongs to Z + n%, the Cauchy-Schwarz inequality implies that the first term

is less than:
m 1/2 1\ 1/2
( E bf) X (mj) <en?nT5P? = en73,
. n
=1

Also, since < wj,u > belongs to Z + 711—7, the second term is less than:

1/2

n 1 1/2

2 6.5, —6.5 __
E o X (nm) <en’n =e.
J=1

The result follows. a0



If we collect these propositions, we obtain a probabilistic reduction:

Theorem 4. For anye > 0, there exists a polynomial time Turing machine, laking a cipher-
text x as an input and making a single call to a (n + *m,&/n/Q)-CVP-omcle, which oulpuls

a yes/no answer such that:
— If the answer is no, then x is a ciphertext of ’1’.

— If the answer is yes, then x is a ciphertext of ’0° with probability atl least 1 — 3e.

Proof. We let 8 = 4n%°. Calling once a (n + m,s/n/2)-CVP-oracle, we obtain a lattice
point « € Lg such that, for all v € Lg:

o)) <o o ()

We output ’yes’ if and only if
dist (a, ( ﬁoﬂb )) < en®5,

If x is a ciphertext of ’0’, proposition 2 ensures that this inequality is satisfied. Hence, if the
answer is no, then xz is a ciphertext of ’1’, or else, by proposition 3, one can infer that < u,z >
belongs to Z £ (1 + i + i), and the result follows. |

4 Improving the bound

In this section, we show how to improve the reduction by increasing the £4/n/2 factor, using
probabilistic arguments.

Lemma 5. Let t be a vector in the n-dimensional unit sphere. Let s be a randomly chosen
point (with uniform distribution) from the hypercube B,,. Then E[< s,t >] = 0 and Var[<

2
st >] =,
Proof (Sketch). Decompose s and ¢ with respect to the canonical basis to express the
dot product < s,t >. The result follows from a short computation, using the fact that the
coordinates of s are independent random variables uniformly distributed over | — p,, +py|[.

O

We now notice that the upper bound of lemma 1 is quite pessimistic:

Lemma 6. Lel x be a ciphertext of '07: 2= i~ bjv; = E?zl ojw;. Assume that vy, vy, ..., Uy
are independent random variables uniformly distributed over the hypercube B,. Then:

E[a?] < —nf

W =
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Proof. We have a; = [6;] where the 6;’s are defined by: 37, biv; = >°"_,; ;w;. Denote by

wj- a unit vector orthogonal to the hyperplane spanned by (wg)g2;. Since the width of the

parallelepiped P(wy,...,w,) is at least n=?p,,, we have for all j:
nt -
0]2 < - < bi*vi,wf >2 .
n =1

From the previous lemma and by independence of the v;’s, we know that:

Lyz| 2 ol <2 Pn _ 3Pn
F < ;_1 bivi,wj > ] = 22_1 b & {< vj, Wi > } < m? =n 3
We conclude since E[a?] < E[67]. O

This leads us to replace the n*\/n coefficients by n?y/n in the definition of our previous lattice
L. We obtain a refinement of proposition 2:

Proposition 7. Let 5 > 0. Then for sufficiently large n, the following holds: let x be a
ciphertext of °0°; let the public key veclors vy, vy, ..., vy be independently chosen at random
Sfrom Hy; for any 1 > 0, we have with probability at least 1 — 1, for any choice of 3,

) bz 4 1417
< .
dzst(( 0 yLg ) <n*y/1+ 3

Proof. We first assume that vy,..., v, are uniformly distributed over the hypercube B,.

Lemma 6 implies that £ {2?21 04? < %ng, where the o;’s are defined as in lemma 6. There-

fore, by Markov’s inequality, we have with probability at least 1 — ey,

ko3

1
E a? < —nb.
. 3e1
J=1

. bz 1 4 1
< yf—n®+ s < +—.
dist (( 0 yLg | < 3€1n n3n° < n /1 3

We now show how to modify the proof in order to take care of the actual distribution of the
vectors v;. Let a denote a point chosen at random from {z € B, : < z,u >€ Z}. Let A be
randomly chosen in [0, 1[. Then, the sum a+ Aw is uniformly distributed over an n-dimensional
volume C,,, which differs from B, by points y such that the segment [y, y 4+ ] crosses the
border of B,,. Such points are within distance 1 of this border. It follows that one can bound
the volume of the difference of B,, and C,, by 2np”~!. Replacing the uniformly distributed

variable v; by a; + A;u chosen according to the above distribution, one sees that the expected

value of F/ [2?21 oﬂ is modified by at most i—:nm, since 04? is always less than n'!. Applying
Markov’s inequality as above, one gets, with probability at least 1 — &y,

"L, 1 (1 g 23
Zaj < —|z-n"+ .
= &1 3 Pn

Noting that the actual v; is obtained from some instance of a; by adding a small perturbation
13
vector §;, and that QZ—H = o(1) as n grows, the result follows. O

Hence:




To obtain a similar improvement to proposition 3, we need another technical lemma:

Lemma 8. Let u be a vector in the n-dimensional unit sphere. Let § be a randomly chosen
72

point from S,,. Then E[< u,é >] = 0 and Var[< u,§ >] = (nigl)’;bw, where W,, denoles the

n-th Wallis integral:

/2
W, = / sin™ 8d6.
0

Proof (Sketch). The expectation E[< u,d >] is clearly zero. To compute the variance, we

can assume that w = (1,0,0,...,0) since 5, is invariant by rotation. We obtain:
n—8 —
V. (/016 _ 22
Var[< u,d >] = / R 1 )dx,
o Vi (n=8)

where V,,(r) denotes the volume of the n-dimensional ball of radius r. The result follows after
a few simplifications using Wallis integrals. O

Proposition 9. Let u be a vector in the n-dimensional unit sphere. Let v be a randomly
chosen point from the distribution H,. Then:

27

: 2

FE [dZSt(Z, <u,v >) ] S m

Proof (Sketch). Write v = a+ ), é; where the ;s are independently chosen with uniform
distribution over S,. Apply the previous lemma with « and ;. Conclude as W2 < 27” O

This leads to the following refinement of proposition 3:

Proposition 10. Let y be a point in the parallelepiped w = P(wy,...,w,). Let e,e9 > 0. If

. /éy €2 g
< _——
dZSt(( 0 7Lﬁ £ n-,

then, the following holds with probability at least 1—e4 (with respect to the choice of wy, ..., w,):

£9 TLS
<u,y>eZte|l+4/—[14+— .
27 0

m n
. fe €
Proof. As in the proof of proposition 3, we find that E bin® + E 04? <e?22p'% and

. : 2r
=1 =1
dist(Z, < u,y >) < Z |b;|dist(Z, < u,v; >) + Z |a;|dist(Z, < u, w; >) + %\/ ;—;n&

=1 7=1

By the Cauchy-Schwarz inequality, the first term is bounded by 52;—27111 X A[m—g =
V™ 2x n

[ e .
€ 2—2 Also, the second term is less than:
s

n n
Za? X Zdist(z, < w,wj >)2.
s

i=1
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We know that the first term of this product is bounded by ¢ ;—2718. Furthermore, if we
V 2r
denote by X the random variable 2?21 dist(Z, < u,w; >)?, we have from proposition 10:
. = . 2 27 2m
E[X]:ZE[dlst(Z,<u,wj > <n <

= = (n+42)nl6 = ple’

/2
By Markov’s inequality, it follows that with probability at least 1 — ey, vV X < n™% T We
€2

conclude from all the inequalities obtained. O

From all these propositions, we derive an improved probabilistic reduction:

Theorem 11. For anye,cq1,e4 in |0, 1], there exists a polynomial time Turing machine, taking
€182 4

———n" |-CVP-

7T(1 + 281) )

oracle, which outputs a yes/no answer such that, for sufficiently large n:

a ciphertext x as an inpul and making a single call to a (n +m,e

— If the answer is no, then x is a ciphertext of ’1° with probabilily at least 1 —e1, with respect
to the choice of vy,...,vp,.

— If the answer is yes, then x is a ciphertext of '0’ with probability at least (1 — 3¢)(1 — e3)
with respect to ©, wy, ..., w,.

Proof. We let 3 = 4n® £2 Calling once a |[n+m,e _ ez e -CVP-oracle, we
V 27 (14 2e4)

obtain a lattice point a € Lg such that, for all v € Lg:

dist (a, ( ﬂOUC )) <eg 777(18_11_8;81)714&5‘5 ('y, ( /6030 ))

We output ’yes’ if and only if dist (a, ( ﬂoﬂf )) <e ;—2n8. If z is a ciphertext of 0,
V 2r

proposition 7 with n = 1/2 ensures that this inequality is satisfied with probability at least
1 —e;. Hence, if the answer is no, then z is a ciphertext of '1’ with probability at least 1 — e,

with respect to the choice of wvy,...,v,. Otherwise, proposition 10 implies that < u,z >
belongs to Z £ (1 + % + i), with probability at least 1 — g5, with respect to the choice of
Wiy ooy Whp. g

5 Deciphering with a SVP-oracle

We now try to use SVP-oracles. Given a n-dimensional lattice L, an (n, k)-SVP-oracle outputs
a point a € L such that for every 5 € L: ||| < k|| 5]|-

Theorem 12. Let 6,7 > 0 such thal 5% + 20 < 2. There exists a polynomial lime oracle
Turing machine calling a (n*T7,n%)-SVP-oracle which distinguishes, for sufficiently large n,
encryptions of °0° from encryptions of ’1’ with a polynomial advantage.



Note: recall that the advantage ¢ of a distinguishing algorithm A is such that

1
P[A answers correctly] > 2 +e.

We will need a technical improvement over the computations of section 4 which reads as the
following two lemmas, whose proofs can be found in the appendix. The key to the improvement
is to replace Markov’s inequality by moments inequalities, using the multinomial formula.

Lemma 13. Let k be a positive integer. There exists a constant M;(k) depending only on
k, such that the following holds for all sufficiently large n: lel y be a ciphertext of °0°, and
g1 > 0, then with probability at least 1 — ¢y, y comes from a sequence by, ..., b, such that

writing y — > 1%, biv; = 377_ ) ajw;, one gels

Given €1, we say that y is a good ciphertext if it satisfies the inequality of the previous lemma.
Note that it is possible to produce good ciphertexts, given the public key, by a polynomial
time algorithm.

Lemma 14. Let k be a positive integer. There exists a real My(k) such that the following
holds for all sufficiently large n: let £ > 0, then with probability at least 1 —e5 over the choice
of the public key only, one gets, for good ciphertexts y of 0’

1

dist(Z, < uy >) < Ma(K) G

We now fix some constants. Since 26 + 5% < 2, there exist strictly positive v1,v2, 71, 72, k, A
such that

3 1
260 + g—k'yﬁ-/\—l—ﬂ(4+7+71+72+771+772) < 2,

. 1 1 .
with Y2 > 71 >, 71 < ’)/‘}— A. We let g1 = m and g9 = W We will
use our oracle as follows: let v = n?*7 and consider a sequence (y1,...,y,) of elements of
P(wy,...,w,). Choose a random permutation o of {1,...,v} and apply the (n?*7, n%)-SVP-
oracle to the lattice spanned by the columns of the following matrix, with g = nbplts;

BYsry PYsz) -+ BYow)
1 0 e 0
0 1
: . 0
0 e 0 1

The output is a vector (2, Ar,...,A,). Say that y; is hit if 0 < [A,—1(y] < n2 T+, The
following two propositions show that ciphertexts of ’0’ and 1’ behave differently.
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Proposition 15. If yi,...,y, are ciphertexts of ’1°, then yy is hit with probability € —
n

Proposition 16. If yy is a ciphertext of 1’ and ys, ..., y, are good ciphertexts of '0°, then
1
y1 is hil with probabililty O (—)

n2

These propositions are proved in the appendix. We now show how to conclude. The distri-
butions S, = (y1,...,y, : y; is a ciphertext of "1’) and T, = (y1,...,¥, : y1 is a ciphertext
of '1” and the others are good ciphertexts of ’0’) are distinguished by the test “y; is hit”
with advantage Q(-3-). Using the “hybrid method” (see [12]), we introduce the distribu-
tions S; = (y1,.--,Y»  Y1,-..,Y; are ciphertexts of ’1” and y;41,...,y, are good ciphertexts
of '0’). There exists ¢ such that S;_; and S; are distinguished by the test with advantage
Q(m) One can check whether a given y is a ciphertext of 0’ or "1’ by querying the an-
swer of the test for (y1,...,%i-1,Y, Yit1, ..., Yy) Where yq,...,y;_1 are random ciphertexts of
1’ and y;41,-..,Y, are random good ciphertexts of ’0’. Since the bad lattices that contradict
lemma 14 form a set of probability less than e5 < n=277=71 772 and the bad ciphertexts of "0’
form a set of probability less than £y = n=277=7 =" these do not harm the advantage of the
distinguisher.

Note: the above construction is non-uniform. Eliminating the non-uniformity requires “sam-
pling” the test for the various distributions S; (see [12]).

6 Conclusion

We have shown how to reduce the question of distinguishing encryptions of one from encryp-
tions of zero in the Ajtai-Dwork cryptosystem to approximating CVP or SVP. For simplicity,
our results were proved with the choice of constants from [14]. Of course, the method extends
to a more general setting as well, with the same proofs. More precisely, if we let m = n°
(instead of n3) and denote by S,, the n-dimensional ball of radius n=¢ (instead of n=%), theo-
€1€

122 pd=(e45)/2 ) OVP-oracle. Theorem 12 also
ﬂ'(l + 281)

remains valid if § and v are such that 3 +20 < d — (94 ¢)/2 and we use a (n?*7, n?)-SVP-
oracle.

rem 11 remains valid with a (n + m,e
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A Appendix

In this appendix, we provide the missing proofs of section 5.

A.1 Proof of Lemmal3

We first generalize lemma 5. Let t = (41, ...,¢,) be a vector in the n-dimensional unit sphere.
Let s = (s1,...,S,) be arandomly chosen point with uniform distribution from B,,. We have:
2k

E[< s,t >2k] =F ZSjt]'

i=1

If we expand this product, we obtain m?* terms. All the terms for which some s; has an odd
exponent disappear. We obtain by the multinomial formula:

El< st >*] = Z %E [(s1t1)% - -+ (8ntn)*™] -
i +etin=k

And since the s;’s are independent:

) . . o . 1 1
E ¢ 21 . ntn 2in — t221 . 'tQZ" 2t1++2tp . .
[(81 1) (S ) ] 1 n pn 21/1_|_1 Q’Ln‘l‘ 1
Therefore:
2k)! . .
E[< S,t >2k] — pik i ( : t221 . _tizn'
M%;n:k (26 + D! (20, + 1)1
And this sum is less than:
(2)! R o 2R s (20)!
B2 gl = i)t =

i1 tin=k
Thus:

2k)!
E[< s,t >*] < (k') pk.

Note that if there was an odd power instead of 2k, the expectation would be equal to zero.
Now, as in the proof of proposition 7, we can first assume that the v;’s are distributed uni-
formly over B,,. The proof of lemma 6 becomes, by the same argument about the disappear-
ance of “odd” terms:

< Zm:bi'vi,wj' >2k] < Z L ﬁE {< Ug,wj' >2iZ .
=1

F
Y e (922 ))
i teotim =k (2ig)t-- - (2im)! (=1
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1 (200)! 5
We know that each product is less than H %pi” < p**(2k)'*. And
ig!
=1

5 (k) _ (28! 5 B @k,

w2t 20) TR

It follows that F

e !
< Zbivi, wy >2k] < pik((Qk)!)k(Q:')'mk, and therefore,
=1 ’

J

FE {a%} < *n4k(2k)!k+1mk = *n7k(2k)!k+1.

As previously, note that if there was an odd power instead of 2k, the expectation would be
equal to zero. Apply one last time the multinomial formula:

Elt+ - +ad)f| < 3 ,LZ,HE[Q?}

(3
itetin=k 1 =1
k! k
<Y ™ (e
1.1y
i tetin=k L n

_ n7k(2k)!k(k+1)nk.
Hence:
E (a§+---+ag)k] < Bk (2k) k(1)

Now, if the v;’s are chosen from their actual distribution H,, as in the proof of proposition 7,

one can show that the expected value is modified by at most 'nknnki—:, since o? is always

J
less than n'l. Therefore, for sufficiently large n (depending only on k), due to the an factor:

E[(af 4+ a2)F] < 02k + 1)),

Finally, we apply a moment inequality to obtain, with probability at least 1 — e4:
- 1
2 8 k+1
j=1 &1

The result follows with M (k) = (2k 4 1)!1F+1,

A.2 Proof of lemma 14

The method is similar to the one used in the proof of lemma 13. This time, we need to
generalize lemma 8 and proposition 9. Let u be a vector in the n-dimensional unit sphere.
Let § be a randomly chosen point from S,,. The proof of lemma 8 becomes:

W 1
E[< u,6 > = 4n_1’; (1= y2) =012y 2k gy
0



This integral is equal to I(n,k) =

integration by parts shows that:

14

/2
sin” @ cos®* §df. We have I(n,0) = W, and an
0

A nt1 . 2k—2 2k -1
I(n, k)= sin"™" @ x (2k — 1) sin @ cos 0do = I(n+2,k-1).
0 n+1 1
It follows that:
(2k—-1)(2k-3)---1 (2k)!
I(n, k)= n < -
L OIS T By iy LG L
Hence: 1 (2h) 2 (2h)!
2% L m(2k)!

The expectation would be equal to zero if there was an odd power instead of 2k. Now, let
v = a+ ) .6 be a randomly chosen point from the distribution H,. Since “odd” terms

disappear, we write the multinomial formula as:

E |dist(Z, < u,v >)2k}

IN

<

<

n 2k
F (Z < u,&' >>
=1

> (26)’ ﬁ E[< u,8; >%]

T (2i1)! -+ (2iy,)! L.

2%)! 1
3 (2k)

2 @it @i T
P14 tin=

1 2k)!

— (27T(2k)')2k ( ) ok
n

k!
%4%%(%) 2k+1
n

(27 (2k)1)**

Again, with an odd power, the expectation would be equal to zero. Therefore:

E Zdist(z, < u,w; >)?

i=1

k

B 4
< _— FE [dist(Z, < u,w; >)%*
< Z_h!,,,h!l:[ [dist( i >

Ji4-tin=k =1
k! 1 k__2k 2k k
v 12k+1
< Y e (447 (2k)124+1)

Jitetin=k

k
— <4kﬂ_2k(2k) !2k+1)
n

Thus, by the moment inequality, we have with probability at least 1 — e, (with respect to the

choice of wy, ..., w,):

Zdist(Z, < u,w; >)?

i=1

L1k 2kpopy2k+1
2
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And the result follows from the Cauchy-Schwarz inequality and the definition of good cipher-
texts, as in the proof of proposition 10 with:

My(k) = 20/ M (k)akr 2k (2k) 126+

A.3 Proof of proposition 15

We first need a combinatorial lemma:

Lemma 17. There exists N such that for all n > N, the following holds: let yq,...,y, be
elements of the parallelepiped P(wy, ..., wy,), then there exist coefficients A; (not all zero) in

{-1,0,+1} such that
> A
=1

Proof. Let z; = [n'%y;]. BEach 2; has integral entries in {—n'%p,, ..., n'%,}. Consider all
combinations > A\;z; with A; € {0,1}. There are 2” such combinations, but there are at
most (2vn'®p, 4+ 1)" distinct combinations. By the pigeon-hole principle, it follows that if
2Y > (2vn'®p, + 1)", which is satisfied for sufficiently large n, then there exist two distinct
sequeunces (Ar,...,A,) and (p1,..., 1) in {0, 1} such that: > | A\jz; = -7 p;2;. Letting
K; = A\; — 14, we obtain:

;_’ | Ki (nmz. _ [nIOZZJ>

v
Zﬁm _ iz = ;
n
=1
2 Vn _ 1

whose norm is less than ==~ < —, a
T = 6

Lemma 18. Let Ay, ..., )\, be integers not all zero. If yq,...,y, are chosen at random in the
parallelepiped P(wy, ..., wy,) then

1
ZAzyz < n2] ey

Proof. Assume that the inequality on the norm is satisfied. Write Y7 | A;y; as E 1 Qjwj.
We have:

n2 1
|oj| < Z AiYi ﬁ
The probability is therefore bounded by the probability that each «; is between —% and

1
2pn "

Each y; is of form Y ,_; piews where the p;,’s are independently chosen in [0, 1[ with
uniform distribution. It follows that:

= Aipti.
=1

If A; is non-zero, then A;u; ; modulo 1 is uniformly distributed over [0, 1[. Since the A;’s are
not all zero, &; modulo 1 is therefore uniformly distributed over [0, 1[. Furthermore, the «;’s
are independent, and the result follows. O



16

This probabilistic lemma is the core of the following result:

Lemma 19. Let T = v — . If y1,...,y, are chosen at random in P(wy,...,w,) then the
probability that there exist Ay,..., A, not all zero such that

> i
=1

A
o
-
=

60
g Al < V2720 (2)
X £0) < o (3)

is exponentially small (with respect to n).

Proof. The number of non-zero (Aq,...,A,) satisfying (2) and (3) is at most

(157 ) sy

n

which is bounded by (nz‘w)”z}q(2n1+7/2+7)”24. Since 6 < 3, by lemma 18, each vector has
probability less than an to satisfy (1), this yields an overall probability less than

(n2+w)n2_" (2n1+w/2+6’)n2_" i

Pn
Taking logarithms we get n*~7 [(2+ v)logn 4 (14 v/2 + ) log n 4 1]—n?* log n. Since 2—7 <
2, the leading term is —n?logn and the result follows. O

Now, consider the output (z,A1,...,A,) of the oracle. By lemma 17 and by definition of the
oracle, ||z]|* and >°Y_, A? are both less than:

1
n29 (ﬁ?m T I/) S n26’ (n2+w T n?—}—w) — 2n2—|—w—|—2€‘

Therefore, [[A1v5(1)+ -+ -4+ A vg() || < V2057 and ||(Ar, ..., M| < V2o P72 This means
that (1) and (2) are satisfied if we use the y,(;)’s instead of the y;’s. Since the A;’s are
not all zero and yy,...,y, are ciphertexts of ’1’, lemma 19 implies that with overwhelming
probability, (3) is not satisfied: at least n?~7 coefficients are non zero. By symmetry, the

probability that y; is hit does not depend on ¢. Furthermore, (2) implies that the number
of (A1,...,A\,)’s such that |\;| > /2704 is such that

T2 < [| (A1, .. .,/\l,)H2 < 2n2+7+29,

hence z < 2n?~2* If A\ > 7, this number is negligible with respect to n?~". Now, the proba-

bility that A; is hit is:
n?=7 1 1
() -n() o)

This concludes the proof.
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A.4 Proof of proposition 16

As in the proof of proposition 15, consider the output (z,Aq,...,A,) of the oracle. ||z|| and
(AL, ..., A)|| are still less than v/2r't9F7/2 And:

1 v
As-1(1)Y1 = 37 Z Ao=1(:)Yi-
=2

Since s, ..., y, are good ciphertexts of ’0’, lemma 14 implies that we have, with probability
at least 1 — g9 (with respect to the choice of wy, ..., w,), fori > 2:

1

dist(Z, < u,y; >) < May(k)———+.
ist( w, Yi >) 2( )n4(5152)1/2k

And therefore, by the Cauchy-Schwarz inequality:

- 1
; Aoy % \/VMWC)QW

dist (z, < A1y ¥inu >) <

i=2 £1€2)
< V2RI M ()t T2 (61621)1/2k
< % s
Furthermore, dist(Z, < %, u>) < \/§n61_€. Therefore, for sufficiently large n:

\/§ 0+y=2

dist(Z, < Ag-1(1yy1,u >) < M?““)W

If A;-1(1) is a fixed integer, since y; is a random vector in the parallelepiped, the latter
inequality is satisfied with probability at most:

V3 nftr=2,

2M2 (k') (8182)1/2k

But if y; is hit, then |/\0_1(1)| € {1, 2,.. .,n%+9+A} . Hence, y; is hit with probability at most

2M, k)iz\/g pf =297/ 2404

. As n grows, this is:
(5152)1/% & ’

) <n20+3w/2+A—2+ﬁ(4+w+m+w+m+772)) -0 (L) .

This concludes the proof.
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